
Parallel algorithms for
butterfly computations

Jessica Shi (MIT CSAIL)
Julian Shun (MIT CSAIL)

Butterflies = 4-cycles = K2,2

What are butterflies?

Think of these as the bipartite analogue of triangles (K3)
Note: Bipartite graphs contain no triangles

Finding dense subgraphs: (not bipartite)
K-core: Repeatedly find + delete min degree vertex
Triangle peeling (triangle densest subgraph): approx by repeatedly find +
delete vertex containing min # triangles

Butterfly peeling: Repeatedly find + delete vertex containing min # of
butterflies[1]

Applications:
Link spam detection: External links to a spam page, for self-promotion in
search rankings

Finding dense bipartite subgraphs

[1] Sariyuce and Pinar (18)

Nodes = webpages, Edges = links
Web communities = dense bipartite subgraphs

Bipartitions = topics, page-creators interested in topics

Link spam detection

Topics Page-creators
Dogs wiki American kennel club

Corgi bloggerDog training tips

Professional dog grooming Cats of NYC

Main goal: Build a framework ParButterfly to count and peel
butterflies

New parallel algorithms for butterfly counting + peeling
ParButterfly framework with modular settings

Tradeoff b/w theoretical bounds + practical speedups
Comprehensive evaluation

Counting outperforms fastest seq algorithms by up to 13.6x
Peeling outperforms fastest seq algorithms by up to 10.7x

Outline

Parallelization
Shared memory
Work-span model:
• Work = total # operations
• Span = longest dependency path

Strong theoretical bounds
Work-efficient = work matches sequential time complexity

Fast in practice

Important paradigms

ParButterfly counting framework

Wedge = P2 =

How do we count butterflies? (per vertex)

Endpoints Center

Wedges with the same endpoints form butterflies:

How do we count butterflies? (per vertex)

Wedge = P2 =

wedges w/endpoints = ! = 3

butterflies on endpoints = "
= %

= 3
butterflies on each center = ! − 1 = 3 – 1 = 2

1. Retrieve wedges
2. Aggregate wedges: For each pair of endpoints, count # wedges
!

3. Compute butterfly counts:
+ "

for each endpoint
+ ! − 1 for each center

One question: How do we aggregate wedges?
(will discuss wedge retrieval after)

Counting framework so far

Method 1: Semisorting (on endpoints)

Wedge aggregating

Method 1: Semisorting (on endpoints)

Wedge aggregating

3 1 2

Method 2: Hashing (keys = endpoints)

Wedge aggregating

Method 2: Hashing (keys = endpoints)

Wedge aggregating

Method 3: Histogramming (frequencies of endpoints)

Wedge aggregating

= 3
= 2
= 1

Semisorting[1], hashing[2], and histogramming[3] are all work-
efficient

w = # of wedges
O(w) expected work, O(log w) span whp

Wedge aggregating bounds

[1] Gu, Shun, Sun, and Blelloch (15)
[2] Shun and Blelloch (14)
[3] Dhulipala, Blelloch, and Shun (17)

Each wedge produces butterfly counts per vertex

Butterfly counts from wedge counts

Another question: How do we handle butterfly counts on the same
vertex in parallel?

1. Use atomic adds
2. Aggregate counts in the same way we aggregated wedge counts

(semisorting, hashing, histogramming)

1. Retrieve wedges
2. Aggregate wedges:

Semisort, Hash, Histogram
3. Compute butterfly counts:

Semisort, Hash, Histogram, Atomic add

Counting framework so far

One more way to count wedges: Batching
(not with polylogarithmic span, but fast in practice)

Main idea: Process a subset of vertices in parallel, finding all
wedges where those vertices are endpoints

Wedge aggregating (batching)

:

Array of size |V|:

0 1 0 3

Each vertex requires linear memory à
How many vertices do we process in parallel?

Simple: Fixed # based on memory available
Wedge-aware: Dynamically choose based on how many wedges will be
processed per vertex

Wedge aggregating (batching)

1. Retrieve wedges
2. Aggregate wedges:

Semisort, Hash, Histogram, Batch (Simple + Wedge-aware)

3. Compute butterfly counts:
Semisort, Hash, Histogram, Atomic add

Counting framework so far

More questions:
How do we retrieve wedges?
How many wedges are there?

Method 1: Process wedges w/endpoints from one bipartition
(Side) [1]

It depends!

6 wedges 5 wedges

Is this optimal (min # wedges)? Not always.
[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

Regardless of which side we pick, butterfly count does not
change – only some “useful” wedges create butterflies

(Note: Butterfly count remains the same)

2 “useful” wedges = 1 butterfly

6 wedges 5 wedges

2 “useful” wedges = 1 butterfly

Method 2: Degree ranking

Retrieve wedges

Main idea:
Once we obtain all wedges with endpoint v, we do not have to consider

wedges with endpoint v again.

