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Part 1:

Introduction & Motivation



Introduction.

§ Bitmap compression has been studied extensively in the database area:  and many efficient 

compression schemes were proposed, e.g., BBC, WAH, EWAH, and Roaring. 

§ Inverted list compression is also a well-studied topic in the information retrieval community and 

many inverted list compression algorithms were developed as well, e.g., VB, PforDelta, GroupVB, 

Simple8b, and SIMDPforDelta. 

§ The authors observe that they essentially solve the same problem, 

how to store a collection of sorted integers with as few as possible bits and support query 

processing as fast as possible.

• This work is a comprehensive experimental study to compare a series of 9 bitmap compression 

methods and 12 inverted list compression methods.



Bitmaps.

§ Bitmaps have been widely adopted in modern database systems including both row-stores and 

column-stores, e.g., PostgreSQL, Microsoft SQL Server, Oracle, MonetDB..

§ A bitmap is allocated for a unique value in the indexed column. In particular, the i-th bit of the 

bitmap is 1 if and only if the i-th record contains that value. The number of bits in the bitmap is 

the number of records in the database (i.e., domain size).

§ Example:

§ Smartphones sales, where the “iPhone” appears at the 2nd, 5th, and 10th record in the 

phone_name column, then the bitmap of “iPhone” is 01001000010000000..

§ Many SQL queries can be answered efficiently with bitmaps. For example, finding the customers 

who bought “iPhone” from “California” can be framed as performing AND over the bitmaps of 

“iPhone” and “California”.  



Inverted List.

§ Inverted lists are the standard data structure in modern information retrieval (IR) systems.

§ An inverted list is a set of document IDs for documents (e.g., web pages) that contain a certain 

term. 

§ Example:

§ If the aforementioned database records are thought of as documents, then the inverted list is: {2, 

5, 10} 

§ Note that that bitmaps can be converted to an inverted list: e.g. the bitmap 11001000010 can be 

converted to the inverted list {1,2, 5, 10} 



The need for this empirical study

§ As both methods do the same task; this begs the question of Which one is better?  

§ By “better”, we mean lower space and higher query performance.

§ Also, In which scenario each method is more appropriate. 

§ This study aims to shed light into these  questions. 
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Bitmap compression

§ In this section, we will review several bitmap compression methods.

§ bitmap compression algorithms take as input an uncompressed bitmap and produce a 

compressed bitmap with as few as possible bits.

§ Generally, these methods compress a sequence of identical bits with the bit value and its count 

(run-length encoding, RLE). 

§ But they differ in the way of handling the units of RLE (e.g., bytes or words), encoding the runs, 

and compressing the count.



WAH

§ WAH (Word-Aligned Hybrid) partitions an uncompressed bitmap (input) into groups where each 

group contains 31 bits.

§ Each group is either a:

§ fill-group: If all 31 bits are identical 

§ literal group.

§ WAH Only compress fill group. 

§ The compressed sequences consist of words, where the first bit in each word determines whether a 

group is a fill-group or not. The compression depends on whether they are fill groups or literal 

groups. 



WAH

§ Example:
§ Input: 102013 0111125 : 164 bits  (Where 020 means twenty consecutive 0’s).

1. WAH partition inputs into Groups of 31 bits: G1(1 020 13 07) , G2( 031) , G3( 031) , G4( 031), G5( 011 120 ) , 

G6( 15 ) 

2. For  consecutive fill group (G2, G3, G4), they are compressed together into one word, The first bit 

(=1) determines whether it is a fill group or not, and the second bit in a fill group determines their bit 

(0 in this case). The rest of the bits determine how many groups we have (011 in this case). 

3. For literal groups, they are are written as is, except for an additional first bit (=0) which determines 

whether it is a fill group or not,.

4. The output sequence is as follow:

G1 --> (01 020 13 07);  G2, G3, G4 --> (10027011);  G5 -->  (0 011 120); G6 --> (0 026 15) .  

01 020 13 07 100270110 011 120 0 026 15 (128 bits)



EWAH

§ Enhanced WAH:

§ EWAH divides an uncompressed bitmap (input) into 32-bit groups. 

§ It encodes a sequence of p (p ≤ 65535) fill groups and q (q ≤ 32767) literal groups into a marker 

word followed by q literal words (i.e. q+1 words).  The first bit in the marker work determines 

which fill group type (1 or 0), the next 16 bits determine the number of fill groups, and the rest the 

number of literal groups. 

§ Using the same example before:

§ Input: 102013 0 111125 : 164 bits  à G1(1 020 13 08) , G2( 032) , G3( 032) , G4( 032), G5( 07 125 ) 

§ Output:

§ G1 --> 0016 0141    1020 13 08 ;  

§ G2, G3, G4, G5 -->  0013 011 0141     07125

0016 0141    1020 13 08  0013 011 0141     07125  (128 bits)



Concise

§ CONCISE (Compressed N Composable Integer Set)

§ Improve over WAH, where a literal group that has only one different bit is still compressed as fill 

group.

