
Morton filters: fast, compressed sparse cuckoo

filters

Alex D Breslow and Nuwan S Jayasena

Presented by William Qian

2020 April 30
6.886 Spring 2020

William Qian Morton filters 2020 April 30 1 / 30



Overview

1 Background

2 Morton filters

3 Evaluation

4 Discussion

William Qian Morton filters 2020 April 30 2 / 30



Background

1 Background

2 Morton filters

3 Evaluation

4 Discussion

William Qian Morton filters 2020 April 30 3 / 30



Background

Approximate set membership data structures

· · ·∈?

� ∈ · · ·© =⇒

{
� ∈ · · ·© p = 1− ε
� 6∈ · · ·© p = ε

� 6∈ · · ·© =⇒
{
� 6∈ · · ·© p = 1

Examples: Bloom filters, Cuckoo filters [3], Morton filters [1, 2]...

William Qian Morton filters 2020 April 30 4 / 30



Background

Cuckoo filters

Fingerprints are fixed-width hashes of keys using HF

Buckets are determined by either H1 or H2

Bucket #s

4 slots/bucket

William Qian Morton filters 2020 April 30 5 / 30



Background

Cuckoo filters: insertions

Pick empty slot in either bucket
No available slots: evict an entry and cascade via Cuckoo hashing

H1(Kx): full

H2(Kx): :)

Cuckoo
hashing

William Qian Morton filters 2020 April 30 6 / 30



Background

Cuckoo filters: lookups

Look in both buckets for matching fingerprint
Found match: likely in set; no match: not in set

William Qian Morton filters 2020 April 30 7 / 30



Morton filters

1 Background

2 Morton filters

3 Evaluation

4 Discussion

William Qian Morton filters 2020 April 30 8 / 30



Morton filters

Morton filters: overview

Morton filters (MFs) [1, 2] are like Cuckoo filters (CFs), but MFs:

Bias toward one hash function over the other

Use a compressed block store

Require 2x buckets, instead of 2x buckets

William Qian Morton filters 2020 April 30 9 / 30



Morton filters

Morton filters: primacy

Preferentially hash using H1; H2 is the backup

Lookups generally require only one hash (and thus, cache line)

William Qian Morton filters 2020 April 30 10 / 30



Morton filters

Morton filters: compressed block store

Sparseness =⇒ not all slots will be used

Bitmaps to maintain meta information

FSA: fingerprint storage array. Contains fixed-width fingerprints.

FCA: fullness counter array. b bits/counter, 2b − 1 slots/bucket.

OTA: overflow tracking array. 1 indicates block/bucket overflow.

William Qian Morton filters 2020 April 30 11 / 30



Morton filters

Morton filters: compressed block store

Block overflows occur when the FSA has run out of space

Evicts some (any) fingerprint

Bucket overflows occur when the bucket’s FCA has reached its max

Evicts a fingerprint in the bucket

When a bucket’s OTA bit is set, it indicates that if a key hashed
there with H1 isn’t found in the bucket, we should look at its H2

bucket as well.

William Qian Morton filters 2020 April 30 12 / 30



Morton filters

Morton filters: compressed block store

William Qian Morton filters 2020 April 30 13 / 30



Morton filters

Morton filters: parity-based partial key hashing

H1(K ) = bucket(H(K ), n)

H2(K ) = bucket(H1(K ) + (−1)H1(K)&1 · offset(Hfp(K )), n)

H ′(β,Hfp(K )) = bucket(β + (−1)β&1 · offset(Hfp(K )), n)

offset(fp) = (B + (fp mod OFFSET RANGE ))|1
bucket(x , n) = (x + n) mod n

(bucket is implemented to avoid division instructions like / and %)

William Qian Morton filters 2020 April 30 14 / 30



Morton filters

Morton filters: parity-based partial key hashing

H ′(H1(K ),Hfp(K )) = bucket(H1(K ) + (−1)H1(K)&1 · offset(Hfp(K )), n)

= H2(K )

William Qian Morton filters 2020 April 30 15 / 30



Morton filters

Morton filters: parity-based partial key hashing

offset() is always odd, and n is always even:

H2(K )&1 = bucket(H1(K ) + (−1)H1(K)&1 · offset(Hfp(K )), n)&1

= (H1(K ) + (−1)H1(K)&1 · offset(Hfp(K )))&1

= (H1(K )&1) ∧ ((−1)H1(K)&1 · offset(Hfp(K ))&1)

