Morton filters: fast, compressed sparse cuckoo
filters

Alex D Breslow and Nuwan S Jayasena

Presented by William Qian

2020 April 30
6.886 Spring 2020

William Qian Morton filters 2020 April 30 1/30

Overview

© Background
© Morton filters
© Evaluation

@ Discussion

William Qian Morton filters 2020 April 30 2/30

Background

© Background

William Qian Morton filters 2020 April 30 3/30

Approximate set membership data structures

e’

0¢Q = {0¢Q p=1

Examples: Bloom filters, Cuckoo filters [3], Morton filters [1, 2]...

William Qian Morton filters 2020 April 30 4/30

Background

Cuckoo filters

Fingerprints are fixed-width hashes of keys using Hf
Buckets are determined by either H; or H,

He(K,) = x

Store x

1011

1011

0000| 0

1000

1100

0000

1010

10&?*

1101

Bucket #s

00| 7

O
010

0001

0101

1000

0000

@D H, (K,)--» 0100

0101

111,

1011

0110

0001

1010

4 slots/bucket [0111

11

1011

0100

William Qian

e
3
4=--H,(Ky) ®
5
6<+—H,(K,)®

Store yA K3 HF(Ky) =y

Morton filters

2020 April 30

5/30

Cuckoo filters: insertions

Pick empty slot in either bucket

No available slots: evict an entry and cascade via Cuckoo hashing

Hp(Ky) = x Store x

@ H, (K,)—{0010(1011[1011{0000| 0

H:(K.):) [1000{1100|0000f0000] 7
1010[1038]1101}0010|2
0001|0101|1000|0000| 3

@ Hy (K,)-~»{0100|0101|1111{1011 | 4=--H, (K,) #

Hi(K,): full |0110 OE- 0001[1010|5 (Cuckoo
0111]1174{1011|0100|6<—H; (K,) @

William Qian

Store yA K HF(Ky) =y

Morton filters

2020 April 30

6/30

Cuckoo filters: lookups

Look in both buckets for matching fingerprint
Found match: likely in set; no match: not in set

f_®€00k;£px

@ H,(K,)—-{0010{1011]1011| x
1000|1100{1101|0000
1010|1010|0101|0010
@Lookup x.\ 0001|0101|1000|0000 ;?/,Lookupy (5)
@H,(K,)—(0100{1011{1111|1011|4<—H,(K,) @
MHR(K,) = x|0110{0111|0001{1010(5
0111|1111 y |[0100|6=<—H (K,)®

t t——Yw)-ye

® Lookup y
Morton filters 2020 April 30

S

N

N

7/30

Morton filters

© Morton filters

William Qian Morton filters 2020 April 30 8/30

Morton filters: overview

Morton filters (MFs) [1, 2] are like Cuckoo filters (CFs), but MFs:
@ Bias toward one hash function over the other
@ Use a compressed block store

@ Require 2x buckets, instead of 2* buckets

William Qian Morton filters 2020 April 30 9/30

Morton filters: primacy

Preferentially hash using H;; H, is the backup

@ Lookups generally require only one hash (and thus, cache line)

William Qian Morton filters 2020 April 30 10 /30

Morton filters: compressed block store

IOTA FCA FsA
511 496 368 0

Fig. 3 A sample block in an MF that is performance-optimized for
512-bit cache lines. The block has a 46-slot FSA with 8-bit fingerprints,
a 64-slot FCA with 2-bit fullness counters (64 3-slot buckets), and a 16-
bit OTA with a bit per slot

@ Sparseness = not all slots will be used

@ Bitmaps to maintain meta information

@ FSA: fingerprint storage array. Contains fixed-width fingerprints.
@ FCA: fullness counter array. b bits/counter, 2° — 1 slots/bucket.
@ OTA: overflow tracking array. 1 indicates block/bucket overflow.

William Qian Morton filters 2020 April 30 11/30

Morton filters

Morton filters: compressed block store

Block overflows occur when the FSA has run out of space

@ Evicts some (any) fingerprint

Bucket overflows occur when the bucket's FCA has reached its max

@ Evicts a fingerprint in the bucket

When a bucket's OTA bit is set, it indicates that if a key hashed
there with H isn't found in the bucket, we should look at its H,
bucket as well.

