Morton filters: fast, compressed sparse cuckoo
filters

Alex D Breslow and Nuwan S Jayasena

Presented by William Qian

2020 April 30
6.886 Spring 2020

William Qian Morton filters 2020 April 30 1/30



Overview

© Background
© Morton filters
© Evaluation

@ Discussion

William Qian Morton filters 2020 April 30 2/30



Background

© Background

William Qian Morton filters 2020 April 30 3/30



Approximate set membership data structures

e’

0¢Q = {0¢Q p=1

Examples: Bloom filters, Cuckoo filters [3], Morton filters [1, 2]...
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Background

Cuckoo filters

Fingerprints are fixed-width hashes of keys using Hf
Buckets are determined by either H; or H,
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Cuckoo filters: insertions

Pick empty slot in either bucket

No available slots: evict an entry and cascade via Cuckoo hashing

Hp(Ky) = x Store x
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Cuckoo filters: lookups

Look in both buckets for matching fingerprint
Found match: likely in set; no match: not in set
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Morton filters

© Morton filters
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Morton filters: overview

Morton filters (MFs) [1, 2] are like Cuckoo filters (CFs), but MFs:
@ Bias toward one hash function over the other
@ Use a compressed block store

@ Require 2x buckets, instead of 2* buckets
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Morton filters: primacy

Preferentially hash using H;; H, is the backup

@ Lookups generally require only one hash (and thus, cache line)
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Morton filters: compressed block store

IOTA FCA FsA
511 496 368 0

Fig. 3 A sample block in an MF that is performance-optimized for
512-bit cache lines. The block has a 46-slot FSA with 8-bit fingerprints,
a 64-slot FCA with 2-bit fullness counters (64 3-slot buckets), and a 16-
bit OTA with a bit per slot

@ Sparseness = not all slots will be used

@ Bitmaps to maintain meta information

@ FSA: fingerprint storage array. Contains fixed-width fingerprints.
@ FCA: fullness counter array. b bits/counter, 2° — 1 slots/bucket.
@ OTA: overflow tracking array. 1 indicates block/bucket overflow.
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Morton filters

Morton filters: compressed block store

Block overflows occur when the FSA has run out of space

@ Evicts some (any) fingerprint

Bucket overflows occur when the bucket's FCA has reached its max

@ Evicts a fingerprint in the bucket

When a bucket's OTA bit is set, it indicates that if a key hashed
there with H isn't found in the bucket, we should look at its H,
bucket as well.
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Morton filters: compressed block store
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Fig. 4 An MF’s Block Store and a sample block’s compressed format and logical interpretation, with corresponding buckets labeled 0 to 5. The
FCA and FSA state dictates the logical interpretation of the block. Buckets and fingerprints are ordered right to left to be consistent with logical
shift operations
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Morton filters: parity-based partial key hashing

H,(K) = bucket(H(K), n)
Hy(K) = bucket(Hy(K) + (—1)M% . offset(He,(K)), n)
H'(8, Hgp(K)) = bucket(3 + (—1)°“! - offset(Hg,(K)), n)
offset(fp) = (B + (fp mod OFFSET _RANGE))|1
bucket(x,n) = (x + n)mod n

(bucket is implemented to avoid division instructions like / and %)
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Morton filters: parity-based partial key hashing

H'(Hy(K), He(K)) = bucket(Hy (K) + (—1)H% . offset(He,(K)), n)
= Hy(K)
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Morton filters: parity-based partial key hashing

offset() is always odd, and n is always even:

= (Hy(K)&1

(
(
= (F(K)&1)
)
= (Hi(K)&1)
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Morton filters: parity-based partial key hashing

H'(Hy(K), Hep(K)) =bucket(Ha(K) + (—1)"2FO%L . offset(Hg,(K)), n)
=bucket(
Hy(K) + (—1)Fi(k0&1)+1 offset(Hg(K)), n)

—bucket(Hy(K) — (—1)" %L . offset(Hg,(K)), n)
—bucket(Hy(K) 4 (—1)"FO%L . offset(H,(K))

— (- )H1 K&t offset(Hg(K)), n)
=bucket(H.(K), n)

=H,(K)
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Morton filters: parity-based partial key hashing

H'(Hx(K), Hpp(K)) = Hi(K); H'(Hi(K), Hpp(K)) = Ha(K)

.. applying H' to an already-inserted key swaps its bucket.
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Morton filters: other features

Block full array (BFA) is another bit vector that stores information
about which blocks are full

@ Insertions can query the BFA to avoid cascading evictions
@ Extra overhead for deletes

@ Only useful at high loads (FSA generally quite full)
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Morton filters: other features

Resizing: MFs can only be resized by powers of 2
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@ Use significant bits of the fingerprint to assign keys to child

buckets
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Evaluation

© Evaluation
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Environment

@ AMD Ryzen Threadripper 1950X
e 2 sockets, 8 cores each, hyperthread enabled

@ 512-bit blocks
o 3-slot: 16-bit OTA, 128-bit (64 x 2) FCA, 46-slot FSA, 8-bit fp
o 7-slot: 17-bit OTA, 63-bit (21 x 3) FCA, 54-slot FSA, 8-bit fp
e 15-slot: 17-bit OTA, 63-bit (21 x 3) FCA, 54-slot FSA, 8-bit fp

@ Benchmarks: MF (this work), CF (12 bits)
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Evaluation

Error rate

Error rate roughly matches projected error rates
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Slots per Bucket

Fig. 11 The MF implementation’s false positive rate closely matches
Eq. 5. All MFs have a block load factor of 0.95. The MF with 3-slot

buckets uses 128 bits for its FCA versus the 7- and 15-slot that use 63
and 64 bits, respectively
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Throughput
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Fig. 14 An MF’s insertion throughput is 0.94x to 20.8x that of a CF
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Fig. 16 An MF’s deletion throughput is 1.1 x to 1.3x higher than that
of aCF

(b) Deletes
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Fig. 12 An MF’s positive lookup throughput is about 1.6x to 2.4x
higher than a CF’s

(c) Positive lookups

Morton filters

Load Factor
Fig. 13 An MF’s negative lookup throughput is about 1.3x to 2.5x
higher than a CF’s

(d) Negative lookups
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Throughput (Intel)
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Fig.26 On a Skylake-X server, MF lookup throughput is on par with to
nearly 1.8 x higher than a CF’s. MF deletion throughput is about 0.90x
to 1.1x a CF’s. MF insertion throughput is 0.82 x to 4.8 x that of a CF.
Results are normalized to a CF’s lookup throughput on a Skylake-X
CPU
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Block full array
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Fig. 21 MF insertion and deletion throughput with and without the
BFA enabled. b zooms in on the lower right corner of (a)
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Discussion

@ Discussion
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Takeaways

Spatial underutilization is expensive!
This is an interesting metadata design
Biasing toward one hash function reduces cache costs

Parity tricks are really cool :)

® 6 66 o o

Morton filters are competitive with cuckoo filters, and more
memory efficient
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Discussion

Discussion

@ Is NUMA important here? How might a NUMA-aware
implementation work?

@ What concurrency overheads might exist with this solution?

@ This is published in VLDB(J), which ostensibly means it should
be somewhat database-related. What are some
implementations/optimizations that might be useful if we
wanted to implement this in a distributed memory model?
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