
Theoretically Efficient Parallel Graph
Algorithms Can Be Fast And Scalable

Julian Shun (MIT)

Joint work with Laxman Dhulipala and Guy Blelloch (CMU)
SPAA 2017 and SPAA 2018

1

• Need efficient graph processing to do analytics in a timely
fashion

2

Graphs are becoming very large

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.2 GB)

1.4 billion vertices
12.9 billion edges

(63 GB)

3.5 billion vertices
225 billion edges

(928 GB)

41 million vertices
2.4 billion edges

(9.8 GB)

Asymmetric Symmetrized

3

Large-Scale Graph Processing
• Write algorithms for large distributed clusters or

supercomputer
• Prior results on Common Crawl graph (225B edges):

Distributed Algorithms Hardware Running Time
Approx. k-core (Slota et al.) 256 x 32 cores, 16.3TB RAM 363 sec
Largest Conn. Comp. (Slota et al.) 256 x 32 cores, 16.3TB RAM 63 sec
Conn. Comp. (Stergiou et al.) 1000 x 24 cores, 128TB RAM 341 sec

• Write algorithms for limited-memory machine that stream
graphs from SSDs (TurboGraph, Mosaic, BigSparse)
• Usually (up to an order of magnitude) slower but much more cost-

efficient

What about in-memory computation
on a single machine with 1TB RAM?

4

Multicore Results

0

50

100

150

200

250

300

350

400

k-core

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Multicore (72
core, 1TB RAM
machine)

Distributed (256
x 32 cores,
16.3TB RAM)

• Results on Common Crawl graph (3.5B vertices, 225B edges)

0

50

100

150

200

250

300

350

400

Connected
Components

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Multicore (72
core, 1TB RAM
machine)

Distributed
(1000 x 24
cores, 128TB
RAM)

5

Theoretically-Efficient Practical Algorithms

O(n log n)
O(n)

O(log n)

• Want good performance under many different settings,
e.g., different machines and larger datasets

Work = number of operations
Depth = length of longest sequential dependence

Running time ≤ (Work/#processors) + Depth

• Goal: Minimize depth without increasing work over best
sequential algorithm (work-efficient)

6

Theoretically-Efficient Practical Algorithms

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

k-core Weighted BFS Single-source
shortest paths

Ti
m

e
R

el
at

iv
e

to
 W

or
k-

in
ef

fic
ie

nt

Hyperlink2012-Host (|V|=102M, |E|=3.9B) on 72 cores
Work-inefficient Work-efficient

Theoretically-efficient graph algorithms can be fast

• Theoretically-efficient parallel graph algorithms that are
practical

• Extended Ligra framework to support bucketing algorithms
• Theoretically-efficient optimizations
• Experimental evaluation on the largest publicly-available

real-world graphs, outperforming existing results

7

Contributions

Breadth-first search
Betweenness centrality
Connected components
Biconnected components
Triangle counting
k-core decomposition
Maximal independent set
Approximate set cover

Weighted BFS
Single-source shortest paths
Low-diameter decomposition
Strongly connected components
Minimum spanning tree
Maximal matching
Graph coloring

Primitives
• Frontier data-structure (VertexSubset)

• Map over vertices in a frontier (VertexMap)

• Map over out-edges of a frontier (EdgeMap)

Example: Breadth-First Search

Round 1 Round 2 Round 4

: in frontier : unvisited : visited

Round 3

Some useful graph algorithms cannot be efficiently
implemented in frontier-based frameworks

Ligra: Frontier-Based Algorithms
8

Problem: Compute the shortest path distances from s
Given: with positive integer edge weights,

1 1

2

3

2

1

1

3 1

3

2s
1

4

5

6 7

Frontier-based approach: On each step, update
distances of neighbors, place neighbors whose distance
decreased onto next frontier

Example: Weighted Breadth-First Search
9

1 1

2

3

2

1

1

3 1
s

1

4

2

5

6

3

7

Round 1

sFrontier:

Example: Weighted Breadth-First Search
10

0

∞

∞ ∞

∞
∞

∞
∞

1 1

2

3

2

1

1

3 1

Round 1

sFrontier:

Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

11

0

∞

∞ ∞

∞
∞

∞
∞

1 1

2

3

2

1

1

3 1

Round 2

1Frontier: 4

Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

12

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 2

1Frontier: 4

Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

13

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 3

2Frontier: 4 5 6

Example: Weighted Breadth-First Search

4

2

5

6

3

7

s
1

14

3

0

4

5 ∞

6

2

1

2

1 1

2

3

2

1

1

3 1

Round 3

Frontier:

Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

15

2 4 5 63Takes O(VE) work, which is
not work-efficient!

