6.886: Algorithm Engineering

LECTURE 2 PARALLEL ALGORITHMS

Julian Shun

February 6, 2020

Lecture material taken from "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs and 6.172 by Charles Leiserson and Saman Amarasinghe © 2020 Julian Shun

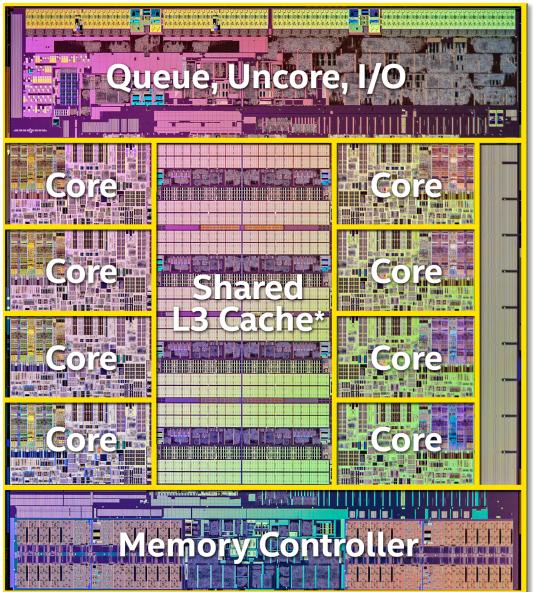
55

98

89

123

Multicore Processors



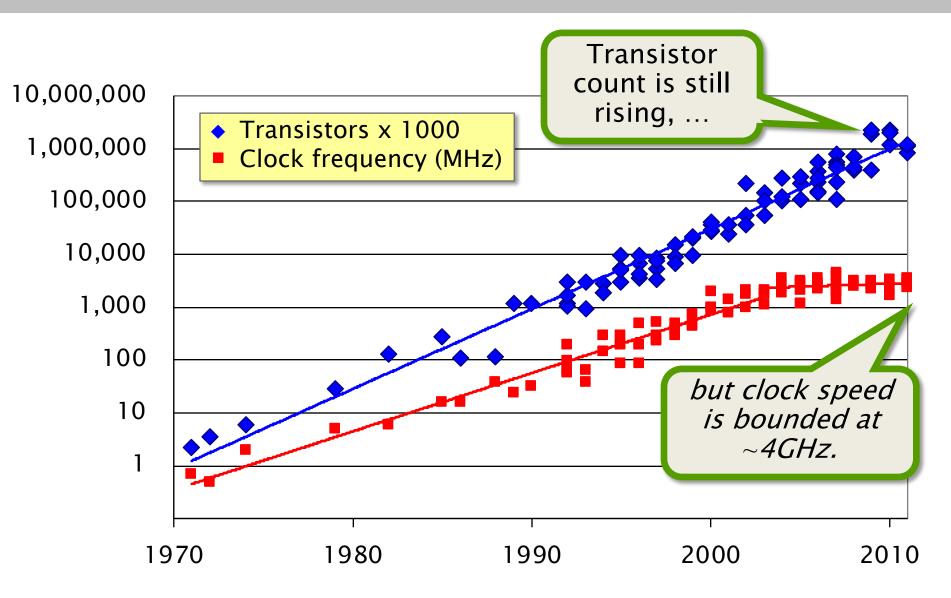
Q Why do semiconductor vendors provide chips with multiple processor cores?

A Because of Moore's Law and the end of the scaling of clock frequency.

