linear Work Suffix		r	rc	71						
	4.	\ Į								
Construction										
CONSTRUCTION										
Paper By: Juha Kärkkäinen, Peter Sanders, and	St	efo	in E	Bur	kho	ard	t ·			
Presentation By: Bryan Chen										
	•	•	•	•	•			•	•	•
	•	•	•	•	•	•	•	•	•	•

Outline

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•.	1. N	/lọti	vạt	iọn	•	•	•	•	•	•	•	•
•	•	●.	2,F	rot	blen	n Sto	ate	eme	ent	•	•	•	•	•
•	•	●.	3 . C	Defi	niti	ons	/Se	etuj	0.	•	•	•	•	•
•	•	••	4: /	٩na	lysi	S∙	•	•	•	•	•	•	•	•
•	•	••	5: F	Refl	ecti	ion	•	•	•	•	•	•	•	•
•	•	• •	6: C	Disc	ะน่ระ	sion	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

• • • • • •

→ Suffix Trees and Arrays are relatively well-studied data structures with many applications

•	•	•	•	•	۰
۰	٠	٠	۰	۰	٠
٥	٠	٠	0	0	٠
٠	•	•	٠	٠	٠
٠	•	٠	•	•	٠
٠	٠	٠	•	٠	٠
۰	٠	٠	۰	۰	٠
٥	٠	٠	0	0	۰
•	•	•	•	•	•

- → Suffix Trees and Arrays are relatively well-studied data structures with many applications
 - Interchangeable
 - Can be converted between each other relatively quickly
 - Handle somewhat different problem scenarios

→ Examples of problems suffix arrays/trees solve

.

· · · · · ·

→ Examples of problems suffix arrays/trees solve

• Pattern searching

٠	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
٠	٠	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
٠	•	•	•	•	•
٠	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

→ Examples of problems suffix arrays/trees solve

- Pattern searching
- Longest repeated substring

.

.

→ Examples of problems suffix arrays/trees solve

- Pattern searching
- Longest repeated substring
- Longest common substring (between two strings)

0	0	0	•	•	•
٠	•	٠	٠	•	•
•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	٠	•
•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•	•	٠	•
•	•	•	•	٠	•
•	•	•	•	٠	•
•	•	•	•	•	•
•	•	•		•	•

→ Examples of problems suffix arrays/trees solve

- Pattern searching
- Longest repeated substring
- Longest common substring (between two strings)
- Longest palindrome in a string

•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	٠	•	•	•
•	•	٠	•	•	•
•	•	٠	٠	٠	•
•	0	•	٠	٠	•
٠	•	•	٠	٠	•
•	٠	•	٠	٠	•
•	•	•	•	•	•
	•	•		•	•
	•				•

→ Examples of problems suffix arrays/trees solve

- Pattern searching
- Longest repeated substring
- Longest common substring (between two strings)
- Longest palindrome in a string
- etc.!

- → Applications to real life

- -
 - • • •
 -

- → Applications to real life
 - Bioinformatics
 - DNA/RNA sequencing

- → Applications to real life
 - Bioinformatics
 - DNA/RNA sequencing
 - Data compression

- → Applications to real life
 - Bioinformatics
 - DNA/RNA sequencing
 - Data compression
 - Engineering interviews

.

 \rightarrow Given an input string of length n:

• • • • • •

→ Given an input string of length n:

aladdin (n = 7)

→ Given an input string of length n:

aladdin (n = 7)

- → Return a permutation of (0...n)
 - This permutation designates the sorted order of the string's suffixes

→ Given an input string of length n:

aladdin (n = 7)

- \rightarrow Return a permutation of (0...n)
 - This permutation designates the sorted order of the string's suffixes
 - One index (n) corresponds to the empty suffix
 - Treat the string as if it's infinitely extended by "0"s which are lexicographically earliest

→ Consider "aladdin" as before

- → Consider "aladdin" as before
- \rightarrow The list of suffixes is:
 - "" 7
 - "n" 6
 - "in" 5
 - "din" 4
 - "ddin" 3
 - "addin" 2
 - "laddin" 1
 - "aladdin" 0

- → Consider "aladdin" as before
- → The sorted list of suffixes is:
 - "" 7
 - "addin" 2
 - "aladdin" 0
 - "ddin" 3
 - "din" 4
 - "in" 5
 - "laddin" 1
 - "n" 6

- → Consider "aladdin" as before
- → The sorted list of suffixes is:
 - "" 7
 - "addin" 2
 - "aladdin" 0
 - "ddin" 3
 - "din" 4
 - "in" 5
 - "laddin" 1
 - "n" 6

→ Hence, the suffix array is (7, 2, 0, 3, 4, 5, 1, 6)

→ Goal: linear time suffix array construction algorithm

.

