Speedup Graph Processing
by Graph Ordering

Hao Wei, Jeffrey Xu Yu, Can Lu, Xuemin Lin

Presentation by Sophia Luo

Problem Being Solved

* CPU cache performance is key to database system efficiency
e Cache miss latency can take >50% of execution time

Problem Being Solved

NQ: operation to access neighbors of
a node in a graph

BFS: breadth fist search
DFS: depth first search

SCC: strongly connected component
detection

SP: shortest path by Bellman-Ford
PR: PageRank algorithm
DS: dominating set algorithm

Kcore: graph decomposition
algorithm

Diam: graph diameter algorithm

Ratio
o
oo

Time Consum

ption

O
o)

| CPU executes

Cache Stall

1

©
N

O
N

o

NQ BFS DFS SCC SP PR DS Kcore Diam

(a) The original order

Motivation for Problem Being Solved

* Graph algorithms don’t inherently take care of cache miss latency

* Thus, need general approach to enhance graph processing for all
graph algorithms that is not specific to any particular algorithm or
data structure

Main Result: Gorder

| CPU executes = Cache Stall ==

LRI

NQ BFS DFS SCC SP PR DS KcoreDiam

(b) Gorder

—4

ption Ratio
o o
(o)} (00

o
'

Time Consum
t_:)
)]

o

Structure of this Presentation

* Graph ordering

* Graph ordering algorithm

* Priority queue based algorithm

* Priority queue and its operations
 Some results from the evaluation

Definitions

* Directed graph G = (V,E)

* \/(G): set of nodes

* E(G): set of edges

* NO(u): out-neighbor set of u
* NI(u): in-neighbor set of u

*n=|V(G)|, m=|E(G)|
* di(u) = [NI(u)|, dO(u) = [NO(u) |
e d(u) =dl(u) + dO(u)

Context

1: for each node v € Np(u) do
2. the program segment to compute/access v

More definitions

* Neighbor relationship: nodes that are directly adjacent each other

* Sibling relationship: let v_iand v_j be in the outneighbor set of u. v_i
and v_j are siblings

* Sibling relationship is the dominating factor

e Score function
e S(u,v) =Ss(u,v) + Sn(u,v)

* Goal: find a permutation to maximize the sum of S for close node
pairs in G that numbers all nodes in G in some ordering

Problem Statement

Z S(u,v)

0<o(v)—o(u)Sw

> S Swaw)

t=1 j=max{l,i—w}

F(¢)

Graph Ordering (GO) algorithm

Algorithm 1 GO (G, w, S(-,-))

1: select a node v as the start node, P[1] < v;
2: VR « V(G) \ {v}, i+ 2;
3: while s < ndo
4 Umax < 03 kKmaz < —00;
5 for each node v € Vi do
i—1
6: kv) S(P[j],v);
j=max{1l,i—w}
7 if k, > kmqz then
8 Umaz $ U, Kmaz < Kv;
9: Pli]| < vmaz,7 i+ 1;
10: Ve < Vg \ {’Uma:c};

Theorem 3.1: The algorithm GO gives %—approximation for max-

imizing F'(¢) to determine the optimal graph ordering.

e Same as the optimal maxTSP-w problem
* Fw: score of the optimal solution on G for the maxTSP-w problem
* Fgo: Gscore of the graph ordering by the GO algorithm

n—1
Fw — maximize ; ; SijLij
» »
1=1 j>1
subject to E Ti; + E T = 2w,i € [1,n]
J>1 i<t

0<mi; <1, 5,J € [1,7]

Theorem 3.1: The algorithm GO gives ﬁ—approximation for max-
imizing F'(¢) to determine the optimal graph ordering.

Theorem 3.1: The algorithm GO gives ﬁ-approximation for max-

imizing F'(¢) to determine the optimal graph ordering.

Qg = Z Sj,i+1 for 2 & [1,n — 1] and On — 0.
j=max{l,i—w+1}

a; > 0and) ai = Fyo

=1

Sij — O < 0

Sij — O — Oy < 0

Runtime

Theorem 3.2: The GO Algorithm I is in O(w - dmaz - n?), where
dmaz denotes the maximum in-degree of the graph G.

