Speedup Graph Processing by Graph Ordering

Hao Wei, Jeffrey Xu Yu, Can Lu, Xuemin Lin

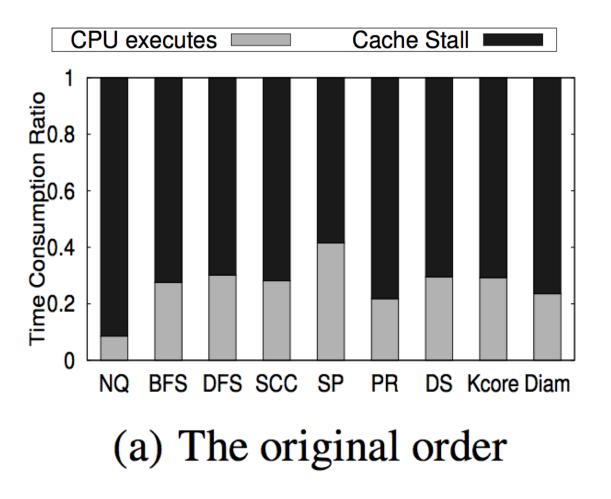
Presentation by Sophia Luo

Problem Being Solved

- CPU cache performance is key to database system efficiency
- Cache miss latency can take >50% of execution time

Problem Being Solved

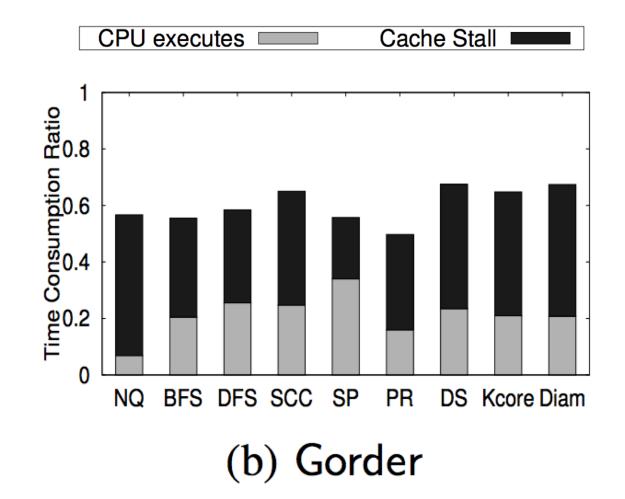
- NQ: operation to access neighbors of a node in a graph
- BFS: breadth fist search
- DFS: depth first search
- SCC: strongly connected component detection
- SP: shortest path by Bellman-Ford
- PR: PageRank algorithm
- DS: dominating set algorithm
- Kcore: graph decomposition algorithm
- Diam: graph diameter algorithm



Motivation for Problem Being Solved

- Graph algorithms don't inherently take care of cache miss latency
- Thus, need general approach to enhance graph processing for all graph algorithms that is not specific to any particular algorithm or data structure

Main Result: Gorder



Structure of this Presentation

- Graph ordering
- Graph ordering algorithm
- Priority queue based algorithm
- Priority queue and its operations
- Some results from the evaluation

Definitions

- Directed graph G = (V,E)
- V(G): set of nodes
- E(G): set of edges
- NO(u): out-neighbor set of u
- NI(u): in-neighbor set of u
- n = |V(G)|, m = |E(G)|
- dI(u) = |NI(u)|, dO(u) = |NO(u)|
- d(u) = dI(u) + dO(u)

Context

1: for each node $v \in N_O(u)$ do

2: the program segment to compute/access v

More definitions

- Neighbor relationship: nodes that are directly adjacent each other
- Sibling relationship: let v_i and v_j be in the outneighbor set of u. v_i and v_j are siblings
- Sibling relationship is the dominating factor
- Score function
 - S(u,v) = Ss(u,v) + Sn(u,v)
- Goal: find a permutation to maximize the sum of S for close node pairs in G that numbers all nodes in G in some ordering

Problem Statement

$$egin{array}{rll} F(\phi) &=& \displaystyle{\sum_{0 < \phi(v) - \phi(u) \leq w} S(u,v)} \ &=& \displaystyle{\sum_{i=1}^n \ \sum_{j=\max\{1,i-w\}}^{i-1} S(v_i,v_j)} \end{array}$$

Graph Ordering (GO) algorithm

Algorithm 1 GO $(G, w, S(\cdot, \cdot))$

1: select a node v as the start node, $P[1] \leftarrow v$; 2: $V_R \leftarrow V(G) \setminus \{v\}, i \leftarrow 2;$ 3: while i < n do 4: $v_{max} \leftarrow \emptyset, k_{max} \leftarrow -\infty;$ 5: for each node $v \in V_R$ do 6: $k_v \leftarrow \sum^{i-1} S(P[j], v);$ $j = \max\{1, i-w\}$ 7: if $k_v > k_{max}$ then 8: $v_{max} \leftarrow v, k_{max} \leftarrow k_v;$ $P[i] \leftarrow v_{max}, i \leftarrow i+1;$ 9: 10: $V_R \leftarrow V_R \setminus \{v_{max}\};$

Theorem 3.1: The algorithm GO gives $\frac{1}{2w}$ -approximation for maximizing $F(\phi)$ to determine the optimal graph ordering.