.

- → Goal: linear time suffix array construction algorithm
 - Allows for lack of bottleneck with regards to linear time algorithmic solutions for string matching, etc.
 - Should also be space efficient

•	٠	•	•	•	۰
۰	٠	۰	•	•	٠
0	٠	۰	٠	٠	٠
0	٠	0	٠	٠	٠
0	٠	0	٠	٠	۰
0	٠	۰	٠	٠	۰
0	٠	0	٠	٠	۰
0	٠	0	٠	٠	۰
0	•	•		•	
•	•	•			•

- → Goal: linear time suffix array construction algorithm
 - Allows for lack of bottleneck with regards to linear time algorithmic solutions for string matching, etc.
 - Should also be space efficient
- → A few choices for the alphabet

- → Goal: linear time suffix array construction algorithm
 - Allows for lack of bottleneck with regards to linear time algorithmic solutions for string matching, etc.
 - Should also be space efficient
- → A few choices for the alphabet
 - Need not be limited to only 26 or 52 letters from English alphabet
 - Example of a <u>constant alphabet</u>

- → Goal: linear time suffix array construction algorithm
 - Allows for lack of bottleneck with regards to linear time algorithmic solutions for string matching, etc.
 - Should also be space efficient
- → A few choices for the alphabet
 - Need not be limited to only 26 or 52 letters from English alphabet
 - Example of a <u>constant alphabet</u>
 - <u>Integer alphabet</u>: characters are integers from a linear-sized range

- → Goal: linear time suffix array construction algorithm
 - Allows for lack of bottleneck with regards to linear time algorithmic solutions for string matching, etc.
 - Should also be space efficient
- → A few choices for the alphabet
 - Need not be limited to only 26 or 52 letters from English alphabet
 - Example of a <u>constant alphabet</u>
 - Integer alphabet: characters are integers from a linear-sized range
 - Prior algorithm already exists, but is complicated and somewhat suboptimal

- → Restrict the alphabet to [1, n]
 - Not as limiting as it seems: can run coordinate compression over the letters to reduce an arbitrarily complex string into a linear alphabet representation
 - Ranking each letter relatively

→ Let the input be a string T of size n

- → Let the input be a string T of size n
- → Denote [i, j] and [i, j) as ranges of integers (including and excluding j, respectively)

- → Let the input be a string T of size n
- → Denote [i, j] and [i, j) as ranges of integers (including and excluding j, respectively)
 - Extend to substrings as: $T[0, n] = t_0 t_1 \dots t_{n-1}$
 - Assume $t_j = 0$ for $j \ge n$

- → Let the input be a string T of size n
- → Denote [i, j] and [i, j) as ranges of integers (including and excluding j, respectively)
 - Extend to substrings as: $T[0, n] = t_0 t_1 \dots t_{n-1}$
 - Assume $t_j = 0$ for $j \ge n$
 - Denote S_i as the suffix T[i, n)

- → Let the input be a string T of size n
- → Denote [i, j] and [i, j) as ranges of integers (including and excluding j, respectively)
 - Extend to substrings as: $T[0, n] = t_0 t_1 \dots t_{n-1}$
 - Assume $t_j = 0$ for $j \ge n$
 - Denote S_i as the suffix T[i, n)
 - Also extend to sets: for a set C, S_C is set of all S_i for i in C

- → Let the input be a string T of size n
- → Denote [i, j] and [i, j) as ranges of integers (including and excluding j, respectively)
 - Extend to substrings as: $T[0, n] = t_0 t_1 \dots t_{n-1}$
 - Assume $t_j = 0$ for $j \ge n$
 - Denote S_i as the suffix T[i, n)
 - Also extend to sets: for a set C, S_C is set of all S_i for i in C
 - Want to find the suffix array SA[0, n] of T

Analysis (Motivation)

• • • • • •

→ Prior algorithm by Farach has a half-recursive divide-and-conquer approach

.