Priority Queue based Algorithm (GO-PQ)

* More efficiently select vertex with highest kv score

* |n priority queue, Q
* Key is kv for node v during computation
* Node vmax with the largest kmax is popped from Q
e That is, u appears before v if ku > kv regardless of window size

Priority Queue based Algorithm (GO-PQ)

* When the window is sliding, suppose vb is the node to leave the
window and ve is the node to join the window.

* The algorithm incremently updates key(v) in three ways
* Increase key
* Decrease key
* Find the max key

' W

¥> ONININN

in

Priority Queue based Algorithm (GO-PQ)

* Increase key

* When ve is newly added to P, vin Q will increase its key value by 1 if vand ve
are considered local

* Decrease key

* when vb is about to leave the window, v in Q will decrease its key value by 1 if
v and vb are considered local

* Find max key
 Just need to call Q.pop

Priority Queue based Algorithm (GO-PQ)

Algorithm 2 GO-PQ (G, w, S(-,))

: for each node v € V(G) do
insert v into Q such that key(v) « 0;
select a node v as the start node, P[1] < v, delete v from Q;
14— 2;
while 7 < n do
for each node u € Np(ve) do
if u € O then Q.incKey(u);
for each node u € Nj(ve) do
if u € O then Q.incKey(u);
for each node v € Np(u) do
if v € Q then Q.incKey(v);
if 2 > w + 1 then
vp < Pli —w — 1];
for each node u € Np(vp) do
if u € Q then Q.decKey(u);
for each node u € Nj(vp) do
if u € O then Q.decKey(u);
for each node v € Np(u) do
if v € Q then Q.decKey(v);
Umaz Q-POP();
Pli] < Ymaz,t <t + 1;

SR e A A R PO, S0P A WN —

Factors that affect/don’t affect overall GO-PQ

* Window size
e Same 1/2w approximation as GO algorithm
* Time complexity unrelated to w

* First node selection:
* Selecting the node with the largest in-degree impacts overall graph ordering

* Computational cost reduction
* Adding if statements to avoid calling incKey and decKey on the same node
* If vb is not in NO(u) then... + If ve not in NO(u) then...

* Dealing with huge nodes
* Take out a node u if dO(u) >=sqrt(n)

Priority queue and its operations

* Goal:
* keep time complexity of increase key, decrease key, and pop max to a
minimum
* Approach:
* Implement priority queue as linked list with decrease key values
* Lazy update strategy to reduce number of adjustments to linked list

* Main idea
* Only adjust linked list of key of a vertex is changed
* Let Qh be the head table of the queue
* Qh keeps points to head and end of the queue
* Keep a pointer to the node that has the largest key at all times

Priority queue and its operations

* When popping vmax, maintain the true key of a vertex v_i such that
* Key of the top node is the same
e Key(v_i) <= new key(v i)

* We also maintain the following conditions
update(top) = 0
update(v;) < 0 for v; # top
key(top) > key(v;)
key(top) + update(top) > key(v;) + update(v;)

(8)

Priority queue and its operations

* Only update the queue in the following 2 cases

 When update(vi) > 0 after updating vi, we then make update(vi) <= 0 by
performing the following
e Key(vi) = key(vi) + update(vi)
e Update(vi)=0
 When selecting vmax to be popped, we make update(top) =0

Priority queue and its operations

Algorithm 3 decKey (v;)

l: update(wv;) < update(v;) — 1;

Priority queue and its operations

Algorithm 4 incKey (v;)

l: update(v;) < update(v;) + 1;
2. if update(v;) > O then
update(v;) < 0, z < key(v;), key(v;) < key(v;) + 1;
delete v; from O;
insert v; into @ in the position just before head|z];
update the head Q);, array accordingly;
if key (v;) > key(top) then
top < v;;

AR AR Al

Priority queue and its operations

Algorithm 5 pop ()
[: while update(top) < 0 do

2: wvg 4 top;

3: key(vt) < key(vt) + update(vt);

4: update(vt) < 0;

5: if key(top) < key(next(top)) then

6: adjust the position of v+ and insert v; just after u in Q, such that
key(u) > key(top) and key(next(u)) < key(top);

7: top < next(top);

8: update the head array;