- Same as the optimal maxTSP-w problem
- Fw: score of the optimal solution on G for the maxTSP-w problem
- Fgo: Gscore of the graph ordering by the GO algorithm

$$ar{F}_w = ext{ maximize } \sum_{i=1}^{n-1} \sum_{j>i} s_{ij} x_{ij}$$

subject to $\sum_{j>i} x_{ij} + \sum_{j
 $0 \le x_{ij} \le 1, ext{ } i, j \in [1, n]$$

Theorem 3.1: The algorithm GO gives $\frac{1}{2w}$ -approximation for maximizing $F(\phi)$ to determine the optimal graph ordering.

$$\overline{F}_{w} \leq \max_{0 \leq x_{ij} \leq 1} \sum_{i=1}^{n-1} \sum_{j>i} s_{ij} x_{ij} + \sum_{i=1}^{n} \alpha_{i} (2w - \sum_{j>i} x_{ij} - \sum_{j
$$= \max_{0 \leq x_{ij} \leq 1} \sum_{i=1}^{n-1} \sum_{j>i} (s_{ij} - \alpha_{i} - \alpha_{j}) x_{ij} + 2w \sum_{i=1}^{n} \alpha_{i} \qquad (6)$$$$

Theorem 3.1: The algorithm GO gives $\frac{1}{2w}$ -approximation for maximizing $F(\phi)$ to determine the optimal graph ordering.

$$egin{aligned} lpha_i &= \sum\limits_{j= ext{max}\{1,i-w+1\}}^i s_{j,i+1} ext{ for } i \in [1,n-1] ext{ and } lpha_n = 0. \ lpha_i &\geq 0 ext{ and } \sum\limits_{i=1}^n lpha_i = F_{go} \ s_{ij} - lpha_i &\leq 0 \ s_{ij} - lpha_i &\leq 0 \ s_{ij} - lpha_i - lpha_j &\leq 0. \end{aligned}$$
 $F_w &\leq \overline{F}_w \leq 2w \sum\limits_{i=1}^n lpha_i = 2w \cdot F_{go}$

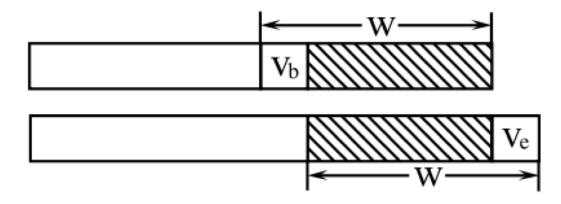
i=1

Runtime

Theorem 3.2: The GO Algorithm 1 is in $O(w \cdot d_{max} \cdot n^2)$, where d_{max} denotes the maximum in-degree of the graph G.

- More efficiently select vertex with highest kv score
- In priority queue, Q
 - Key is kv for node v during computation
 - Node vmax with the largest kmax is popped from Q
 - That is, u appears before v if ku > kv regardless of window size

- When the window is sliding, suppose vb is the node to leave the window and ve is the node to join the window.
- The algorithm incremently updates key(v) in three ways
 - Increase key
 - Decrease key
 - Find the max key



- Increase key
 - When ve is newly added to P, v in Q will increase its key value by 1 if v and ve are considered local
- Decrease key
 - when vb is about to leave the window, v in Q will decrease its key value by 1 if v and vb are considered local
- Find max key
 - Just need to call Q.pop