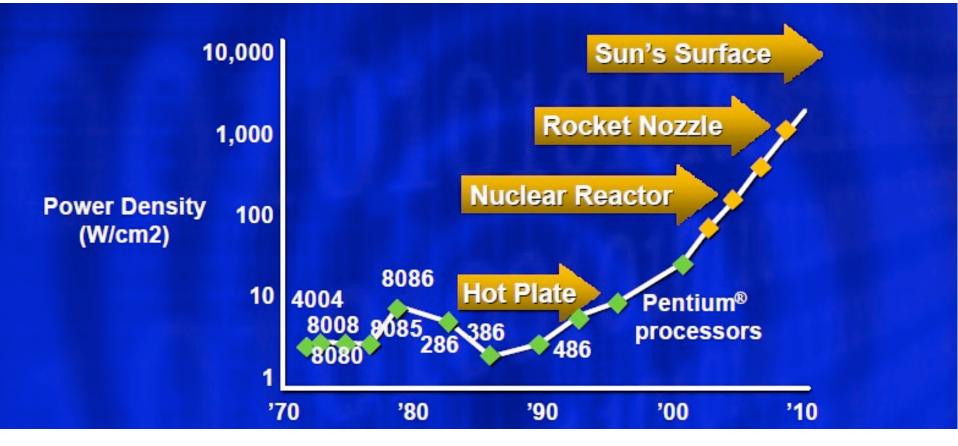
Intel Haswell-E

© 2020 Julian Shun Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

Technology Scaling



Power Density

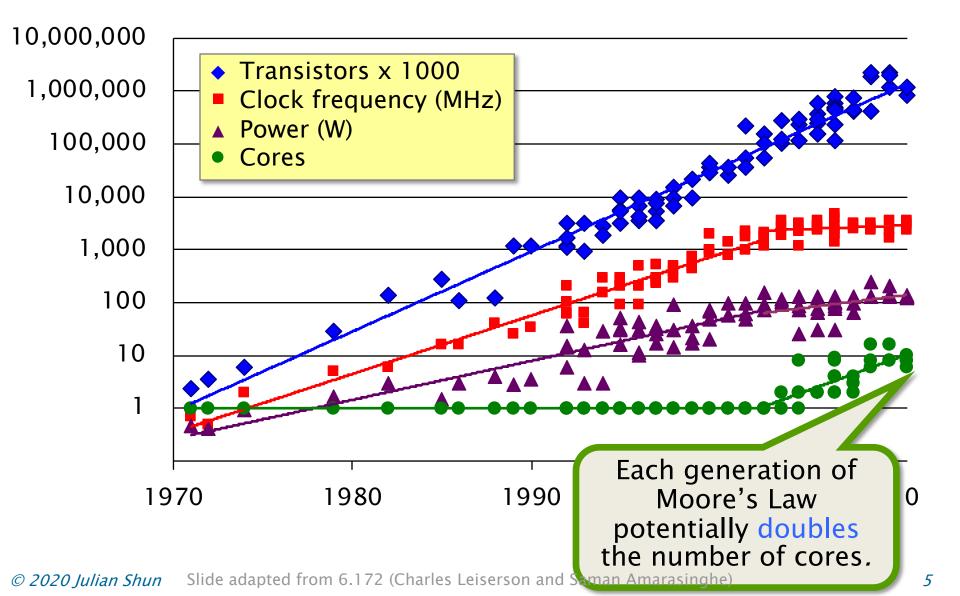


Source: Patrick Gelsinger, Intel Developer's Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had continued its trend of scaling 25%-30% per year.

© 2020 Julian Shun Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

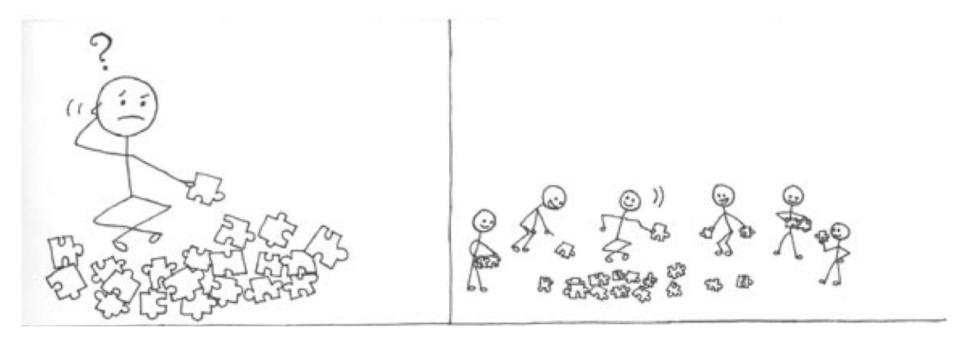
Technology Scaling



Parallel Languages

- Pthreads
- Intel TBB
- OpenMP, Cilk
- MPI
- CUDA, OpenCL
- Today: Shared-memory parallelism
 - OpenMP and Cilk are extensions of C/C++ that supports parallel for-loops, parallel recursive calls, etc.
 - Do not need to worry about assigning tasks to processors as these languages have a runtime scheduler
 - Cilk has a provably efficient runtime scheduler

Parallelism



PARALLELISM MODELS

,

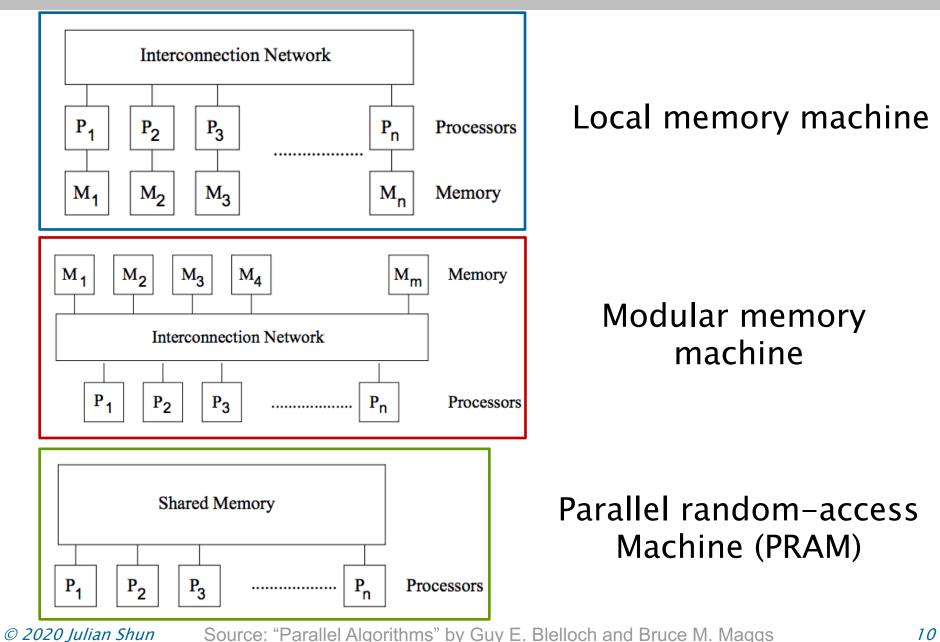
Ł

© 2020 Julian Shun

Random-access machine (RAM)

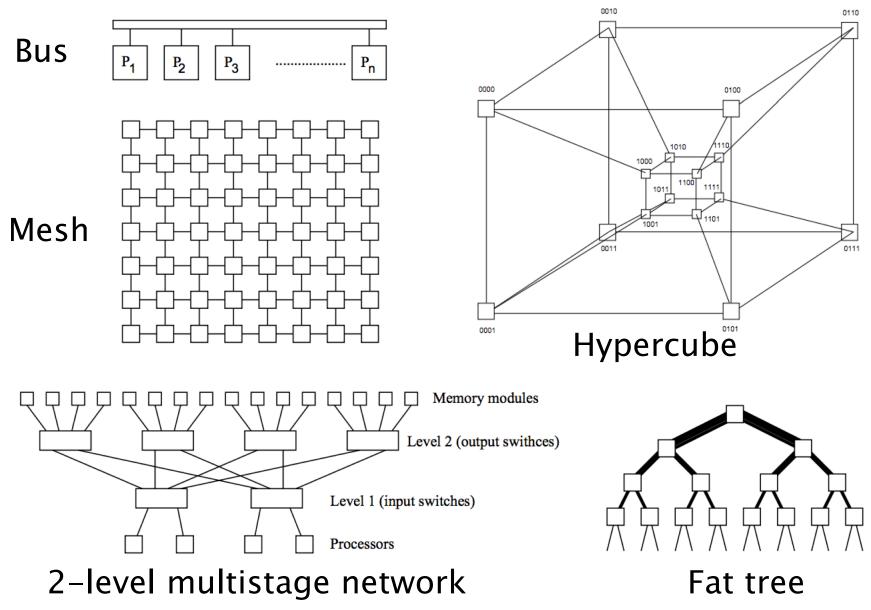
- Arithmetic operations, logical operations, and memory accesses take O(1) time
- Most sequential algorithms are designed using this model
 - Saw this in 6.006, 6.046