• • • • • •
- • • •
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction

٠	0	٠	•	٠	٠
٠	0	٠	٠	٠	•
٠	٥	٠	٠	٠	•
٠	٥	•	٠	٠	•
٠	٥	٠	٠	٠	•
٠	٥	٠	٠	٠	•
٠	0	٠	٠	٠	0
 •		•	•	•	•
•	•	•	•	•	•

- · · · · · ·
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step

- • • •
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step
 - 3. Merge two suffix trees into one (pretty costly, intricate, and complex)

- • • •
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step
 - 3. Merge two suffix trees into one (pretty costly, intricate, and complex)
 - May compare two suffixes in constant time using what you already know

-
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step
 - 3. Merge two suffix trees into one (pretty costly, intricate, and complex)
 - May compare two suffixes in constant time using what you already know
 - For instance, if you know $S_3 > S_5$, then comparing S_2 and S_4 is very quick
 - When would S₂ and S₄ take a long time to compare?

-
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step
 - 3. Merge two suffix trees into one (pretty costly, intricate, and complex)
 - May compare two suffixes in constant time using what you already know
 - For instance, if you know $S_3 > S_5$, then comparing S_2 and S_4 is very quick
 - When would S₂ and S₄ take a long time to compare?
 - \circ ~ If many characters are the same between them

- • • •
- Prior algorithm by Farach has a half-recursive divide-and-conquer approach
 - 1. Construct suffix tree of suffixes starting at odd positions via reduction
 - 2. Construct suffix tree of remaining suffixes using result of first step
 - 3. Merge two suffix trees into one (pretty costly, intricate, and complex)
 - May compare two suffixes in constant time using what you already know
 - For instance, if you know $S_3 > S_5$, then comparing S_2 and S_4 is very quick
 - When would S₂ and S₄ take a long time to compare?
 - \circ If many characters are the same between them
 - After comparing t_2 and t_4 and seeing they're equal, we can simply use what we know about the remaining characters in S_3 and S_5 to deduce that $S_2 > S_4$

→ Consider using ²/₃-recursion instead of half-recursion

• • • • • •

.

.

- → Consider using ²/₃-recursion instead of half-recursion
 - 1. Construct suffix array of suffixes at indices i not divisible by 3

•	•	•	•	•	•
•	•	•	•	•	•

- 1. Construct suffix array of suffixes at indices i not divisible by 3
- 2. Construct suffix array of remaining suffixes using result of first step

- 1. Construct suffix array of suffixes at indices i not divisible by 3
- 2. Construct suffix array of remaining suffixes using result of first step
- 3. Merge two suffix arrays into one

- 1. Construct suffix array of suffixes at indices i not divisible by 3
- 2. Construct suffix array of remaining suffixes using result of first step
- 3. Merge two suffix arrays into one
- → This actually makes the last step almost trivial

- 1. Construct suffix array of suffixes at indices i not divisible by 3
- 2. Construct suffix array of remaining suffixes using result of first step
- 3. Merge two suffix arrays into one
- → This actually makes the last step almost trivial
 - Comparison-based merging is always sufficient in this case
 - Given S_i and S_j, just need to compare t_i and t_j, then compare later suffixes whose relative order we already know

- → Simple linear-time algorithm (DC3) along with example
 - Again, take T = aladdin, n = 7

- • •
 - nple
 - · · · · · ·
 -
 -
 -
 - · · · · · ·

- → Simple linear-time algorithm (DC3) along with example
 - Again, take T = aladdin, n = 7
- → For k = 0, 1, 2, define $B_k = \{i \text{ in } [0, n] \mid i \mod 3 = k\}$

• • • • • •

- → Simple linear-time algorithm (DC3) along with example
 - Again, take T = aladdin, n = 7
- → For k = 0, 1, 2, define $B_k = \{i \text{ in } [0, n] \mid i \mod 3 = k\}$
 - Let $C = B_1 U B_2$ be the set of sample positions and S_C be the set of sample suffixes