Algorithm 2 GO-PQ $(G, w, S(\cdot, \cdot))$

```
1: for each node v \in V(G) do
        insert v into \mathcal{Q} such that key(v) \leftarrow 0;
 2:
 3: select a node v as the start node, P[1] \leftarrow v, delete v from Q;
4: i \leftarrow 2:
 5: while i \leq n do
        v_e \leftarrow P[i-1];
6:
 7:
       for each node u \in N_O(v_e) do
8:
            if u \in \mathcal{Q} then \mathcal{Q}.incKey(u);
 9:
        for each node u \in N_I(v_e) do
10:
            if u \in \mathcal{Q} then \mathcal{Q}.incKey(u);
11:
            for each node v \in N_O(u) do
12:
                if v \in \mathcal{Q} then \mathcal{Q}.incKey(v);
13:
         if i > w + 1 then
14:
            v_b \leftarrow P[i-w-1];
15:
            for each node u \in N_O(v_b) do
16:
                if u \in \mathcal{Q} then \mathcal{Q}.decKey(u):
17:
            for each node u \in N_I(v_b) do
18:
                if u \in \mathcal{Q} then \mathcal{Q}.decKey(u);
19:
                for each node v \in N_O(u) do
20:
                    if v \in \mathcal{Q} then \mathcal{Q}.decKey(v);
21:
         v_{max} \leftarrow \mathcal{Q}.\mathsf{pop}();
22:
         P[i] \leftarrow v_{max}, i \leftarrow i+1;
```

Factors that affect/don't affect overall GO-PQ

- Window size
 - Same 1/2w approximation as GO algorithm
 - Time complexity unrelated to w
- First node selection:
 - Selecting the node with the largest in-degree impacts overall graph ordering
- Computational cost reduction
 - Adding if statements to avoid calling incKey and decKey on the same node
 - If vb is not in NO(u) then... + If ve not in NO(u) then...
- Dealing with huge nodes
 - Take out a node u if dO(u) >= sqrt(n)

- Goal:
 - keep time complexity of increase key, decrease key, and pop max to a minimum
- Approach:
 - Implement priority queue as linked list with decrease key values
 - Lazy update strategy to reduce number of adjustments to linked list
- Main idea
 - Only adjust linked list of key of a vertex is changed
 - Let Qh be the head table of the queue
 - Qh keeps points to head and end of the queue
 - Keep a pointer to the node that has the largest key at all times

- When popping vmax, maintain the true key of a vertex v_i such that
 - Key of the top node is the same
 - Key(v_i) <= new key(v_i)
- We also maintain the following conditions

 $\begin{aligned} \mathsf{update}(\mathsf{top}) &= 0\\ \mathsf{update}(v_i) \leq 0 \quad \text{for } v_i \neq \mathsf{top}\\ \overline{\mathsf{key}}(\mathsf{top}) \geq \overline{\mathsf{key}}(v_i) \end{aligned} \tag{8}$ $\begin{aligned} \overline{\mathsf{key}}(\mathsf{top}) + \mathsf{update}(\mathsf{top}) \geq \overline{\mathsf{key}}(v_i) + \mathsf{update}(v_i) \end{aligned}$

- Only update the queue in the following 2 cases
 - When update(vi) > 0 after updating vi, we then make update(vi) <= 0 by performing the following
 - Key(vi) = key(vi) + update(vi)
 - Update(vi) = 0
 - When selecting vmax to be popped, we make update(top) = 0

Algorithm 3 decKey (v_i)

1: $update(v_i) \leftarrow update(v_i) - 1;$

Algorithm 4 incKey (v_i)

- 1: $update(v_i) \leftarrow update(v_i) + 1;$
- 2: if update $(v_i) > 0$ then
- 3: update $(v_i) \leftarrow 0, x \leftarrow \overline{\text{key}}(v_i), \overline{\text{key}}(v_i) \leftarrow \overline{\text{key}}(v_i) + 1;$
- 4: delete v_i from Q;
- 5: insert v_i into Q in the position just before head [x];
- 6: update the head Q_h array accordingly;

7: **if**
$$\overline{\text{key}}(v_i) > \overline{\text{key}}(\text{top})$$
 then

8: $top \leftarrow v_i;$

Algorithm 5 pop ()

1: while update(top) < 0 do

2:
$$\underline{v_t} \leftarrow \text{top};$$

3:
$$\overline{\text{key}}(v_t) \leftarrow \overline{\text{key}}(v_t) + \text{update}(v_t);$$

4: update
$$(v_t) \leftarrow 0$$
;

5: **if**
$$\overline{\text{key}}(\text{top}) \leq \overline{\text{key}}(\text{next}(\text{top}))$$
 then

6: adjust the position of v_t and insert v_t just after u in Q, such that $\overline{\text{key}}(u) \ge \overline{\text{key}}(\text{top})$ and $\overline{\text{key}}(\text{next}(u)) < \overline{\text{key}}(\text{top})$;

7:
$$top \leftarrow next(top);$$

8: update the head array;

9:
$$v_t \leftarrow top;$$

10: remove the node pointed by top from Q and update top \leftarrow next(top);

11: return v_t ;