Basic multiprocessor models



Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs

Network topology



© 2020 Julian Shun

Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs

Network topology

- Algorithms for specific topologies can be complicated
 - May not perform well on other networks
- Alternative: use a model that summarizes latency and bandwidth of network
 - Postal model
 - Bulk-Synchronous Parallel (BSP) model
 - LogP model

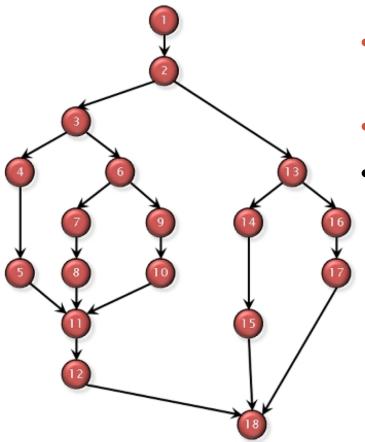
PRAM Model

- All processors can perform same local instructions as in the RAM model
- All processors operate in lock-step
- Implicit synchronization between steps
- Models for concurrent access
 - Exclusive-read exclusive-write (EREW)
 - Concurrent-read concurrent-write (CRCW)
 - How to resolve concurrent writes: arbitrary value, value from lowest-ID processor, logical OR of values
 - Concurrent-read exclusive-write (CREW)
 - Queue-read queue-write (QRQW)
 - Allows concurrent access in time proportional to the maximal number of concurrent accesses

Work-Span model

 Similar to PRAM but does not require lock-step or processor allocation

Computation graph

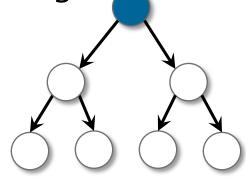


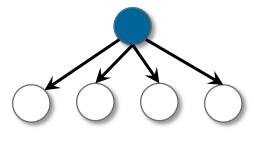
- Work = number of vertices in graph (number of operations)
- Span (Depth) = longest directed path in graph (dependence length)
- Parallelism = Work / Span
 - A work-efficient parallel algorithm has work that asymptotically matches the best sequential algorithm for the problem

Goal: work-efficient and low (polylogarithmic) span parallel algorithms

Work-Span model

- Spawning/forking tasks
 - Model can support either binary forking or arbitrary forking





Binary forking

- Cilk uses binary forking, as seen in 6.172
- Converting between the two changes work by at most a constant factor and span by at most a logarithmic factor
 - Keep this in mind when reading textbooks/papers on parallel algorithms
- We will assume arbitrary forking unless specified

Work-Span model

- State what operations are supported
 - Concurrent reads/writes?
 - Resolving concurrent writes

Scheduling

• For a computation with work W and span S, on P processors a greedy scheduler achieves

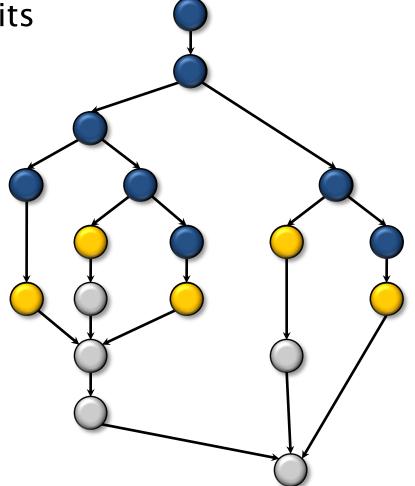
Running time $\leq W/P + S$

 Work-efficiency is important since P and S are usually small

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its predecessors have executed.



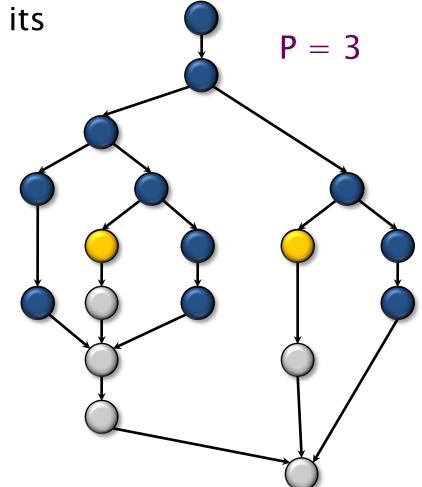
Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its predecessors have executed.

Complete step

- \geq P tasks ready.
- Run any P.



Greedy Scheduling

IDEA: Do as much as possible on every step.

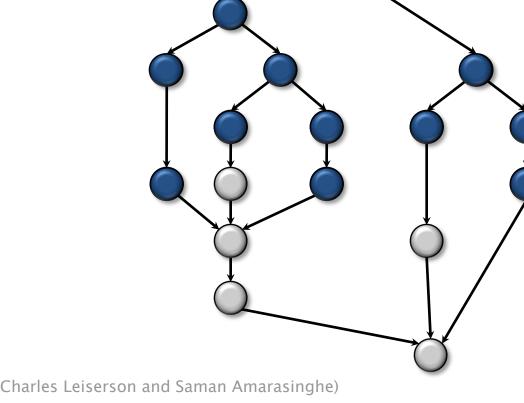
Definition. A task is ready if all its predecessors have executed.

Complete step

- \geq P tasks ready.
- Run any P.

Incomplete step

- < P tasks ready.</p>
- Run all of them.



P = 3

Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

Running Time $\leq W/P + S$.

Proof.

- # complete steps ≤ W/P, since each complete step performs P work.
- # incomplete steps ≤ S, since each incomplete step reduces the span of the unexecuted dag by 1.