0

4

5 ∞

6

1

2

2

1 1

2

3

2

1

1

3 1
s

1

4

2

5

6

3

7

• Run Dijkstra’s algorithm, but use buckets instead of a priority queue

• Represent buckets using dynamic arrays

Sequential Weighted BFS
16

0

∞

∞ ∞

∞
∞

∞
∞

• Sequential algorithm runs in work

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

17

0

∞

∞ ∞

∞
∞

∞
∞

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

18

0

∞

∞ ∞

∞
∞

∞
∞

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

s 1 4

19

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

61

0 1 2 3 4 5

4

Sequential Weighted BFS

s
1

4

2

5

6

3

7

20

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

Sequential Weighted BFS

s
1

4

2

5

6

3

7

21

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

6

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

1 4

22

0

∞

∞ ∞

∞
3

1

∞

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

6

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

1 4

2

23

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 2 7 36

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

4

2

24

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

4

2

25

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

Sequential Weighted BFS

s
1

4

2

5

6

3

7

4

2

26

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2where D is the graph diameter

Sequential Weighted BFS

s
1

4

2

5

6

3

7

27

0

∞

∞ ∞

∞
2

1

2

This algorithm is actually parallelizable

• In each step:
1. Process all vertices in the next non-empty bucket in parallel

2. Update buckets of neighbors in parallel

The algorithm uses buckets to organize work for future iterations
Bucketing

28

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

Sequential:
process
vertices one
by one

Sequential Weighted BFS

s
1

4

2

5

6

3

7

29

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

(1) Process
vertices in
the same
bucket in
parallel

Parallel Weighted BFS

s
1

4

2

5

6

3

7

30

0

∞

∞ ∞

∞
2

1

2

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

(2) Insert
neighbors
into
buckets in
parallel7 36

Parallel Weighted BFS

s
1

4

2

5

6

3

7

4

2

3

6

5

31

0

3

4 ∞

4

2

1

2

work
depth

Resulting algorithm performs:

(assuming efficient bucketing)

1. Multiple vertices insert into the same bucket in parallel

2. Possible to make work-efficient parallel implementations?

Challenges

Goals

• Simplify expressing algorithms by using an interface

• Theoretically efficient, reusable implementation

Bucketing is useful for more than just weighted BFS

• k-core (coreness)

• Delta Stepping for Single-Source Shortest Paths

• Parallel Approximate Set Cover

Parallel Bucketing
32

Ligra

Graph

VertexSubset

Julienne

Bucketing Interface Bucketing Interface:

(1) MakeBuckets: Create bucket structure

(2) NextBucket: Return the next non-empty
bucket (as a VertexSubset)

(3) UpdateBuckets: Update buckets of a
subset of vertices

Julienne Framework

EdgeMap

VertexMap

33

Initialize bucket structure

MakeBuckets
34

0 1 2 3 4 5

1

4 2 7 3

5

6

MakeBuckets
35

Initialize bucket structure

0 1 2 3 4 5

1

4 2 7 3

5

6

Extract vertices in the next non-empty bucket

NextBucket
36

0 1 2 3 4 5

1

4 2 7 3

5

6

NextBucket
37

Extract vertices in the next non-empty bucket

0 1 2 3 4 5

2 7 3

5

6

1

4

NextBucket
38

Extract vertices in the next non-empty bucket

0 1 2 3 4 5

1

4 2 7 3

5

6

Move vertices to new buckets

UpdateBuckets
39

Input: array of (vertex, destination bucket) pairs

0 1 2 3 4 5

1

4 2 7 3

5

6

[(1,3), (7,2), (6,2)]

UpdateBuckets
40

Move vertices to new buckets

0 1 2 3 4 5

4 2

5

UpdateBuckets

7

1

3

61

7 6

41

[(1,3), (7,2), (6,2)]

Move vertices to new buckets

0 1 2 3 4 5

Can implement sequential bucketing with:

• n vertices

• T total buckets

• K calls to UpdateBuckets, where each updates the vertices in

work in

Implementation:

• Use dynamic arrays

• Update lazily

• When deleting, leave vertex in bucket

• When encountering a vertex, check if it has already been

processed

Sequential Bucketing
42

Can implement parallel bucketing with:

• n vertices

• T total buckets

• K calls to UpdateBuckets, where each updates the vertices in

• L calls to NextBucket

expected work and in

depth with high probability

Implementation:
• Use dynamic arrays, delete lazily

• NextBucket: filter out already processed vertices (uses parallel prefix

sum, which takes linear work and logarithmic depth)