Some results from the evaluation

Order

Order	L1-ref	L1-mr	L3-ref	L3-r	Cache-mr
Original	11,109M	52.1%	2,195M	19.7%	5.1%
MINLA	11,110M	58.1%	2,121M	19.0%	4.5%
MLOGA	11,119M	53.1%	1,685M	15.1%	4.1%
RCM	11,102M	49.8%	1,834M	16.5%	4.1%
DegSort	11,121M	58.3%	2,597M	23.3%	5.3%
CHDFS	11,107M	49.9%	1,850M	16.7%	4.4%
SlashBurn	11,096M	55.0%	2,466M	22.2%	4.3%
LDG	11,112M	52.9%	2,256M	20.3%	5.4%
METIS	11,105M	50.3%	2,235M	20.1%	5.2%
Gorder	11,101M	37.9%	1,280M	11.5%	3.4%

0					
Original	623.9B	58.4%	180.0B	28.8%	18.6%
MINLA	628.8B	62.5%	196.6B	31.2%	14.8%
MLOGA	620.0B	62.1%	189.6B	30.5%	14.3%
RCM	628.9B	44.9%	103.8B	16.5%	10.2%
DegSort	632.2B	55.1%	149.5B	23.6%	15.9%
CHDFS	630.3B	38.0%	101.2B	16.1%	10.9%
SlashBurn	628.8B	44.5%	121.0B	19.3%	13.7%
LDG	637.9B	58.4%	186.2B	29.2%	18.6%
Gorder	620.3B	31.5%	79.5B	12.8%	8.2%

L3-ref

L3-r

Cache-mr

L1-mr

L1-ref

Table 3: Cache Statistics by *PR* over Flickr (M = Millions)

 Table 4: Cache Statistics by PR over sd1-arc (B = Billions)

Some results from the evaluation

Order

NO BES

Order	NQ	BFS	DFS	SCC	SP	PR	DS	Kcore	Diam
Original	50.8	15.3	5.4	7.8	21.5	52.1	21.9	20.8	14.9
MINLA	51.8	18.0	5.5	8.1	24.6	58.1	22.1	21.5	17.9
MLOGA	41.7	16.3	5.1	7.2	21.9	53.1	21.1	20.6	16.4
RCM	49.1	12.1	4.6	6.6	15.9	49.7	20.3	20.2	12.4
DegSort	45.7	16.7	4.8	7.0	24.9	58.3	21.4	18.6	17.0
CHDFS	42.1	12.3	4.1	5.8	18.5	49.9	21.1	20.6	12.9
SlashBurn	46.2	16.0	4.5	6.2	22.1	55.0	20.7	21.3	15.8
LDG	50.7	15.9	5.8	8.2	21.8	52.9	22.4	21.2	14.9
METIS	63.0	18.2	7.7	10.1	20.8	50.3	23.0	21.7	16.7
Gorder	35.4	11.1	3.6	5.2	12.8	37.9	18.7	18.1	10.9

Oruci	ny	DIS	DIS	bee	51	IK		Reole	Diam
Original	76.5	20.0	9.4	13.0	17.5	58.4	21.7	20.0	17.5
MINLA	76.0	22.7	10.2	12.8	20.7	62.5	21.8	20.5	18.3
MLOGA	76.0	21.7	9.4	12.3	19.8	62.1	21.8	20.6	18.5
RCM	61.6	14.4	7.5	8.7	8.9	44.9	18.2	17.5	11.7
DegSort	59.3	18.7	8.0	12.1	16.6	55.1	21.9	16.9	15.5
CHDFS	50.0	14.2	5.1	8.3	13.2	38.0	18.4	16.1	10.4
SlashBurn	56.6	16.8	6.7	9.3	10.2	44.5	18.9	16.8	13.5
LDG	74.7	22.7	10.0	13.6	18.7	58.4	22.0	20.3	17.9
Gorder	40.0	12.1	4.6	7.2	10.8	31.5	16.9	14.5	9.5

SP

PR

DS Kcore Diam

DES SCC

Table 6: L1 Cache Miss Ratio on Flickr (in percentage %)

 Table 7: L1 Cache Miss Ratio on sd1-arc (in percentage %)

Strengths and Weaknesses

- Strengths
 - Well-organized
 - Thorough algorithm description
 - Comprehensive evaluation strategy
- Weakness
 - Too much time spent on describe sub-optimal GO algorithm
 - Redundant in some places of the text, especially in the early sections of the paper

Discussion questions

- The basic algorithm is bounded by an approximation that depends on the window size w. What are some ways we can find the optimal w?
- Are there any cases that GO performs worse than other graph orderings?
- What are some other methods of reducing CPU cache miss ratios?