
Linear Work Suffix Array 
Construction

Paper By: Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt

Presentation By: Bryan Chen



Outline
● 1. Motivation
● 2. Problem Statement
● 3. Definitions/Setup
● 4. Analysis
● 5. Reflection
● 6. Discussion



Motivation

➔ Suffix Trees and Arrays are relatively well-studied data structures 

with many applications



Motivation

➔ Suffix Trees and Arrays are relatively well-studied data structures 
with many applications
● Interchangeable

● Can be converted between each other relatively quickly

● Handle somewhat different problem scenarios



Motivation

➔ Examples of problems suffix arrays/trees solve



Motivation

➔ Examples of problems suffix arrays/trees solve
● Pattern searching



Motivation

➔ Examples of problems suffix arrays/trees solve
● Pattern searching

● Longest repeated substring



Motivation

➔ Examples of problems suffix arrays/trees solve
● Pattern searching

● Longest repeated substring

● Longest common substring (between two strings)



Motivation

➔ Examples of problems suffix arrays/trees solve
● Pattern searching

● Longest repeated substring

● Longest common substring (between two strings)

● Longest palindrome in a string



Motivation

➔ Examples of problems suffix arrays/trees solve
● Pattern searching

● Longest repeated substring

● Longest common substring (between two strings)

● Longest palindrome in a string

● etc.!



Motivation

➔ Applications to real life



Motivation

➔ Applications to real life
● Bioinformatics

● DNA/RNA sequencing



Motivation

➔ Applications to real life
● Bioinformatics

● DNA/RNA sequencing

● Data compression



Motivation

➔ Applications to real life
● Bioinformatics

● DNA/RNA sequencing

● Data compression

● Engineering interviews



Problem Statement

➔ Given an input string of length n:



Problem Statement

➔ Given an input string of length n:

aladdin (n = 7)



Problem Statement

➔ Given an input string of length n:

aladdin (n = 7)

➔ Return a permutation of (0...n)
● This permutation designates the sorted order of the string's suffixes



Problem Statement

➔ Given an input string of length n:

aladdin (n = 7)

➔ Return a permutation of (0...n)
● This permutation designates the sorted order of the string's suffixes
● One index (n) corresponds to the empty suffix

● Treat the string as if it's infinitely extended by "0"s which are lexicographically earliest



A Quick Example

➔ Consider "aladdin" as before



A Quick Example

➔ Consider "aladdin" as before

➔ The list of suffixes is:
● "" - 7

● "n" - 6

● "in" - 5

● "din" - 4

● "ddin" - 3

● "addin" - 2

● "laddin" - 1

● "aladdin" - 0



A Quick Example

➔ Consider "aladdin" as before

➔ The sorted list of suffixes is:
● "" - 7

● "addin" - 2

● "aladdin" - 0

● "ddin" - 3

● "din" - 4

● "in" - 5

● "laddin" - 1

● "n" - 6



A Quick Example

➔ Consider "aladdin" as before
➔ The sorted list of suffixes is:

● "" - 7
● "addin" - 2
● "aladdin" - 0
● "ddin" - 3
● "din" - 4
● "in" - 5
● "laddin" - 1
● "n" - 6

➔ Hence, the suffix array is (7, 2, 0, 3, 4, 5, 1, 6)



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm
● Allows for lack of bottleneck with regards to linear time algorithmic solutions 

for string matching, etc.

● Should also be space efficient



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm
● Allows for lack of bottleneck with regards to linear time algorithmic solutions 

for string matching, etc.

● Should also be space efficient

➔ A few choices for the alphabet



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm
● Allows for lack of bottleneck with regards to linear time algorithmic solutions 

for string matching, etc.

● Should also be space efficient

➔ A few choices for the alphabet
● Need not be limited to only 26 or 52 letters from English alphabet

● Example of a constant alphabet



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm
● Allows for lack of bottleneck with regards to linear time algorithmic solutions 

for string matching, etc.

