
AN EXPERIMENTAL ANALYSIS OF A 
COMPACT GRAPH REPRESENTATION

Endrias Kahssay



WHY GRAPH COMPRESSION? 

Graphs are getting larger (billons of edges) and take a large amount of memory to 
store.

A compression scheme can result in them fitting on RAM / cache. 

Large performance penalty for an access to disk for graphs that don’t fit.    



THE ORDER OF VERTICES MATTERS

Most graph algorithms access neighbors of a vertex u after accessing u. 

We want a representation that puts edges of neighbors of vertices to be close to 
each other spatially. 

In practice, this means making the labels of related vertices as close as possible.



PAPER CONTRIBUTION

This paper empirically evaluates a representation that has both compression and 
good order.

Compression of edges using consecutive edge difference. 

Order based on separator trees; a structure that attempts to encode a hierarchical 
relationship among nodes.  



SEPARATORS 

An edge-separator is a set of edges (vertices) whose removal partitions the graph 
into two almost equal sizes regions. 

The min separator for a graph is one that minimizes the  set of edges (vertices)  to be 
removed.

We say that a graph has a good separator if its significantly better than a random 
graph.



SEPERATORS IN REAL GRAPHS

Real world graphs have good separators because they are based on communities! 

Include citation graphs, phone call graphs, friendship relationships, etc.  

Useful for partioning graphs for parallel processing, clustering, etc. 



COMPRESSED REPRESENTATION 

Rep: an encoding where neighbors for each vertex are stored in a difference-
encoded adjacency list. 

I.e if a vertex has a sorted neighbor v1, v2, v3 , .., we store v1 – v, v2 – v1 
contagiously in bits.  

Difference stored using a logarithmic code which uses O(logd) bits to encode a diff of 
size d. 



REPRESENTATION

Adjacency list concatenated to form an adjacency table. 

An indexing structure is used to access the adjacency list for vertices, which is also 
compressed. 

Not theoretically optimal, but works well in practice. 



REPRESENTATION 

1)  Generate edge separator tree for the graph. 

2) Label in the vertices in-order across the leaves. 

3) Use an adjacency table to represent labeled graph. 

In previous work, the authors describe an O(n) bit encoding with O(1) access time for graphs 
satisfying O(nc) for c < 1 separator bound. 



IMPLMENTATION: SEPARATOR TREES

Collapses edges until a single vertex remains. 

Many heuristics to collapse edges, paper used w(EAB)/ s(A)s(B). 

w(EAB) is the number of edges between A and B, and S(B) is the number of vertices in 
the multi vertex B. 



INDEXING STRUCTURE 

Used to map a vertex to its start location. 

Tradeoff between space and look speed. 

Uses semi-direct-16, which stores the start location for 16 vertices in 5 32-bit words. 

Based on storing offsets from some set of vertices encoded, and if an offset doesn’t 
fit, a pointer is stored to it instead. 



CODES AND DECODING

Originally used gamma code, which represents an integer d using a unary code for 
[logd] followed by binary code for d – 2[logd].

Decoding gamma code is expensive (even though O(1)). 

Developed snip, nibble, and byte code, optimized for machine word access based on 
continue bits and chunking. 



DYNAMIC VERSION

In dynamic version, the edge list of each vertex is dynamically managed, so can’t be 
stored contagiously. 

Initially array with one memory block for each vertex. 

If additional memory is needed, vertex gets additional blocks from a pool.

Blocks connected in a linked list.  



DYNAMIC VERSION 

Hashing technique to reduce size of pointers to 8 bits. 

A separate pool for each 1024 vertices for locality. 

Caching to avoid repetitively encoding and decoding neighbors. 



EXPERIMENTS 

Test graphs include 3d mesh graphs, street connectivity graphs,  webpage 
connectivity from Google, programming contest, and circuits. 



MACHINE SETUP 

Two machines, each with 32-bit processors. 

A .7GHz Pentium III processor with .1Ghz bus and 1GB of ram (cache line 32 bytes). 

2.4Ghz, Pentium 4, with 4 processors, .8GHz bus, and 1GB of ram (cache line 128 
bytes). Supports quad vectorization, and hardware prefetching. 



BENCHMARK 

Benchmark on depth-first-search, and also varying edge insertion order.

DFS visits in a non trivial order. 

Use a character array to mark visited vertices. 



INSERTING EDGES

Consider three ways of inserting edges: 

Linear: Insert all out edges for first vertex, then second, and so on. 

Transpose: insert all in edge for first vertex, etc. 

Random: random order of edges.  



PERFORMANCE FOR DFS, STATIC

separator-based representation with byte codes is a factor of
3.3 faster than adjacency arrays with random ordering but about 5% slower for the separator ordering.

6.6 more compact than adjacency list. 



Label ordering has up to a 7x effect Insertion order has up to a factor of 11x effect. 



ALGORITHMIC BENCHMARKS

PageRank (summing neighbors), and Bipartite matching (based on DFS). 



CONCLUSION

Simple and fast separator heuristic works well in practice, and real world graphs 
have small separators. 

Decoding cost is small even for simple graph algorithms like DFS. 

Order of vertices makes a big difference in terms of a performance (up to 11x).

Separator works well for other graph representations.    



STRENGTHS AND WEAKNESS

Paper explains background information well. 

Rigorous experiment section, and admits limitations in comparisons.

Would have been interesting to test other traversal patterns like BFS.  



QUESTIONS

What would these results look like if they were tested on a modern machine/ with 
NUMA? 

How well would separators work for laying the graph in a NUMA memory setting? 