Cilk Scheduling

 For a computation with work W and span S, on P processors Cilk's work-stealing scheduler achieves

Expected running time $\leq W/P + O(S)$

PARALLEL SUM

© 2020 Julian Shun

,

Ł

+ + + + +

Parallel Sum

• Definition: Given a sequence $A = [x_0, x_1, \dots, x_{n-1}]$, return $x_0 + x_1 + \dots + x_{n-2} + x_{n-1}$

```
What is the span?

S(n) = S(n/2)+O(1)

S(1) = O(1)

\rightarrow S(n) = O(\log n)
```

What is the work? W(n) = W(n/2)+O(n) W(1) = O(1) $\rightarrow W(n) = O(n)$

PREFIX SUM

© 2020 Julian Shun

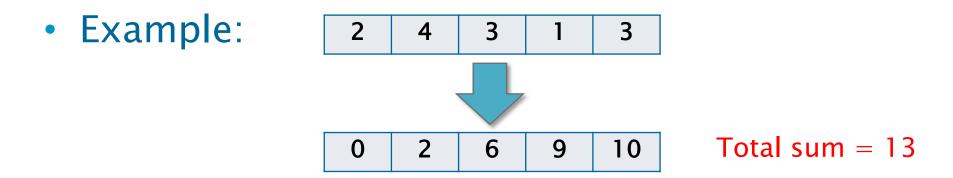
,

Ł

+ + + + +

Prefix Sum

Definition: Given a sequence A=[x₀, x₁,..., x_{n-1}], return a sequence where each location stores the sum of everything before it in A, [0, x₀, x₀+x₁,..., x₀+x₁+...+x_{n-2}], as well as the total sum x₀+x₁+...+x_{n-2}+x_{n-1}



• Can be generalized to any associative binary operator (e.g., \times , min, max)

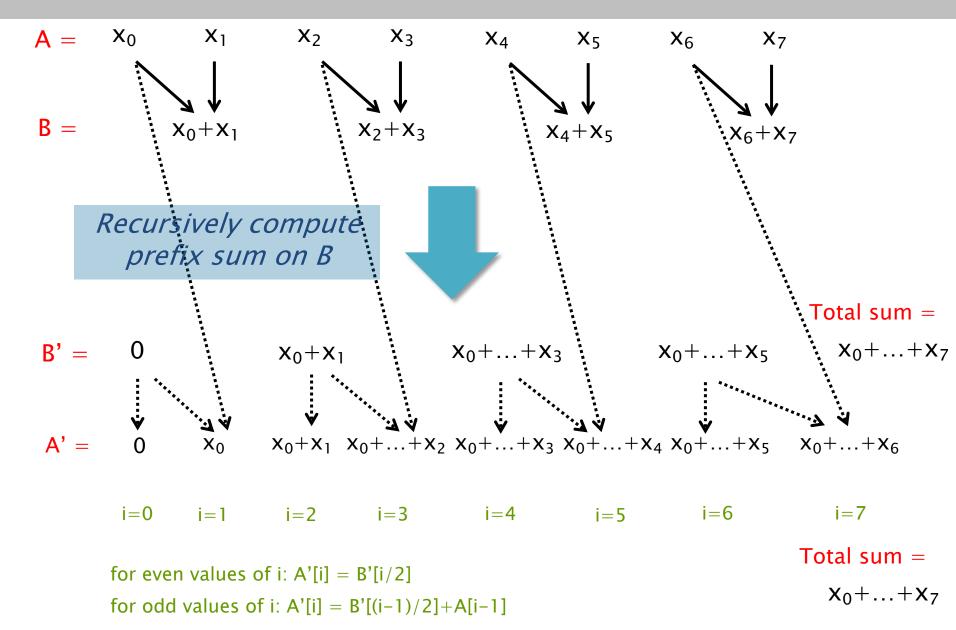
Sequential Prefix Sum

```
Input: array A of length n
Output: array A' and total sum
cumulativeSum = 0;
for i=0 to n-1:
 A'[i] = cumulativeSum:
  cumulativeSum += A[i];
return A' and cumulativeSum
```

- What is the work of this algorithm?
 - O(n)
- Can we execute iterations in parallel?
 - Loop carried dependence: value of cumulativeSum depends on previous iterations

© 2020 Julian Shun

Parallel Prefix Sum



© 2020 Julian Shun

Parallel Prefix Sum

Input: array A of length n (assume n is a power of 2) Output: array A' and total sum

What is the span?

S(n) = S(n/2) + O(1)PrefixSum(A, n): S(1) = O(1)if n = 1: return ([0], A[0]) \rightarrow S(n) = O(log n) for i=0 to n/2-1 in parallel: What is the work? B[i] = A[2i] + A[2i+1]W(n) = W(n/2) + O(n)(B', sum) = PrefixSum(B, n/2) W(1) = O(1) \rightarrow W(n) = O(n) for i=0 to n-1 in parallel: if (i mod 2) = = 0: A'[i] = B'[i/2]else: A'[i] = B'[(i-1)/2] + A[i-1]return (A', sum)