Parallel Bucketing
43

UpdateBuckets:

• Use work-efficient semisort [Gu et al. 2015]

• Given k (key, value) pairs, semisorts in expected work

and depth with high probability

[(3,9), (2,1), …, (4,7), (1,1)]

[(3,9), …,(2,1), (1,1), (7,1), …,(4,7), (6,7), …]

All vertices going to bucket 1

• Compute num. vertices going to each bucket (parallel prefix sum)

• Resize buckets and copy over all vertices in parallel

Parallel Bucketing
44

a

2-core3-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices
have degree

: largest k-core that v participates in

Can efficiently compute k-cores after computing coreness

Example: k-core and Coreness
45

Sequential Peeling:

• Bucket sort vertices by degree

• Remove the minimum degree vertex, set its core number

• Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

Sequential Peeling
46

Existing parallel algorithms:

Existing parallel algorithms will scan all remaining vertices on

each round to find the ones with minimum degree

number of peeling steps done by the parallel algorithm

Parallel Peeling
47

• Remove all vertices with minimum degree from graph and

set their core numbers

Not work-efficient!

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next non-empty bucket, set core numbers

Work-Efficient Peeling
48

0 3 4 51 2

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next non-empty bucket, set core numbers

Work-Efficient Peeling
49

0 3 4 51 2

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next non-empty bucket, set core numbers

Work-Efficient Peeling
50

0 3 4 51 2

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next non-empty bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)

(2)

(1)

Work-Efficient Peeling
51

0 3 4 51 2

3. Compute the new buckets for the neighbors

(1)

(2)

(1)

Work-Efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next non-empty bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(0)

(3)

(2)

4. Update the bucket structure with the (neighbor id, dest bucket)

52

0 3 4 51 2

We process each edge at most once in each direction:

On the Common Crawl graph (225B edges), ! = 59K

On 72 cores, our code finishes in a few minutes, but the
work-inefficient algorithm does not terminate within 3 hours

buckets

calls to UpdateBuckets

calls to NextBucket

updates

Therefore the algorithm runs in:

expected work

depth with high probability

Work-Efficient Peeling Analysis

Efficient peeling using Julienne

53

• 2-9x faster than work-inefficient implementation

• Between 4-41x speedup on 72 cores over sequential peeling

• Speedups are smaller on small graphs with large !

Experiments: k-core

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

Friendster
(|V| = 121M, |E| = 3.6B, ! = 10K)

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

Hyperlink2012-Host
(|V| = 102M, |E| = 3.9B, ! = 19K)

54

• 1.8-5.2x faster than (work-inefficient) Bellman-Ford

• Competitive with hand-optimized Single-Source Shortest Paths

implementations

• On 72 cores, 18-32x self-relative speedup, 17-30x speedup over

DIMACS solver

Single-Source Shortest Paths

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

 1

 10

 100

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

Friendster

(|V| = 121M, |E| = 3.6B, ! = 10K)

Hyperlink2012-Host

(|V| = 102M, |E| = 3.9B, ! = 19K)

55

56

More Graph Algorithms
• Theoretically-efficient implementations of over a dozen

other graph algorithms
• Compression was crucial in running on 1TB machine

• Compressed edge lists using delta encoding and variable-length
codes

• Theoretically-efficient parallel primitives on compressed
edge lists
• Map, Map-Reduce, Filter, Pack, Intersect

57

Scaling to Largest Graph

3.5 billion vertices
128 billion edges

(540 GB)

3.5 billion vertices
225 billion edges

(928 GB)

Asymmetric Symmetrized

• 72-core machine with 1TB RAM

Algorithm Time
k-core 193 sec

Weighted BFS 58 sec

Biconnected components 201 sec

Strongly connected components 182 sec

Minimum spanning forest 228 sec

Maximal independent set 34 sec

Maximal matching 126 sec

Triangle counting 1470 sec

Algorithm Time
Breadth-first search 12 sec

Connected components 38 sec

Bellman-Ford 53 sec

Betweenness centrality (1 source) 40 sec

Low-diameter decomposition 18 sec

Graph coloring 174 sec

Approximate set cover 104 sec

PageRank (1 iteration) 28 sec

• Outperforms reported numbers for this graph

• For many algorithms, no published results for this graph

58

Conclusion
• Theoretically-efficient parallel algorithms can be fast and

scalable
• Can process largest graphs on a single multicore server

with 1TB of RAM

• Julienne framework available at https://github.com/jshun/ligra
• All of our theoretically-efficient graph algorithms are

available at https://github.com/ldhulipala/gbbs

https://github.com/jshun/ligra
https://github.com/ldhulipala/gbbs

