
Speedup Graph Processing
by Graph Ordering

Hao Wei, Jeffrey Xu Yu, Can Lu, Xuemin Lin

Presentation by Sophia Luo

Problem Being Solved

• CPU cache performance is key to database system efficiency
• Cache miss latency can take >50% of execution time

Problem Being Solved

• NQ: operation to access neighbors of
a node in a graph
• BFS: breadth fist search
• DFS: depth first search
• SCC: strongly connected component

detection
• SP: shortest path by Bellman-Ford
• PR: PageRank algorithm
• DS: dominating set algorithm
• Kcore: graph decomposition

algorithm
• Diam: graph diameter algorithm

Motivation for Problem Being Solved

• Graph algorithms don’t inherently take care of cache miss latency

• Thus, need general approach to enhance graph processing for all
graph algorithms that is not specific to any particular algorithm or
data structure

Main Result: Gorder

Structure of this Presentation

• Graph ordering
• Graph ordering algorithm
• Priority queue based algorithm
• Priority queue and its operations
• Some results from the evaluation

Definitions

• Directed graph G = (V,E)
• V(G): set of nodes
• E(G): set of edges
• NO(u): out-neighbor set of u
• NI(u): in-neighbor set of u

• n = |V(G)|, m = |E(G)|
• dI(u) = |NI(u)|, dO(u) = |NO(u)|
• d(u) = dI(u) + dO(u)

Context

More definitions

• Neighbor relationship: nodes that are directly adjacent each other
• Sibling relationship: let v_i and v_j be in the outneighbor set of u. v_i

and v_j are siblings

• Sibling relationship is the dominating factor

• Score function
• S(u,v) = Ss(u,v) + Sn(u,v)

• Goal: find a permutation to maximize the sum of S for close node
pairs in G that numbers all nodes in G in some ordering

Problem Statement

Graph Ordering (GO) algorithm

• Same as the optimal maxTSP-w problem
• Fw: score of the optimal solution on G for the maxTSP-w problem
• Fgo: Gscore of the graph ordering by the GO algorithm

Runtime

Priority Queue based Algorithm (GO-PQ)

• More efficiently select vertex with highest kv score
• In priority queue, Q
• Key is kv for node v during computation
• Node vmax with the largest kmax is popped from Q
• That is, u appears before v if ku > kv regardless of window size

Priority Queue based Algorithm (GO-PQ)

• When the window is sliding, suppose vb is the node to leave the
window and ve is the node to join the window.
• The algorithm incremently updates key(v) in three ways
• Increase key
• Decrease key
• Find the max key

Priority Queue based Algorithm (GO-PQ)

• Increase key
• When ve is newly added to P, v in Q will increase its key value by 1 if v and ve

are considered local
• Decrease key
• when vb is about to leave the window, v in Q will decrease its key value by 1 if

v and vb are considered local
• Find max key
• Just need to call Q.pop

Priority Queue based Algorithm (GO-PQ)

Factors that affect/don’t affect overall GO-PQ

• Window size
• Same 1/2w approximation as GO algorithm
• Time complexity unrelated to w

• First node selection:
• Selecting the node with the largest in-degree impacts overall graph ordering

• Computational cost reduction
• Adding if statements to avoid calling incKey and decKey on the same node
• If vb is not in NO(u) then… + If ve not in NO(u) then…

• Dealing with huge nodes
• Take out a node u if dO(u) >= sqrt(n)

Priority queue and its operations

• Goal:
• keep time complexity of increase key, decrease key, and pop max to a

minimum
• Approach:
• Implement priority queue as linked list with decrease key values
• Lazy update strategy to reduce number of adjustments to linked list

• Main idea
• Only adjust linked list of key of a vertex is changed
• Let Qh be the head table of the queue
• Qh keeps points to head and end of the queue
• Keep a pointer to the node that has the largest key at all times

Priority queue and its operations

• When popping vmax, maintain the true key of a vertex v_i such that
• Key of the top node is the same
• Key(v_i) <= new key(v_i)

• We also maintain the following conditions

Priority queue and its operations

• Only update the queue in the following 2 cases
• When update(vi) > 0 after updating vi, we then make update(vi) <= 0 by

performing the following
• Key(vi) = key(vi) + update(vi)
• Update(vi) = 0

• When selecting vmax to be popped, we make update(top) = 0

Priority queue and its operations

Priority queue and its operations

Priority queue and its operations

Some results from the evaluation

Some results from the evaluation

Strengths and Weaknesses

• Strengths
• Well-organized
• Thorough algorithm description
• Comprehensive evaluation strategy

• Weakness
• Too much time spent on describe sub-optimal GO algorithm
• Redundant in some places of the text, especially in the early sections of the

paper

Discussion questions

• The basic algorithm is bounded by an approximation that depends on
the window size w. What are some ways we can find the optimal w?
• Are there any cases that GO performs worse than other graph

orderings?
• What are some other methods of reducing CPU cache miss ratios?