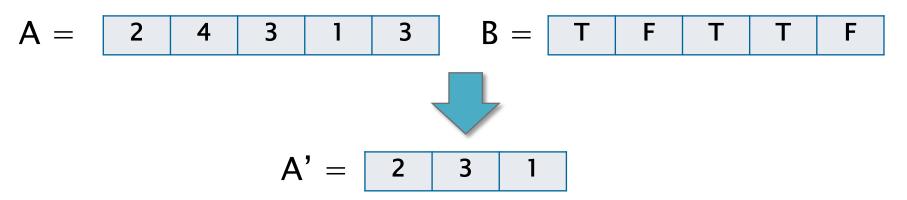
Ł + + + + + 123455789

FILTER

© 2020 Julian Shun

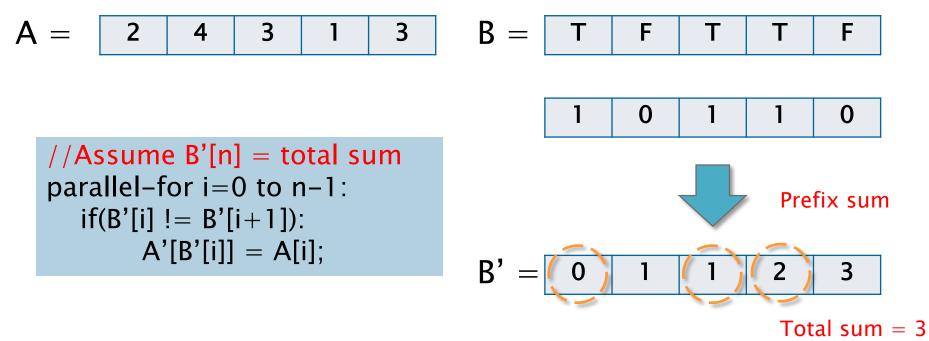
Filter

- Definition: Given a sequence A=[x₀, x₁,..., x_{n-1}] and a Boolean array of flags B[b₀, b₁,..., b_{n-1}], output an array A' containing just the elements A[i] where B[i] = true (maintaining relative order)
- Example:

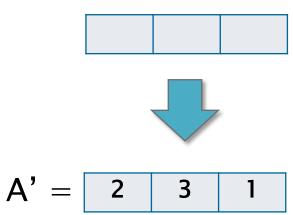


• Can you implement filter using prefix sum?

Filter Implementation



Allocate array of size 3

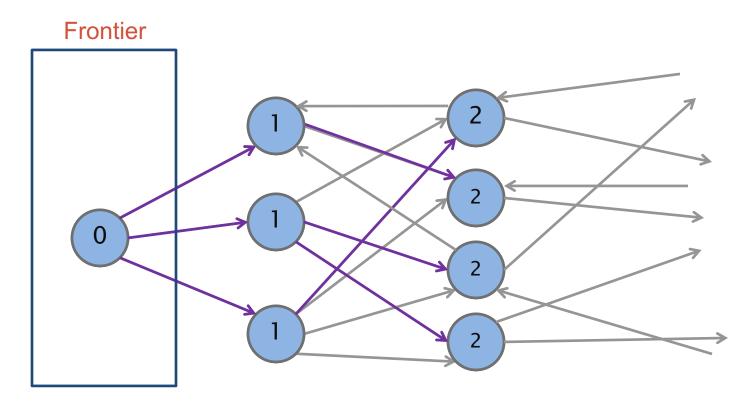


PARALLEL BREADTH-FIRST SEARCH

,*

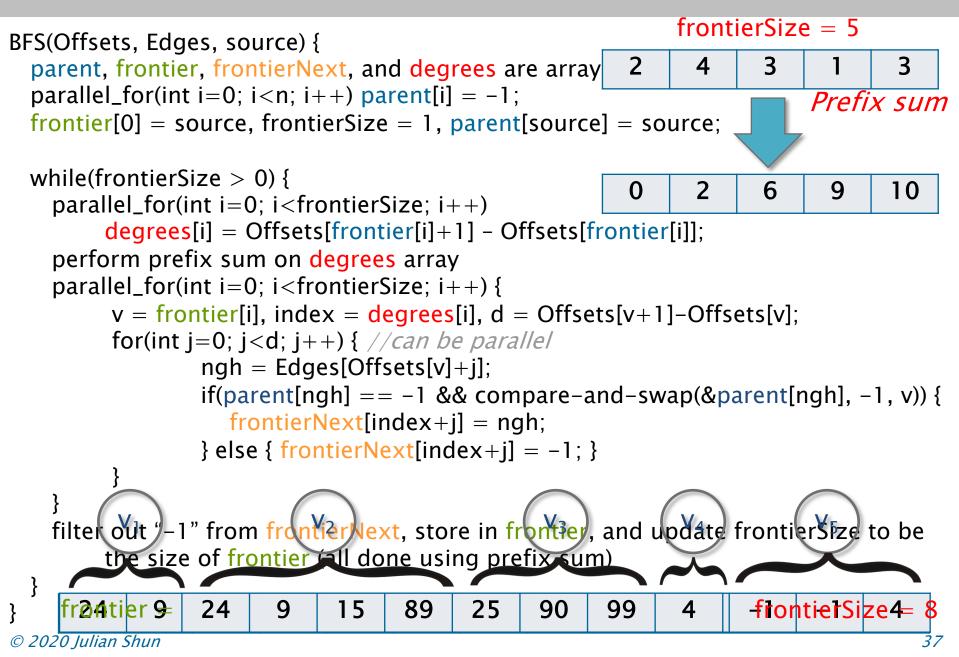
© 2020 Julian Shun

Parallel BFS Algorithm



- Can process each frontier in parallel
 - Parallelize over both the vertices and their outgoing edges

Parallel BFS Code



BFS Work-Span Analysis

- Number of iterations \leq diameter Δ of graph
- Each iteration takes O(log m) span for prefix sum and filter (assuming inner loop is parallelized)

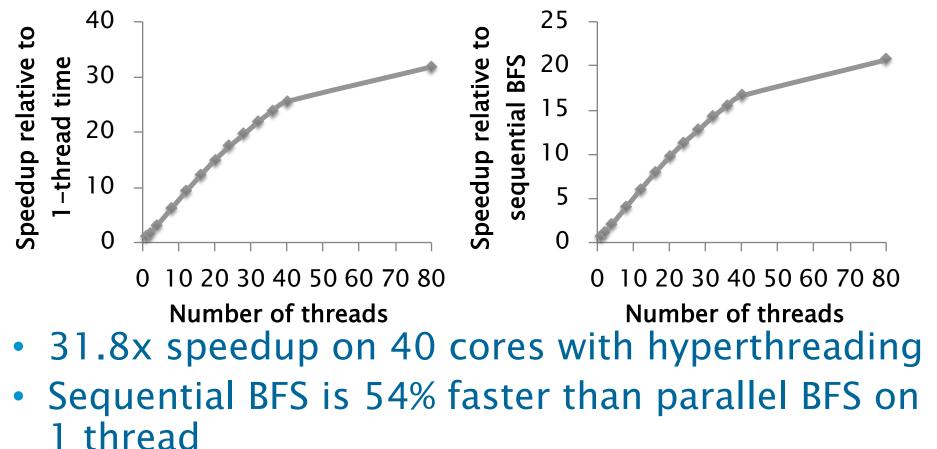
Span = $O(\Delta \log m)$

- Sum of frontier sizes = n
- Each edge traversed once -> m total visits
- Work of prefix sum on each iteration is proportional to frontier size $-> \Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed $-> \Theta(m)$ total