William Qian Morton filters 2020 April 30 12 /30

Morton filters: compressed block store

Block Store As its Logical
4> <22 0 Interpretatior

. 543270
22223 1B3[A2[0[A T ol6I3[SIA[82[} ~- tor e 8
FOTA}----- FCA -----}-- Fingerprints (FSA) ---|

[}

(OjUSIN [
UAWNRKRO

Fig. 4 An MF’s Block Store and a sample block’s compressed format and logical interpretation, with corresponding buckets labeled 0 to 5. The
FCA and FSA state dictates the logical interpretation of the block. Buckets and fingerprints are ordered right to left to be consistent with logical
shift operations

William Qian Morton filters 2020 April 30 13 /30

Morton filters: parity-based partial key hashing

H,(K) = bucket(H(K), n)
Hy(K) = bucket(Hy(K) + (—1)M% . offset(He,(K)), n)
H'(8, Hgp(K)) = bucket(3 + (—1)°“! - offset(Hg,(K)), n)
offset(fp) = (B + (fp mod OFFSET _RANGE))|1
bucket(x,n) = (x + n)mod n

(bucket is implemented to avoid division instructions like / and %)

William Qian Morton filters 2020 April 30 14 /30

Morton filters: parity-based partial key hashing

H'(Hy(K), He(K)) = bucket(Hy (K) + (—1)H% . offset(He,(K)), n)
= Hy(K)

William Qian Morton filters 2020 April 30 15 /30

Morton filters: parity-based partial key hashing

offset() is always odd, and n is always even:

= (Hy(K)&1

(
(
= (F(K)&1)
)
= (Hi(K)&1)

William Qian Morton filters 2020 April 30

16 /30

Morton filters: parity-based partial key hashing

H'(Hy(K), Hep(K)) =bucket(Ha(K) + (—1)"2FO%L . offset(Hg,(K)), n)
=bucket(
Hy(K) + (—1)Fi(k0&1)+1 offset(Hg(K)), n)

—bucket(Hy(K) — (—1)" %L . offset(Hg,(K)), n)
—bucket(Hy(K) 4 (—1)"FO%L . offset(H,(K))

— (-)H1 K&t offset(Hg(K)), n)
=bucket(H.(K), n)

=H,(K)

William Qian Morton filters 2020 April 30 17 /30

Morton filters: parity-based partial key hashing

H'(Hx(K), Hpp(K)) = Hi(K); H'(Hi(K), Hpp(K)) = Ha(K)

.. applying H' to an already-inserted key swaps its bucket.

William Qian Morton filters 2020 April 30

18/30

Morton filters: other features

Block full array (BFA) is another bit vector that stores information
about which blocks are full

@ Insertions can query the BFA to avoid cascading evictions
@ Extra overhead for deletes

@ Only useful at high loads (FSA generally quite full)

William Qian Morton filters 2020 April 30 19 /30

Morton filters: other features

Resizing: MFs can only be resized by powers of 2

0ld Block Logical Interpretation /bi
Store /
B y S [osso0111 os11001] |54
Z 2
S [lo[i[olora [lo[3[2]mca
New Block
store, T T T 1 =
/
S [Jo[:lclora [o[:[t)rca
43‘15} . [I [I I I [[JoE05638] 54
4
4B+2 2 [iJe[t[oJora [i]o[o[o]Fc4
4B1+3 722222
| | I I | | | |FsA
A [Llebora o]l
\
\‘\ [[I [| [| Jozzooni1[oriti001] <54
\‘ nnn’ nnnn A 3 01100111 | 01111001

[y

@ Use significant bits of the fingerprint to assign keys to child

buckets

Morton filters

2020 April 30

20 /30

Evaluation

© Evaluation

William Qian Morton filters 2020 April 30 21/30

Environment

@ AMD Ryzen Threadripper 1950X
e 2 sockets, 8 cores each, hyperthread enabled

@ 512-bit blocks
o 3-slot: 16-bit OTA, 128-bit (64 x 2) FCA, 46-slot FSA, 8-bit fp
o 7-slot: 17-bit OTA, 63-bit (21 x 3) FCA, 54-slot FSA, 8-bit fp
e 15-slot: 17-bit OTA, 63-bit (21 x 3) FCA, 54-slot FSA, 8-bit fp

@ Benchmarks: MF (this work), CF (12 bits)