● Should also be space efficient

➔ A few choices for the alphabet
● Need not be limited to only 26 or 52 letters from English alphabet

● Example of a constant alphabet

● Integer alphabet: characters are integers from a linear-sized range



Definitions/Setup

➔ Goal: linear time suffix array construction algorithm
● Allows for lack of bottleneck with regards to linear time algorithmic solutions 

for string matching, etc.

● Should also be space efficient

➔ A few choices for the alphabet
● Need not be limited to only 26 or 52 letters from English alphabet

● Example of a constant alphabet

● Integer alphabet: characters are integers from a linear-sized range
● Prior algorithm already exists, but is complicated and somewhat suboptimal



Definitions/Setup

➔ Restrict the alphabet to [1, n]
● Not as limiting as it seems: can run coordinate compression over the letters 

to reduce an arbitrarily complex string into a linear alphabet representation
● Ranking each letter relatively



Definitions/Setup

➔ Let the input be a string T of size n



Definitions/Setup

➔ Let the input be a string T of size n

➔ Denote [i, j] and [i, j) as ranges of integers (including and excluding 

j, respectively)



Definitions/Setup

➔ Let the input be a string T of size n

➔ Denote [i, j] and [i, j) as ranges of integers (including and excluding 

j, respectively)
● Extend to substrings as: T[0, n) = t0t1...tn-1

● Assume tj = 0 for j ≥ n



Definitions/Setup

➔ Let the input be a string T of size n

➔ Denote [i, j] and [i, j) as ranges of integers (including and excluding 

j, respectively)
● Extend to substrings as: T[0, n) = t0t1...tn-1

● Assume tj = 0 for j ≥ n

● Denote Si as the suffix T[i, n)



Definitions/Setup

➔ Let the input be a string T of size n

➔ Denote [i, j] and [i, j) as ranges of integers (including and excluding 

j, respectively)
● Extend to substrings as: T[0, n) = t0t1...tn-1

● Assume tj = 0 for j ≥ n

● Denote Si as the suffix T[i, n)

● Also extend to sets: for a set C, SC is set of all Si for i in C



Definitions/Setup

➔ Let the input be a string T of size n

➔ Denote [i, j] and [i, j) as ranges of integers (including and excluding 

j, respectively)
● Extend to substrings as: T[0, n) = t0t1...tn-1

● Assume tj = 0 for j ≥ n

● Denote Si as the suffix T[i, n)

● Also extend to sets: for a set C, SC is set of all Si for i in C

● Want to find the suffix array SA[0, n] of T



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step

● 3. Merge two suffix trees into one (pretty costly, intricate, and complex)



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step

● 3. Merge two suffix trees into one (pretty costly, intricate, and complex)

● May compare two suffixes in constant time using what you already know



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step

● 3. Merge two suffix trees into one (pretty costly, intricate, and complex)

● May compare two suffixes in constant time using what you already know
● For instance, if you know S3 > S5, then comparing S2 and S4 is very quick

● When would S2 and S4 take a long time to compare?



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step

● 3. Merge two suffix trees into one (pretty costly, intricate, and complex)

● May compare two suffixes in constant time using what you already know
● For instance, if you know S3 > S5, then comparing S2 and S4 is very quick

● When would S2 and S4 take a long time to compare?

○ If many characters are the same between them



Analysis (Motivation)

➔ Prior algorithm by Farach has a half-recursive divide-and-conquer 

approach
● 1. Construct suffix tree of suffixes starting at odd positions via reduction

● 2. Construct suffix tree of remaining suffixes using result of first step

● 3. Merge two suffix trees into one (pretty costly, intricate, and complex)

● May compare two suffixes in constant time using what you already know
● For instance, if you know S3 > S5, then comparing S2 and S4 is very quick

● When would S2 and S4 take a long time to compare?