§ Fill groups are encoded as follow: The 1st bit is set to 1. The 2nd bit indicates which fill group (0 or 

1). The following 5 bits store the position of the odd bit, if any. The remaining 25 bits store the 

number of fill groups minus one.

§ Using the same example before:

§ Input: 02310 111125 : 164 bits  à G1(023 1 07) , G2( 031) , G3( 031) , G4( 031), G5( 011 120 ) , G6( 15 ) 

Output:

§ G1 to G4 --> 1000111022011

§ G5 -->  0 011 120 G6 --> 0 026 15 . 

§ 1000111022011 0 011 120 0 026 15 (96 bits)



Other variants of WAH

§ PLWAH: Which is very similar to CONCISE, except that  the process of storing the mixed fill group is 

slightly different. 

§ VALWAH (Variable-Aligned Length WAH) : Which encodes different bitmaps using different 

segment lengths to minimize the space overhead. 

§ SBH (Super Byte-aligned Hybrid): Which is very similar to WAH, except that it is a byte-aligned 

method. It can encode a sequence of consecutive k (k ≤ 4093) fill groups (Bytes) into one or two 

bytes.



Roaring

§ This method is not based on run-length encoding.

§ Roaring partitions the entire domain [0, n) into different buckets of range 216 . (i.e., all elements in 

the same chunk share the same 16 most significant bits)

§ If a chunk has > 4096, Roaring uses a 65536-bit uncompressed bitmap to encode the elements;

§ otherwise, it uses a sorted array of 16-bit short integers.



BBC 

§ BBC (Byte-aligned Bitmap Code) is one of the earliest bitmap compression algorithms.

§ BBC partitions the input into bytes, as shown before,  each byte is either a. fill byte or a literal byte.

§ Unlike WAH and SBH, BBC compresses a collection of such bytes by identifying different patterns (or 

cases) and encodes each pattern individually to save space.
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Inverted List Compression

In this section, we will review several Inverted List compression methods.
§ Inverted list compression approaches usually follow a common approach of computing the deltas 

(a.k.a d-gaps) between two consecutive integers first and then compress the result. 

§ To speed up decompression time, the d-gaps are organized  into blocks (e.g.128 elements per 

block) and builds a skip pointer per block such that only a block of data needs to be 

decompressed. 

§ The d-gaps are essentially bit-level run-length encoding. Hence, it cannot benefit from bit-wise 

operations but can benefit from efficient data skipping due to skip pointers.



Inverted List Compression

VB
§ Variable size (VB) encodes each integer (i.e., d-gap) in one or more bytes.

§ It uses 7 bits of a byte to store the actual data while keeping the most significant bit as a flag bit 

to indicate whether the next byte belongs to this integer.

§ For example: 100000000000001 à 10000001 10000000 00000001. 

GroupVB
§ Group Varint Encoding (GroupVB) compresses four values at the same time and it uses a 2-bit 

flag for each value. 

§ The four 2-bit flags into a single header byte followed by all the data bits.

§ Such a layout makes it easier to decompress multiple integers simultaneously to reduce CPU 

branches.



OPTforDelta
• OPTforDelta is another variant of PforDelta. The main difference is that OptPforDelta uses the 

optimal number of bits b. 

Inverted List Compression

PforDelta
§ PForDelta compresses a block of 128 d-gaps by choosing the smallest number of bits b that most 

elements can be encoded into. 

§ It the 128 values by allocating 128 b-bit slots, plus some extra space at the end to store the 

values that cannot be represented in b bits (called exceptions). 

NewPforDelta
• NewPforDelta is a variant of PforDelta that reduce the space overhead of PforDelta. The main 

difference is in how NewPforDelta handles the storage of the exceptions



Inverted List Compression

Simple9
§ Simple9 is a word-aligned method that packs as many small integers as possible to a 32-bit word. 

§ In Simple9, each word has 4 status bits and 28 data bits, where the data bits can represent 9 

different combinations of values: 28 × 1-bit numbers, 14 × 2-bit numbers, 9 × 3-bit numbers ,…, 

or 1 × 28-bit number. 

§ Example: if the next 14 values are all less than 4, then Simple9 stores them as 14 × 2-bit values.

Simple16
§ The same as Simple9 with 16 combinations. 

Simple8b
§ The same as Simple9 but it extends the codeword into 64 bits. 



Inverted List Compression

PEF
§ PEF (Partitioned Elias Fano)  is different from other inverted list compression algorithms as it is 

not based on d-gaps.

§ It is an improved version of Elias Fano Encoding. 

SIMDPforDelta
§ SIMDPforDelta is the SIMD version of PforDelta. It leverages modern CPU’s SIMD instructions to 

accelerate the query performance and also decompression speed.