Work =
$$\Theta(n+m)$$

Performance of Parallel BFS

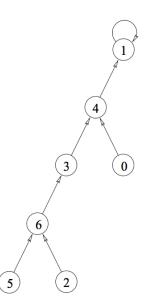
- Random graph with $n=10^7$ and $m=10^8$
 - 10 edges per vertex
- 40-core machine with 2-way hyperthreading



POINTER JUMPING AND LIST RANKING

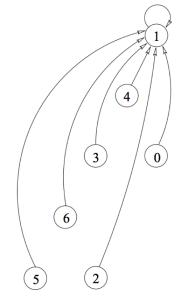
Pointer Jumping

• Have every node in linked list or rooted tree point to the end (root)



(a) The input tree P = [4, 1, 6, 4, 1, 6, 3].

```
for j=0 to ceil(log n)-1:
    parallel-for i=0 to n-1:
        temp = P[P[i]];
    parallel-for i=0 to n-1:
        P[i] = temp;
```



(b) (c) The final tree P = [1, 1, 1, 1, 1, 1, 1]. geration

What is the work and span?

$$W = O(n \log n)$$
$$S = O(\log n)$$

© 2020 Julian Shun

Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs

List Ranking

Have every node in linked list determine its distance to the end

```
parallel-for i=0 to n-1:
if P[i] == i then V[i] = 0 else V[i] = 1
```

```
for j=0 to ceil(log n)-1:

temp, temp2;

parallel-for i=0 to n-1:

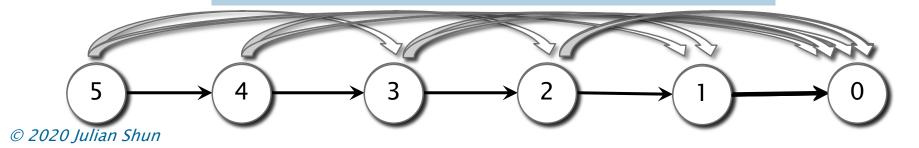
temp = V[P[i]];

temp2 = P[P[i]];

parallel-for i=0 to n-1:

V[i] = V[i] + temp;

P[i] = temp2;
```



Work-Span Analysis

```
parallel-for i=0 to n-1:

if P[i] == i then V[i] = 0 else V[i] = 1

for j=0 to ceil(log n)-1:

temp, temp2;

parallel-for i=0 to n-1:

temp = V[P[i]];

temp2 = P[P[i]];

parallel-for i=0 to n-1:

V[i] = V[i] + temp;

P[i] = temp2;
```

What is the work and span?

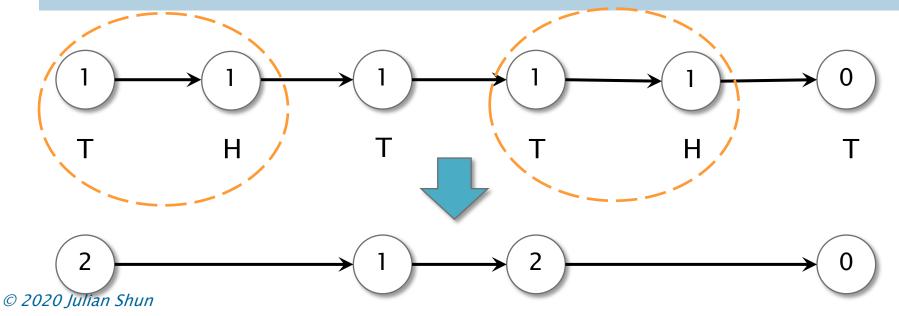
$$W = O(n \log n) \\ S = O(\log n)$$

Sequential algorithm only requires O(n) work

Work-Efficient List Ranking

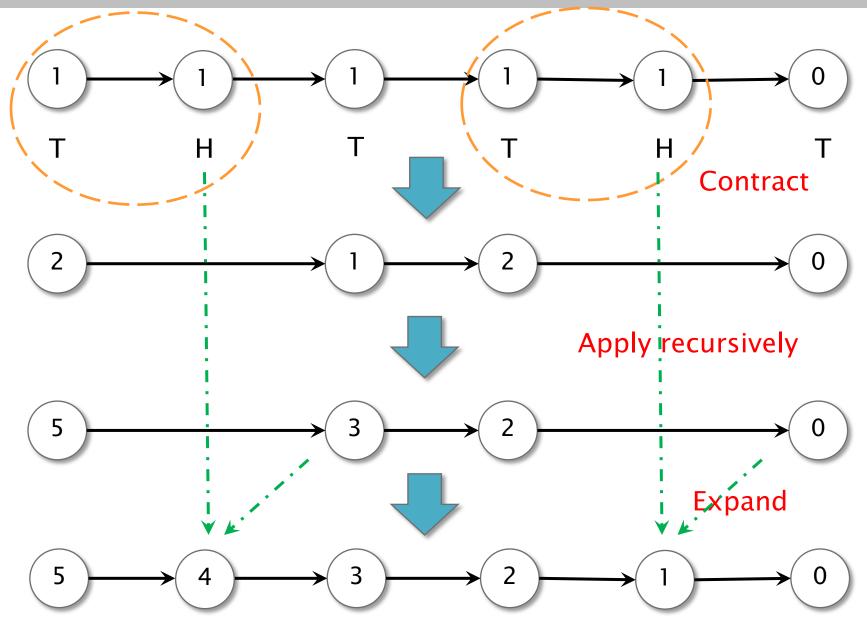
ListRanking(list P)