- → Simple linear-time algorithm (DC3) along with example
 - Again, take T = aladdin, n = 7
- → For k = 0, 1, 2, define $B_k = \{i \text{ in } [0, n] \mid i \mod 3 = k\}$
 - Let C = B₁ U B₂ be the set of sample positions and S_C be the set of sample suffixes
 - $B_1 = \{1, 4, 7\}, B_2 = \{2, 5\}, B_0 = \{0, 3, 6\}, C = \{1, 4, 7, 2, 5\}, S_C = \{laddin, din, ...\}$

- → Step 1: Sort Sample Suffixes

- -
 -
 -
 -
 -
 - 0 0 0 0 0
 - • • •

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂
 - R = [lad][din][000][add][in0]

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂
 - R = [lad][din][000][add][in0]
 - \circ By sorting the suffixes of this, we get the order of the sample suffixes S_c .

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂
 - R = [lad][din][000][add][in0]
 - \circ By sorting the suffixes of this, we get the order of the sample suffixes S_c
 - Radix sort "characters" of R and coordinate compress to get R'

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂
 - R = [lad][din][000][add][in0]
 - \circ $\:$ By sorting the suffixes of this, we get the order of the sample suffixes $S_{\rm C}$
 - Radix sort "characters" of R and coordinate compress to get R'
 - If all numbers here are different, then we have the order of suffixes
 - Otherwise, recursively sort suffixes of R' with DC3

- → Step 1: Sort Sample Suffixes
 - We can take advantage of our modulo 3 construction by constructing character triplets
 - For k = 1, 2, construct $R_k = [t_k t_{k+1} t_{k+2}][t_{k+3} t_{k+4} t_{k+5}]...$
 - Let R be concatenation of R₁ and R₂
 - R = [lad][din][000][add][in0]
 - \circ By sorting the suffixes of this, we get the order of the sample suffixes S_c
 - Radix sort "characters" of R and coordinate compress to get R'
 - If all numbers here are different, then we have the order of suffixes
 - Otherwise, recursively sort suffixes of R' with DC3
 - In this case, R' = (5, 3, 1, 2, 4)

- → Step 1: Sort Sample Suffixes
 - We have R' = (5, 3, 1, 2, 4)

• • • • • •

- → Step 1: Sort Sample Suffixes
 - We have R' = (5, 3, 1, 2, 4)
 - Now, assign ranks to each suffix that we know of
 - Let denote value we do not know

• • • • • •

- → Step 1: Sort Sample Suffixes
 - We have R' = (5, 3, 1, 2, 4)
 - Now, assign ranks to each suffix that we know of
 - Let denote value we do not know
 - $rank(S_i) = \cdot 52 \cdot 34 \cdot 1$

- → Step 1: Sort Sample Suffixes
 - We have R' = (5, 3, 1, 2, 4)
 - Now, assign ranks to each suffix that we know of
 - Let denote value we do not know
 - $rank(S_i) = \cdot 52 \cdot 34 \cdot 1$
 - Remember that R' is a concatenation of R₁ and R₂, not an interleaving (so it's somewhat out of order)

→ Step 2: Sort Nonsample Suffixes

• • • • • •

→ Step 2: Sort Nonsample Suffixes

- Can represent each nonsample suffix S_i as the pair (t_i, rank(S_{i+1}))
 - Takes advantage of the reuse of information discussed earlier

→ Step 2: Sort Nonsample Suffixes

- Can represent each nonsample suffix S_i as the pair $(t_i, rank(S_{i+1}))$
 - Takes advantage of the reuse of information discussed earlier
- Each suffix can then be radix sorted with at most two comparisons

- → Step 2: Sort Nonsample Suffixes
 - Can represent each nonsample suffix S_i as the pair (t_i, rank(S_{i+1}))
 - Takes advantage of the reuse of information discussed earlier
 - Each suffix can then be radix sorted with at most two comparisons
- → In this case, our nonsample suffixes are "aladdin", "ddin", and "n"

- → Step 2: Sort Nonsample Suffixes
 - Can represent each nonsample suffix S_i as the pair (t_i, rank(S_{i+1}))
 - Takes advantage of the reuse of information discussed earlier
 - Each suffix can then be radix sorted with at most two comparisons
- → In this case, our nonsample suffixes are "aladdin", "ddin", and "n"
 - We know $rank(S_i) = .52 \cdot 34 \cdot 1$
 - Thus, our pairs to sort are (a, 5), (d, 3), and (n, 1)