9: vt « top;

10: remove the node pointed by top from Q and update top <— next(top);
11: return vg;

Some results from the evaluation

| Order | L1-ref | L1-mr | L3-ref | L3-r | Cache-mr | Order L1-ref L1-mr L3-ref L3-r Cache-mr
Original 11,100M | 52.1% | 2,195M | 19.7% 5.1% Original 623.9B | 58.4% | 180.0B | 28.8% 18.6%
MINLA 11,110M | 58.1% | 2,121M 19.0% 4.5% MINLA 628.8B 62.5% 196.6B 31.2% 14.8%
MLOGA | 11,11M | 53.1% | 1,685M | 15.1% 4.1% MLOGA 620.0B | 62.1% | 189.6B | 30.5% 14.3%
RCM 11,102M | 49.8% | 1,834M | 16.5% 4.1%

DegSort 11,12IM | 58.3% | 2,59'M | 23.3% 5.3% _:;Cl\g ggg'gg g;—l'?z) }gg'gg 52'23’ 12'53’
CHDFS 11,10’M | 49.9% | 1,850M | 16.7% 4.4% egoort : 70 : i 270
STashBurn | 11,096M | 55.0% | 2.466M | 22.2% 4.3% CHDFS 630.3B | 38.0% | 101.2B | 16.1% 10.9%
LDG 11,112M | 52.9% | 2.256M | 20.3% 5 4% SlashBurn | 628.8B 44.5% 121.0B 19.3% 13.7%
METIS 11,105M | 50.3% | 2,235M | 20.1% 5.2% LDG 6379B | 58.4% | 186.2B | 29.2% 18.6%
Gorder 11,101M | 37.9% | 1,280M | 11.5% 3.4% [Gorder 620.3B | 31.5% 79.5B | 12.8% 8.2%

Table 3: Cache Statistics by PR over Flickr (M = Millions) Table 4: Cache Statistics by PR over sd1-arc (B = Billions)

Some results from the evaluation

[Order | NQ| BES| DFS| SCC| SP| PR| DS |Kcore | Diam| [Order NQ| BFS| DES| SCC| SP| PR]| DS [Kcore | Diam
Original | 508 | 153] 54] 78] 21.5] 52.1] 219 [20.8] 149 Original | 765] 200| 94] 13.0] 175] 584 21.7] 200 17.5
MINLA | 518 | 180 551 81| 246|581 221 215] 179 MINLA 760] 22.7| 102| 128 2071 625 21.8| 205 183
MLOGA | 41.7| 163 | 51| 72| 219 53.1| 21.1| 206| 164 MLOGA | 760 | 21.7| 94| 123| 198 621 21.8| 206 185
RCM 4911121 | 46| 66 159] 49.7(203]| 202| 124 RCM 616 | 144 75 87| 89 449 182 175 11.7
DegSort | 45.7]1167) 48] 70| 249|583 214) 186] 170 DegSort | 59.3 | 187 80| 121 166 55.1| 21.9| 169 155
CHDFS [421]123| 41) 58| 185]499]211] 20.6| 129 CHDFS | 500 142| 51| 83| 132|380 184 161| 104
LDG 507) 159] S58) 82 218]529)224] 212| 149 LDG 7471 2271 100] 1361 1871 584] 2201 203 170
METIS | 63.0| 182 7.7] 101 208503 230 2171 167 e o i ae 3T o5 3iseo a5 53
Gorder 354 | 1L1| 36| 52| 128 37.9| 187 | 18.1| 10.9 : : : : : : : : :

Table 6: L1 Cache Miss Ratio on Flickr (in percentage %) Table 7: L1 Cache Miss Ratio on sd1-arc (in percentage %)

Strengths and Weaknesses

e Strengths
* Well-organized
* Thorough algorithm description
 Comprehensive evaluation strategy

* Weakness
* Too much time spent on describe sub-optimal GO algorithm

 Redundant in some places of the text, especially in the early sections of the
paper

Discussion questions

* The basic algorithm is bounded by an approximation that depends on
the window size w. What are some ways we can find the optimal w?

* Are there any cases that GO performs worse than other graph
orderings?

* What are some other methods of reducing CPU cache miss ratios?