§ The main idea of SIMDPforDelta is to reorganize data elements in a way such that a single SIMD 

operation processes multiple elements



Inverted List Compression

SIMDBP128
§ SIMDBP128 is one of the fastest compression methods for inverted lists. It partitions the input 

list L into 128-integer blocks and merges 16 blocks into a bucket of 2048 integers for SIMD 

acceleration.
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EXPERIMENTAL SETUP

Evaluation metrics 
• Each compression algorithm is measured via  the following four metrics:

1. Space overhead. Any compression method aims for low space overhead to save memory footprint. 

2. Decompression time. Decompression overhead is critical to many other operations. For example, 

intersection needs to decompress part of the inverted lists even with skip pointers. 

3. Intersection time. Intersection is important in many applications including search engines and 

databases. For instance, intersection helps find the documents that contain all the query terms in 

search engines.

4. Union time. Union is also important to both databases and search engines. For example, in databases, 

multi-criteria query and range query can be converted to the union of a collection of bitmaps.



Results on Synthetic Datasets

Synthetic datasets.
• Three synthetic datasets were generated following: 

1. A uniform distribution, where each integer have the same probability.

2. zipf distribution, where each integer k  included with a probability ∝ "
#$

3. Markov chain, with a certain transition probability between 0-1 and 1-0



Results on Synthetic Datasets

Decompression Results
• Figure below show time and 

space overhead on all synth. data.

• The list size is varied from 1 

million to 1 billion.



Results on Synthetic Datasets

Decompression Results
1. Bitmap compression methods 

incur more space and higher 

decompression overhead than 

inverted list compression 

methods. For uniform and 

Markov, when the list size is 1 

billion bitmaps consume less 

space, otherwise  inverted lists 

fare better.  



Results on Synthetic Datasets

Decompression Results
2. Bitmap Among all the bitmap 

compression methods, Roaring is a 

winner in almost all cases in terms 

of both space overhead and 

decompression time. 

That is because Roaring is not based on 

run-length encoding and it incorporates 

uncompressed 16-bit integer list and 

uncompressed bitmap.



Results on Synthetic Datasets

Decompression Results
3. Among inverted list compression approaches, SIMDPforDelta and SIMDBP128 are the top two most competitive 

techniques. Between the two, SIMDBP128* is faster but at the expense of consuming more space than 

SIMDPforDelta*. That is because SIMDPforDelta* stores the delta values to reduce space such that it needs 

extra time to compute prefix sums. 

4. Many bitmap compression methods (e.g., WAH and EWAH) can consume more space than the original list, i.e., 

uncompressed list. However, inverted list compression methods never consume more space than the original 

list.  

5. For uncompressed bitmap (Bitset), it is dominated by Roaring in almost all cases. Bitset only works well when it 

is very dense because its size as well as performance depends on the maximal element in the list. 

6. For BBC, its space overhead is almost the smallest, but its decompression speed is not excellent because it 

needs to handle many complicated cases.



Results on Synthetic Datasets

Intersection Results
1. In general, Roaring achieves the fastest 

intersection, as it only intersects two promising 

buckets, i.e., two buckets sharing the same 

bucket number.

2. Among all the inverted list compression 

methods, PEF and SIMDBP128* are the most 

efficient algorithms.



Results on Synthetic Datasets

Union Results
1. In general, inverted list compression methods 

are faster than bitmap compression methods

2. Among all the bitmap compression methods, 

Roaring is the best in almost all cases in terms 

of union time.



Results on Real world Datasets

• The authors present the results on 8  real datasets.

• The results have similar conclusion to the synthetic datasets.

• I omit them here for time constraints. 
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Summary

• Space overhead: Inverted list compression methods generally take less space than bitmap compression 

methods unless the list L is ultra dense. 

• Decompression time. Inverted list compression methods are generally faster than bitmap compression 

methods in nearly all cases.

• Intersection time. In general, Roaring bitmap achieves the fastest intersection performance among all the 

compression methods.

• Union time. Inverted list compression methods generally have better union performance than bitmap 

compression methods. In particular, SIMDBP128* is the fastest one in nearly all cases.



Lessons Learned

1. Although database systems preferred bitmap compression and information retrieval systems preferred 

inverted list compression, it does not mean that bitmap compression is always better than inverted list 

compression or vice versa. 

2. This work shows that Bitmaps are suitable for low-cardinality columns via compression and the compression 

method should be Roaring.

3. Use Roaring for bitmap compression whenever possible. Do not use other bitmap compression methods.

4. Be sure to keep it simple when you invent a new bitmap compression. A complicated bitmap compression 

algorithm (e.g., BBC and VALWAH) tends to incur high performance overhead.

5. Use SIMDBP128* and SIMDPforDelta* for inverted list compression for high query performance (e.g., 

intersection and union) and low space overhead.

6. Use VB if you’re concerned about implementation overhead. As VB is perhaps the simplest one to implement.

7. A compression method that is good for decompression may not be good for intersection, and a compression 

method that is good for intersection may also not good for union.



Thank you!