Method 2: Degree ranking

1. Order vertices by non-increasing degree
2. For each vertex v, only consider wedges with endpoint v that is

formed by vertices later in the ordering than v

Retrieve wedges

Method 2: Degree ranking

Retrieve wedges

3

4 1

6

2

5

7

8

3

4 1

6

2

5

7

8

2 wedges

Method 2: Degree ranking

Retrieve wedges

3

4

6

2

5

7

8

3

4

6

2

5

7

8

2 wedges

Method 2: Degree ranking

Retrieve wedges

We only processed 4 wedges!

3

4

6

5

7

8

4

6

5

7

8

wedges processed using degree order = O(⍺m)

⍺ = arboricity (O(√#))

m = # edges

Therefore: (using work-efficient options)

Degree ranking [1]

Ranking vertices = O(m) expected work, O(log m) span whp
Retrieving wedges = O(⍺m) expected work, O(log m) span whp
Counting wedges = O(⍺m) expected work, O(log m) span whp

Computing butterfly counts = O(⍺m) expected work, O(log m) span whp

Total = O(⍺m) expected work, O(log m) span whp
[1] Chiba and Nishizeki (85)

Approximate degree order
Log degree

Complement degeneracy order
Ordering given by repeatedly finding + deleting greatest degree vertex

Approximate complement degeneracy order
Complement degeneracy order, but using log degree

Other rankings

We show these are all work-efficient

1. Rank vertices:
Side, Degree, Approx Degree, Co Degeneracy, Approx Co Degeneracy

2. Retrieve wedges
3. Aggregate wedges:

Semisort, Hash, Histogram, Batch (Simple + Wedge-aware)

4. Compute butterfly counts:
Semisort, Hash, Histogram, Atomic add

Counting framework

O(⍺m) expected work, O(log m) span whp

ParButterfly peeling framework

Goal: Iteratively remove all vertices with min butterfly count

How do we peel butterflies?

Subgoal 1: A way to keep track of vertices with min butterfly count

Subgoal 2: A way to update butterfly counts after peeling vertices

Note: We’ve already done subgoal 2 in counting framework

For subgoal 1, we give a work-efficient batch-parallel Fibonacci heap which

supports batch insertions/decrease-keys (see paper).

1. Obtain butterfly counts
2. Iteratively remove vertices with min butterfly count

Use batch-parallel Fibonacci heap to find vertex set S
Count wedges with endpoints in S
• Semisort, Hash, Histogram, Batch (Simple + Wedge-aware)

Compute updated butterfly counts
• Semisort, Hash, Histogram

Peeling framework

By vertex: (⍴v = number of peeling rounds across all vertices)
O(⍴v log m + ∑ degree(v)2) expected work, O(⍴v log 2 m) span whp

By edge: (⍴e = number of peeling rounds across all edges)
O(⍴e log m + ∑(u,v) ∑u’∈N(u) min(degree(u), degree(u’))) expected

work,
O(⍴e log 2 m) span whp

Peeling framework bounds

Evaluation

m5d.24xlarge AWS EC2 instance: 48 cores (2-way hyper-
threading), 384 GiB main memory

Cilk Plus[1] work-stealing scheduler

Koblenz Network Collection (KONECT) bipartite graphs

Some modifications:
Julienne[2] instead of batch-parallel Fibonacci heap

Cannot hold all wedges in memory – batch wedge retrieval

Environment

[1] Leiserson (10)
[2] Dhulipala, Blelloch, and Shun (17)

Counting: Best aggregation method:
Batching

Counting: Best ranking method:
Approx Complement Degeneracy / Approx Degree

6.3 – 13.6x speedups over best seq implementations[1] [2]

349.6 – 5169x speedups over best parallel implementations[3]

Due to work-efficiency

7.1 – 38.5x self-relative speedups

Up to 1.7x additional speedup using a cache-optimization[4]

Butterfly counting results

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)
[2] ESCAPE: Pinar, Seshadhri, Vishal (17)
[3] PGD: Ahmed, Neville, Rossi, Duffield, and Wilke (17)
[4] Wang, Lin, Qin, Zhang, and Zhang (19)

Peeling: Best aggregation method:
Histogramming

1.3 – 30696x speedups over best seq implementations[1]

Depends heavily on peeling complexity
Largest speedup due to better work-efficiency for some graphs

Up to 10.7x self-relative speedups
No self-relative speedups if small # of vertices peeled

Butterfly peeling results

[1] Sariyuce and Pinar (18)

Conclusion

New parallel algorithms for butterfly counting/peeling
Modular ParButterfly framework w/ranking + aggregation
options
Strong theoretical bounds + high parallel scalability
Github: https://github.com/jeshi96/parbutterfly

Future work:
Cycle counting extensions
Better work bounds for butterfly peeling

Conclusion

https://github.com/jeshi96/parbutterfly

Thank you

Batch-parallel Fibonacci heap:
k insertions: O(k) amortized expected work, O(log(n+k)) span whp
k decrease-keys: O(k) amortized work, O(log2 n) span whp
delete-min: O(log n) amortized expected work, O(log n) span whp

Priority queue for butterfly counts