- → Step 2: Sort Nonsample Suffixes
 - Can represent each nonsample suffix S_i as the pair (t_i, rank(S_{i+1}))
 - Takes advantage of the reuse of information discussed earlier
 - Each suffix can then be radix sorted with at most two comparisons
- → In this case, our nonsample suffixes are "aladdin", "ddin", and "n"
 - We know $rank(S_i) = .52 \cdot 34 \cdot 1$
 - Thus, our pairs to sort are (a, 5), (d, 3), and (n, 1)
 - (a, 5) < (d, 3) < (n, 1), so $S_0 < S_3 < S_6$

→ Step 3: Merge

• • • • • •

• • • • • •

.

.

• • • • • •

• • • • • •
- → Step 3: Merge
 - Two sorted sets are merged using standard comparison merging (e.g. in mergesort)

→ Step 3: Merge

- Two sorted sets are merged using standard comparison merging (e.g. in mergesort)
- To compare S_i and S_j, there are two simple cases
 - i is 1 mod 3: use the same pairing $(t_i, rank(S_{i+1}))$ formulation to compare
 - i is 2 mod 3: use a triplet (t_i , t_{i+1} , rank(S_{i+2})) formulation to compare

- → Step 3: Merge
 - Two sorted sets are merged using standard comparison merging (e.g. in mergesort)
 - To compare S_i and S_j, there are two simple cases
 - i is 1 mod 3: use the same pairing $(t_i, rank(S_{i+1}))$ formulation to compare
 - i is 2 mod 3: use a triplet (t_i , t_{i+1} , rank(S_{i+2})) formulation to compare
 - In either case, comparison can be done in O(1), since the ranks will be welldefined in all cases

→ Step 3: Merge

- Two sorted sets are merged using standard comparison merging (e.g. in mergesort)
- To compare S_i and S_j , there are two simple cases
 - i is 1 mod 3: use the same pairing $(t_i, rank(S_{i+1}))$ formulation to compare
 - i is 2 mod 3: use a triplet (t_i , t_{i+1} , rank(S_{i+2})) formulation to compare
- In either case, comparison can be done in O(1), since the ranks will be welldefined in all cases
- In our example, a simple merge results in: (7, 2, 0, 3, 4, 5, 1, 6)
 - As we saw earlier, this is the suffix array!

· · · · · ·

→ We can apply the Master Theorem to analyze the complexity of DC3

.

.

.

- → We can apply the Master Theorem to analyze the complexity of DC3
 - At each step, everything can be done in linear time thanks to constant comparison time between suffixes

.

- → We can apply the Master Theorem to analyze the complexity of DC3
 - At each step, everything can be done in linear time thanks to constant comparison time between suffixes
 - Our recursion is bottlenecked by a call of $\frac{2}{3}$ size at each level

- We can apply the Master Theorem to analyze the complexity of DC3
 - At each step, everything can be done in linear time thanks to constant comparison time between suffixes
 - Our recursion is bottlenecked by a call of $\frac{2}{3}$ size at each level
 - T(n) = T(2n/3) + O(n)
 - Solving yields T(n) = O(n) overall

→ Sample suffixes S_C we used in DC3 is a special case of a <u>difference cover sample</u>

→ Sample suffixes S_C we used in DC3 is a special case of a <u>difference cover sample</u>

- Defined by two *sample conditions*
 - 1. Sample itself can be sorted efficiently
 - 2. The sorted sample helps in sorting the total suffix set

- → Sample suffixes S_C we used in DC3 is a special case of a <u>difference cover sample</u>
 - Defined by two *sample conditions*
 - 1. Sample itself can be sorted efficiently
 - 2. The sorted sample helps in sorting the total suffix set

→ DC3 uses a difference cover sample modulo 3

- → Sample suffixes S_C we used in DC3 is a special case of a <u>difference cover sample</u>
 - Defined by two *sample conditions*
 - 1. Sample itself can be sorted efficiently
 - 2. The sorted sample helps in sorting the total suffix set
- → DC3 uses a difference cover sample modulo 3
- → A generalized DC algorithm can use any difference cover modulo a given v
 - Can show that the time complexity of this is O(vn)