○ If many characters are the same between them

○ After comparing t2 and t4 and seeing they're equal, we can simply use what we know 

about the remaining characters in S3 and S5 to deduce that S2 > S4



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion
● 1. Construct suffix array of suffixes at indices i not divisible by 3



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion
● 1. Construct suffix array of suffixes at indices i not divisible by 3

● 2. Construct suffix array of remaining suffixes using result of first step



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion
● 1. Construct suffix array of suffixes at indices i not divisible by 3

● 2. Construct suffix array of remaining suffixes using result of first step

● 3. Merge two suffix arrays into one



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion
● 1. Construct suffix array of suffixes at indices i not divisible by 3

● 2. Construct suffix array of remaining suffixes using result of first step

● 3. Merge two suffix arrays into one

➔ This actually makes the last step almost trivial



Analysis (Motivation)

➔ Consider using ⅔-recursion instead of half-recursion
● 1. Construct suffix array of suffixes at indices i not divisible by 3

● 2. Construct suffix array of remaining suffixes using result of first step

● 3. Merge two suffix arrays into one

➔ This actually makes the last step almost trivial
● Comparison-based merging is always sufficient in this case

● Given Si and Sj, just need to compare ti and tj, then compare later suffixes whose relative 

order we already know



Analysis (DC3)

➔ Simple linear-time algorithm (DC3) along with example
● Again, take T = aladdin, n = 7



Analysis (DC3)

➔ Simple linear-time algorithm (DC3) along with example
● Again, take T = aladdin, n = 7

➔ For k = 0, 1, 2, define Bk = {i in [0, n] | i mod 3 = k}



Analysis (DC3)

➔ Simple linear-time algorithm (DC3) along with example
● Again, take T = aladdin, n = 7

➔ For k = 0, 1, 2, define Bk = {i in [0, n] | i mod 3 = k}
● Let C = B1 U B2 be the set of sample positions and SC be the set of sample 

suffixes



Analysis (DC3)

➔ Simple linear-time algorithm (DC3) along with example
● Again, take T = aladdin, n = 7

➔ For k = 0, 1, 2, define Bk = {i in [0, n] | i mod 3 = k}
● Let C = B1 U B2 be the set of sample positions and SC be the set of sample 

suffixes
● B1 = {1, 4, 7}, B2 = {2, 5}, B0 = {0, 3, 6}, C = {1, 4, 7, 2, 5}, SC = {laddin, din, …}



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets

● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...

● Let R be concatenation of R1 and R2



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets

● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...

● Let R be concatenation of R1 and R2

● R = [lad][din][000][add][in0]



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets

● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...

● Let R be concatenation of R1 and R2

● R = [lad][din][000][add][in0]

○ By sorting the suffixes of this, we get the order of the sample suffixes SC



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets

● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...

● Let R be concatenation of R1 and R2

● R = [lad][din][000][add][in0]

○ By sorting the suffixes of this, we get the order of the sample suffixes SC

● Radix sort "characters" of R and coordinate compress to get R'



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets
● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...
● Let R be concatenation of R1 and R2

● R = [lad][din][000][add][in0]
○ By sorting the suffixes of this, we get the order of the sample suffixes SC

● Radix sort "characters" of R and coordinate compress to get R'
● If all numbers here are different, then we have the order of suffixes
● Otherwise, recursively sort suffixes of R' with DC3



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We can take advantage of our modulo 3 construction by constructing 

character triplets
● For k = 1, 2, construct Rk = [tktk+1tk+2][tk+3tk+4tk+5]...
● Let R be concatenation of R1 and R2

● R = [lad][din][000][add][in0]
○ By sorting the suffixes of this, we get the order of the sample suffixes SC

● Radix sort "characters" of R and coordinate compress to get R'
● If all numbers here are different, then we have the order of suffixes
● Otherwise, recursively sort suffixes of R' with DC3

● In this case, R' = (5, 3, 1, 2, 4)



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We have R' = (5, 3, 1, 2, 4)



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We have R' = (5, 3, 1, 2, 4)

● Now, assign ranks to each suffix that we know of

● Let • denote value we do not know



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We have R' = (5, 3, 1, 2, 4)