William Qian Morton filters 2020 April 30 22/30

Evaluation

Error rate

Error rate roughly matches projected error rates

0‘0151 Modeled MM Actual i
]
&‘E 0.010
[
£ 0.005
- I
0.000 3 : 15

Slots per Bucket

Fig. 11 The MF implementation’s false positive rate closely matches
Eq. 5. All MFs have a block load factor of 0.95. The MF with 3-slot

buckets uses 128 bits for its FCA versus the 7- and 15-slot that use 63
and 64 bits, respectively

2020 April 30 23/30

William Qian Morton filters

William Qian

Throughput

u
=3

== s MF eeoCF v vvss-CF 4 4.RSQF

BN oW S
S o o

Insertions (MOPS)
1

==
o

0.2 0.4 0.6

Load Factor

0.8 1.0
Fig. 14 An MF’s insertion throughput is 0.94x to 20.8x that of a CF

(a) Inserts

50 ssaMF eseCF vvyss-CF 144RSQF|
g 40
=30
>
S W
g
210
e 0
0.0 0.2 0.4 0.6 0.8 1.0

Load Factor

Fig. 16 An MF’s deletion throughput is 1.1 x to 1.3x higher than that
of aCF

(b) Deletes

50 0 vvvss-CF___+44RSQF| 50— [s"aMF__ eeeCF__ vvvss-CF__ +4.RSQF
g a0 2 40]
S <]
=30 =30 1
w w
S 20 S 20 -
S 10 1 % : m
S HIII7T S a0

0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Load Factor

Fig. 12 An MF’s positive lookup throughput is about 1.6x to 2.4x
higher than a CF’s

(c) Positive lookups

Morton filters

Load Factor
Fig. 13 An MF’s negative lookup throughput is about 1.3x to 2.5x
higher than a CF’s

(d) Negative lookups

2020 April 30

24 /30

Throughput (Intel)

= MF True Neg. v vMF True Pos.
o CF True Neg. a 44 CF True Pos.
T

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

(a) Lookup Throughput

Normalized Throughput
=
o

220 ‘

< == aMF Insert vvvMF Delete
3 15F e*oCF Insert a4.CF Delete
£

=10} 4
°

g

= 05F B
£

500 - -

z 00 0.2 0.4 0.6 0.8 1.0

Load Factor
(b) Update Throughput

Fig.26 On a Skylake-X server, MF lookup throughput is on par with to
nearly 1.8 x higher than a CF’s. MF deletion throughput is about 0.90x
to 1.1x a CF’s. MF insertion throughput is 0.82 x to 4.8 x that of a CF.
Results are normalized to a CF’s lookup throughput on a Skylake-X
CPU

William Qian Morton filters 2020 April 30 25 /30

Block full array

_4_50 ' | mmmBFA Ins. ‘“'SI ' '
v eeeNo BFA Ins. v T]
& 40} vvvBFA Del. el |
= a4 aNo BFA Del. =
=30 =55 1
2 24
5 20 53
3 32
=10 =
= F1
0 I L 1 I 0 I I !
0.0 02 04 06 08 1.0 0.95 096 097 098 0.99

Load Factor Load Factor

(a) (b)

Fig. 21 MF insertion and deletion throughput with and without the
BFA enabled. b zooms in on the lower right corner of (a)

William Qian Morton filters 2020 April 30 26 /30

References

Alex D Breslow and Nuwan S Jayasena.

Morton filters: faster, space-efficient cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proceedings of the VLDB Endowment, 11(9):1041-1055, 2018.

Alex D Breslow and Nuwan S Jayasena.

Morton filters: fast, compressed sparse cuckoo filters.
The VLDB Journal, pages 1-24, 2019

@ Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom.

In Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies,
pages 75-88, 2014

William Qian Morton filters 2020 April 30 27 /30

Discussion

@ Discussion

William Qian Morton filters 2020 April 30 28 /30

Takeaways

Spatial underutilization is expensive!
This is an interesting metadata design
Biasing toward one hash function reduces cache costs

Parity tricks are really cool :)

® 6 66 o o

Morton filters are competitive with cuckoo filters, and more
memory efficient

William Qian Morton filters 2020 April 30 29/30

Discussion

Discussion

@ Is NUMA important here? How might a NUMA-aware
implementation work?

@ What concurrency overheads might exist with this solution?

@ This is published in VLDB(J), which ostensibly means it should
be somewhat database-related. What are some
implementations/optimizations that might be useful if we
wanted to implement this in a distributed memory model?

William Qian Morton filters 2020 April 30 30/30

	Background
	Morton filters
	Evaluation
	Discussion