- → Why do we care about a generalization when the time complexity appears to get worse?
 - The more v increases, the longer the O(vn) takes

•	0	•	•	•	٠
٠	٠	٠	٠	٠	۰
۰	•	٠	٠	•	٠
0	•	•	•	•	•
•	•	•	•	•	•
•	•	٠	٠	•	۰
٠	۰	٠	٠	•	•
0	٠	0	0	0	•
•	•	•	•	•	۰
•	•	•	•	•	•

• • • • •

- → Why do we care about a generalization when the time complexity appears to get worse?
 - The more v increases, the longer the O(vn) takes
 - However, it also takes less space
 - DC can be implemented in O(n/ $\sqrt{(v)}$) space by reusing the output array as temporary storage

- → Why do we care about a generalization when the time complexity appears to get worse?
 - The more v increases, the longer the O(vn) takes
 - However, it also takes less space
 - DC can be implemented in O(n/ $\sqrt{(v)}$) space by reusing the output array as temporary storage
- → Another key improvement given by DC: it is <u>space-efficient</u>
 - Can also tune the parameter v to control the space- and time-efficiency tradeoff

Analysis (Other)

→ DC3 can be adapted for different models of computation as well

- Efficient in external memory usage
- Cache obliviousness
- EREW/CRCW PRAM
- etc.

TABLE III. OVERVIEW OF ADAPTATIONS FOR ADVANCED MODELS OF COMPUTATION

Model of Computation	Complexity	Alphabet
External Memory [Vitter and Shriver 1994] D disks block size B	$\mathcal{O}(\frac{n}{DB} \log_{\frac{M}{B}} \frac{n}{B}) \text{ I/Os}$ $\mathcal{O}(n \log_{\frac{M}{B}} \frac{n}{B}) \text{ internal work}$	integer
fast memory of size M	B D	
Cache Oblivious [Frigo et al. 1999]	$\mathcal{O}(\frac{n}{B}\log_{\frac{M}{B}}\frac{n}{B})$ cache faults	general
BSP [Valiant 1990]		
<i>P</i> processors <i>h</i> -relation in time $L + gh$	$\mathcal{O}(\frac{n\log n}{P} + L\log^2 P + \frac{gn\log n}{P\log(n/P)})$ time	general
$P = \mathcal{O}(n^{1-\epsilon})$ processors	$\mathcal{O}(n/P + L\log^2 P + gn/P)$ time	integer
EREW-PRAM [Jájá 1992]	$\mathcal{O}(\log^2 n)$ time and $\mathcal{O}(n \log n)$ work	general
priority-CRCW-PRAM [Jájá 1992]	$\mathcal{O}(\log^2 n)$ time and $\mathcal{O}(n)$ work (randomized)	constant

Reflection (Strengths)

→ Really well written

- Interleaving of a general description of DC3 and examples
 - Allows the reader to fully digest each step of the algorithm
- Follows DC3 up with a generalization to DC that highlights its strengths and flexibility
- Extends further to different computational models
- → Includes source code in the appendix
- → Explains all the terms it uses and refrains from using excessive amounts of jargon

Reflection (Weaknesses)

- • • •
- → Source code is somewhat hard to sift through since all the variable names are short
 - Could also have included snippets throughout the paper to further elucidate certain confusing steps
- Tables comparing with prior work are somewhat lengthy and hard to digest

Reflection (Future Work)

- → Paper mentions that suffix array is commonly augmented with the lcp array (longest common prefix)
 - Stores longest common prefix between adjacent suffixes SA_i and SA_{i+1}.
 - Note: these are not adjacent suffixes in the original string, but in the suffix array •
 - Doesn't fully explain a way to retrieve this as well, could be looked into further in a future paper
- → Further optimizations regarding memory/time could be possible

Discussion Questions

- → How would a suffix array be used to solve string matching problems? E.g. finding all occurrences of a string in another string.
- → In what ways would a lcp array be a helpful augment to the suffix array?
- → What specific kinds of problems/applications can you think of that suffix array would be helpful for?