● Now, assign ranks to each suffix that we know of

● Let • denote value we do not know

● rank(Si) = • 5 2 • 3 4 • 1



Analysis (DC3)

➔ Step 1: Sort Sample Suffixes
● We have R' = (5, 3, 1, 2, 4)

● Now, assign ranks to each suffix that we know of

● Let • denote value we do not know

● rank(Si) = • 5 2 • 3 4 • 1
● Remember that R' is a concatenation of R1 and R2, not an interleaving (so it's somewhat out of 

order)



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes
● Can represent each nonsample suffix Si as the pair (ti, rank(Si+1))

● Takes advantage of the reuse of information discussed earlier



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes
● Can represent each nonsample suffix Si as the pair (ti, rank(Si+1))

● Takes advantage of the reuse of information discussed earlier

● Each suffix can then be radix sorted with at most two comparisons



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes
● Can represent each nonsample suffix Si as the pair (ti, rank(Si+1))

● Takes advantage of the reuse of information discussed earlier

● Each suffix can then be radix sorted with at most two comparisons

➔ In this case, our nonsample suffixes are "aladdin", "ddin", and "n"



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes
● Can represent each nonsample suffix Si as the pair (ti, rank(Si+1))

● Takes advantage of the reuse of information discussed earlier

● Each suffix can then be radix sorted with at most two comparisons

➔ In this case, our nonsample suffixes are "aladdin", "ddin", and "n"
● We know rank(Si) = • 5 2 • 3 4 • 1

● Thus, our pairs to sort are (a, 5), (d, 3), and (n, 1)



Analysis (DC3)

➔ Step 2: Sort Nonsample Suffixes
● Can represent each nonsample suffix Si as the pair (ti, rank(Si+1))

● Takes advantage of the reuse of information discussed earlier

● Each suffix can then be radix sorted with at most two comparisons

➔ In this case, our nonsample suffixes are "aladdin", "ddin", and "n"
● We know rank(Si) = • 5 2 • 3 4 • 1

● Thus, our pairs to sort are (a, 5), (d, 3), and (n, 1)

● (a, 5) < (d, 3) < (n, 1), so S0 < S3 < S6



Analysis (DC3)

➔ Step 3: Merge



Analysis (DC3)

➔ Step 3: Merge
● Two sorted sets are merged using standard comparison merging (e.g. in 

mergesort)



Analysis (DC3)

➔ Step 3: Merge
● Two sorted sets are merged using standard comparison merging (e.g. in 

mergesort)

● To compare Si and Sj, there are two simple cases
● i is 1 mod 3: use the same pairing (ti, rank(Si+1)) formulation to compare

● i is 2 mod 3: use a triplet (ti, ti+1, rank(Si+2)) formulation to compare



Analysis (DC3)

➔ Step 3: Merge
● Two sorted sets are merged using standard comparison merging (e.g. in 

mergesort)
● To compare Si and Sj, there are two simple cases

● i is 1 mod 3: use the same pairing (ti, rank(Si+1)) formulation to compare
● i is 2 mod 3: use a triplet (ti, ti+1, rank(Si+2)) formulation to compare

● In either case, comparison can be done in O(1), since the ranks will be well-
defined in all cases



Analysis (DC3)

➔ Step 3: Merge
● Two sorted sets are merged using standard comparison merging (e.g. in 

mergesort)
● To compare Si and Sj, there are two simple cases

● i is 1 mod 3: use the same pairing (ti, rank(Si+1)) formulation to compare
● i is 2 mod 3: use a triplet (ti, ti+1, rank(Si+2)) formulation to compare

● In either case, comparison can be done in O(1), since the ranks will be well-
defined in all cases

● In our example, a simple merge results in: (7, 2, 0, 3, 4, 5, 1, 6)
● As we saw earlier, this is the suffix array!