- 1. If list has two or fewer nodes, then return //base case
- 2. Every node flips a fair coin
- 3. For each vertex u (except the last vertex), if u flipped Tails and P[u] flipped Heads then u will be paired with P[u]
 - A. rank(u) = rank(u) + rank(P[u])
 - B. P[u] = P[P[u]]
- 4. Recursively call ListRanking on smaller list
- 5. Insert contracted nodes v back into list with rank(v) = rank(v) + rank(P[v])



45

Work-Efficient List Ranking



Work-Span Analysis

- Number of pairs per round is (n-1)/4 in expectation
 - For all nodes u except for the last node, probability of u flipping Tails and P[u] flipping Heads is 1/4
 - Linearity of expectations gives (n-1)/4 pairs overall
- Each round takes linear work and O(1) span
- Expected work: $W(n) \le W(7n/8) + O(n)$
- Expected span: $S(n) \leq S(7n/8) + O(1)$

 $\begin{array}{l} W = O(n) \\ S = O(log n) \end{array}$

 Can show span with high probability with Chernoff bound

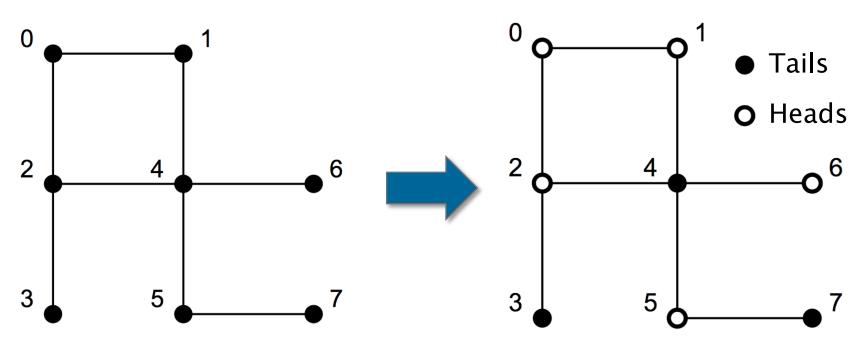
CONNECTED COMPONENTS

Connected Components

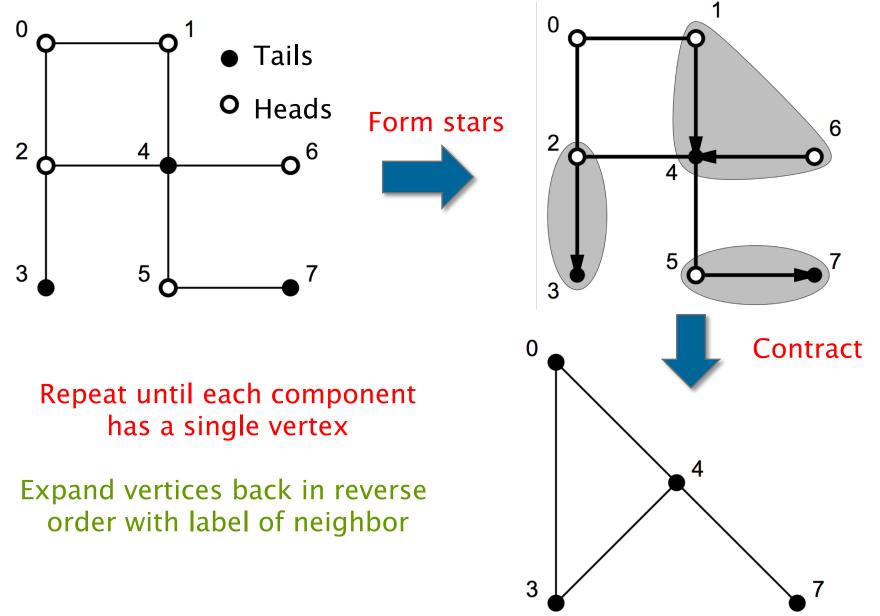
- Given an undirected graph, label all vertices such that L(u) = L(v) if and only if there is a path between u and v
- BFS span is proportional to diameter
 - Works well for graphs with small diameter
- Today we will see a randomized algorithm that takes O((n+m)log n) work and O(log n) span
 - Deterministic version in paper
 - We will study a work-efficient parallel algorithm next week

Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it



Random Mate



© 2020 Julian Shun Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs

Random Mate Algorithm

CC_Random_Mate(L, E)

if(|E| = 0) Return L //base case

else

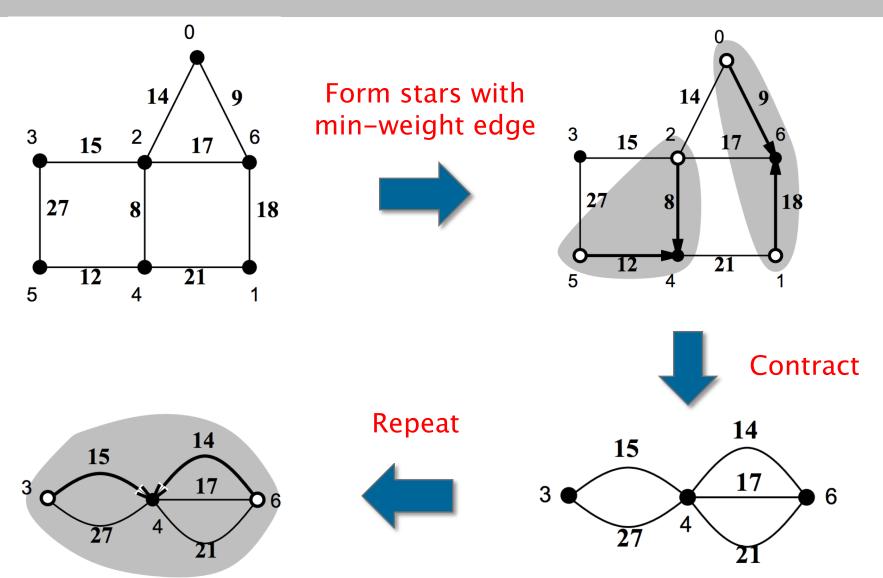
- 1. Flip coins for all vertices
- 2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set L(v) = w
- 3. E' = { (L(u),L(v)) | $(u,v) \in E \text{ and } L(u) \neq L(v)$ }
- 4. L' = CC_Random_Mate(L, E')
- 5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor that v hooked to in Step 2
- 6. Return L'
- Each iteration requires O(m+n) work and O(1) span
 - Assumes we do not pack vertices and edges
- Each iteration eliminates 1/4 of the vertices in expectation

 $W = O((m+n)\log n)$ expected $S = O(\log n)$ w.h.p.