= (H1(K )&1) ∧ ((−1)H1(K)&1&1)

= (H1(K )&1) ∧ 1

=∼ (H1(K )&1)

William Qian Morton filters 2020 April 30 16 / 30



Morton filters

Morton filters: parity-based partial key hashing

H ′(H2(K ),Hfp(K )) =bucket(H2(K ) + (−1)H2(K)&1 · offset(Hfp(K )), n)

=bucket(

H2(K ) + (−1)(H1(K)&1)+1 · offset(Hfp(K )), n)

=bucket(H2(K )− (−1)H1(K)&1 · offset(Hfp(K )), n)

=bucket(H1(K ) + (−1)H1(K)&1 · offset(Hfp(K ))

− (−1)H1(K)&1 · offset(Hfp(K )), n)

=bucket(H1(K ), n)

=H1(K )

William Qian Morton filters 2020 April 30 17 / 30



Morton filters

Morton filters: parity-based partial key hashing

H ′(H2(K ),Hfp(K )) = H1(K ); H ′(H1(K ),Hfp(K )) = H2(K )

∴ applying H ′ to an already-inserted key swaps its bucket.

William Qian Morton filters 2020 April 30 18 / 30



Morton filters

Morton filters: other features

Block full array (BFA) is another bit vector that stores information
about which blocks are full

Insertions can query the BFA to avoid cascading evictions

Extra overhead for deletes

Only useful at high loads (FSA generally quite full)

William Qian Morton filters 2020 April 30 19 / 30



Morton filters

Morton filters: other features

Resizing: MFs can only be resized by powers of 2

Use significant bits of the fingerprint to assign keys to child
buckets

William Qian Morton filters 2020 April 30 20 / 30



Evaluation

1 Background

2 Morton filters

3 Evaluation

4 Discussion

William Qian Morton filters 2020 April 30 21 / 30



Evaluation

Environment

AMD Ryzen Threadripper 1950X

2 sockets, 8 cores each, hyperthread enabled

512-bit blocks

3-slot: 16-bit OTA, 128-bit (64 × 2) FCA, 46-slot FSA, 8-bit fp
7-slot: 17-bit OTA, 63-bit (21 × 3) FCA, 54-slot FSA, 8-bit fp
15-slot: 17-bit OTA, 63-bit (21 × 3) FCA, 54-slot FSA, 8-bit fp

Benchmarks: MF (this work), CF (12 bits)

William Qian Morton filters 2020 April 30 22 / 30



Evaluation

Error rate

Error rate roughly matches projected error rates

William Qian Morton filters 2020 April 30 23 / 30



Evaluation

Throughput

(a) Inserts (b) Deletes

(c) Positive lookups (d) Negative lookups

William Qian Morton filters 2020 April 30 24 / 30



Evaluation

Throughput (Intel)

William Qian Morton filters 2020 April 30 25 / 30



Evaluation

Block full array

William Qian Morton filters 2020 April 30 26 / 30



Evaluation

References

Alex D Breslow and Nuwan S Jayasena.

Morton filters: faster, space-efficient cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proceedings of the VLDB Endowment, 11(9):1041–1055, 2018.

Alex D Breslow and Nuwan S Jayasena.

Morton filters: fast, compressed sparse cuckoo filters.
The VLDB Journal, pages 1–24, 2019.

Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

Cuckoo filter: Practically better than bloom.
In Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies,
pages 75–88, 2014.

William Qian Morton filters 2020 April 30 27 / 30



Discussion

1 Background

2 Morton filters

3 Evaluation

4 Discussion

William Qian Morton filters 2020 April 30 28 / 30



Discussion

Takeaways

Spatial underutilization is expensive!

This is an interesting metadata design

Biasing toward one hash function reduces cache costs

Parity tricks are really cool :)

Morton filters are competitive with cuckoo filters, and more
memory efficient

William Qian Morton filters 2020 April 30 29 / 30



Discussion

Discussion

1 Is NUMA important here? How might a NUMA-aware
implementation work?

2 What concurrency overheads might exist with this solution?

3 This is published in VLDB(J), which ostensibly means it should
be somewhat database-related. What are some
implementations/optimizations that might be useful if we
wanted to implement this in a distributed memory model?

William Qian Morton filters 2020 April 30 30 / 30


	Background
	Morton filters
	Evaluation
	Discussion