Analysis (DC3)

➔ We can apply the Master Theorem to analyze the complexity of 

DC3



Analysis (DC3)

➔ We can apply the Master Theorem to analyze the complexity of 

DC3
● At each step, everything can be done in linear time thanks to constant 

comparison time between suffixes



Analysis (DC3)

➔ We can apply the Master Theorem to analyze the complexity of 
DC3
● At each step, everything can be done in linear time thanks to constant 

comparison time between suffixes
● Our recursion is bottlenecked by a call of ⅔ size at each level



Analysis (DC3)

➔ We can apply the Master Theorem to analyze the complexity of 
DC3
● At each step, everything can be done in linear time thanks to constant 

comparison time between suffixes
● Our recursion is bottlenecked by a call of ⅔ size at each level
● T(n) = T(2n/3) + O(n)

● Solving yields T(n) = O(n) overall



Analysis (Generalization)

➔ Sample suffixes SC we used in DC3 is a special case of a 

difference cover sample



Analysis (Generalization)

➔ Sample suffixes SC we used in DC3 is a special case of a 

difference cover sample
● Defined by two sample conditions

● 1. Sample itself can be sorted efficiently

● 2. The sorted sample helps in sorting the total suffix set



Analysis (Generalization)

➔ Sample suffixes SC we used in DC3 is a special case of a 

difference cover sample
● Defined by two sample conditions

● 1. Sample itself can be sorted efficiently

● 2. The sorted sample helps in sorting the total suffix set

➔ DC3 uses a difference cover sample modulo 3



Analysis (Generalization)

➔ Sample suffixes SC we used in DC3 is a special case of a 
difference cover sample
● Defined by two sample conditions

● 1. Sample itself can be sorted efficiently
● 2. The sorted sample helps in sorting the total suffix set

➔ DC3 uses a difference cover sample modulo 3
➔ A generalized DC algorithm can use any difference cover modulo a 

given v
● Can show that the time complexity of this is O(vn)



Analysis (Generalization)

➔ Why do we care about a generalization when the time complexity 
appears to get worse?
● The more v increases, the longer the O(vn) takes



Analysis (Generalization)

➔ Why do we care about a generalization when the time complexity 
appears to get worse?
● The more v increases, the longer the O(vn) takes
● However, it also takes less space

● DC can be implemented in O(n/√(v)) space by reusing the output array as temporary storage



Analysis (Generalization)

➔ Why do we care about a generalization when the time complexity 
appears to get worse?
● The more v increases, the longer the O(vn) takes
● However, it also takes less space

● DC can be implemented in O(n/√(v)) space by reusing the output array as temporary storage

➔ Another key improvement given by DC: it is space-efficient
● Can also tune the parameter v to control the space- and time-efficiency 

tradeoff



Analysis (Other)

➔ DC3 can be adapted for different models of computation as well
● Efficient in external memory usage
● Cache obliviousness
● EREW/CRCW PRAM
● etc.



Reflection (Strengths)

➔ Really well written
● Interleaving of a general description of DC3 and examples

● Allows the reader to fully digest each step of the algorithm

● Follows DC3 up with a generalization to DC that highlights its strengths and 

flexibility

● Extends further to different computational models

➔ Includes source code in the appendix

➔ Explains all the terms it uses and refrains from using excessive 

amounts of jargon



Reflection (Weaknesses)

➔ Source code is somewhat hard to sift through since all the variable 

names are short
● Could also have included snippets throughout the paper to further elucidate 

certain confusing steps

➔ Tables comparing with prior work are somewhat lengthy and hard 

to digest



Reflection (Future Work)

➔ Paper mentions that suffix array is commonly augmented with the 

lcp array (longest common prefix)
● Stores longest common prefix between adjacent suffixes SAi and SAi+1

● Note: these are not adjacent suffixes in the original string, but in the suffix array

● Doesn't fully explain a way to retrieve this as well, could be looked into 

further in a future paper

➔ Further optimizations regarding memory/time could be possible



Discussion Questions

➔ How would a suffix array be used to solve string matching 
problems? E.g. finding all occurrences of a string in another string.

➔ In what ways would a lcp array be a helpful augment to the suffix 
array?

➔ What specific kinds of problems/applications can you think of that 
suffix array would be helpful for?