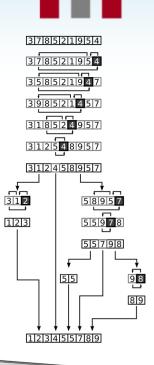
(Minimum) Spanning Forest

- Spanning Forest: Keep track of edges used for hooking
 - Edges will only hook two components that are not yet connected
- Minimum Spanning Forest:
 - For each "Heads" vertex v, instead of picking an arbitrary neighbor to hook to, pick neighbor w where (v, w) is the minimum weight edge incident to v
 - Can find this edge using priority concurrent write

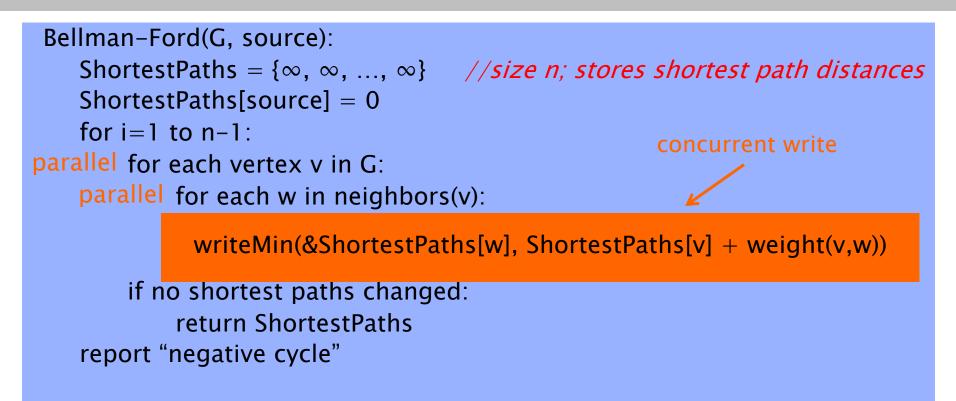
Minimum Spanning Forest



PARALLEL BELLMAN-FORD



Bellman-Ford Algorithm



- What is the work and span assuming writeMin has unit cost?
- Work = O(mn)
- Span = O(n)

Ł + + + + + 123455789

QUICKSORT

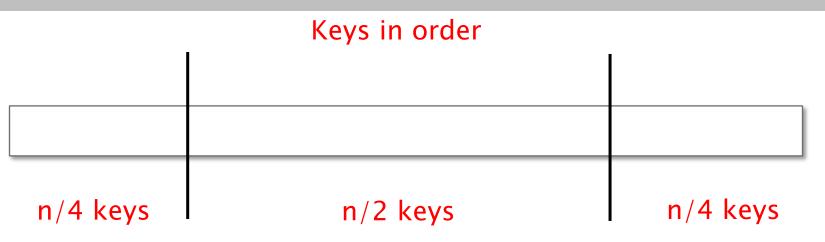
Parallel Quicksort

```
static void quicksort(int64_t *left, int64_t *right)
{
    int64_t *p;
    if (left == right) return;
    p = partition(left, right);
    cilk_spawn quicksort(left, p);
    quicksort(p + 1, right);
    cilk_sync;
}
```

- Partition picks random pivot p and splits elements into left and right subarrays
- Partition can be implemented using prefix sum in linear work and logarithmic span
- Overall work is O(n log n)
- What is the span?

© 2020 Julian Shun Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe

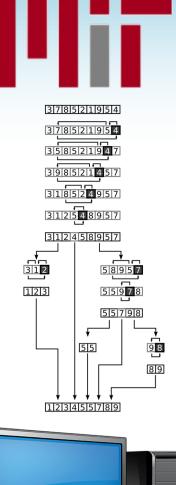
Parallel Quicksort Span



- Pivot is chosen uniformly at random
- 1/2 chance that pivot falls in middle range, in which case sub-problem size is at most 3n/4
- Expected span:
 - $S(n) \le (1/2) S(3n/4) + O(\log n)$ = $O(\log^2 n)$
- Can get high probability bound with Chernoff bound

Parallel Algorithms Resources

- "Introduction to Parallel Algorithms" by Joseph JaJa
- Ch. 27 of "Introduction to Algorithms, 3rd Edition" by Cormen, Leiserson, Rivest, and Stein
- "Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques" by Uzi Vishkin



RADIX SORT

Radix Sort

Consider 1-bit digits

© 2020 Julian Shun

Work-Span Analysis

- Each iteration requires O(n) work and O(log n) span
- Overall work = O(bn)
- Overall span = O(b log n)
- For larger radixes, see Ch. 6 of "Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques" by Uzi Vishkin

REMOVING DUPLICATES

¥

Removing Duplicates with Hashing

- Given an array A of n elements, output the elements in A excluding duplicates
- Construct a table T of size m, where m is the next prime after 2n i = 0
- While (|A| > 0)
 - Parallel-for each element j in A try to insert j into T at location (hash(A[j],i) mod m) //if the location was empty at the beginning of round i, and there are concurrent writes then an arbitrary one succeeds
 - Filter out elements j in A such that T[(hash(A[j],i) mod m)] = A[j]
 - 3. i = i+1
 - Use a new hash function on each round
 - Claim: Every round, the number of elements decreases by a factor of 2 in expectation W = O(n) expected $S = O(log^2n)$ w.h.p.