A Simple Parallel Cartesian Tree
Algorithm and its Application to
Parallel Suffix Tree Construction

Julian Shun and Guy Blelloch

Motivation for Suffix Trees

* To efficiently search for patterns in large texts
— Example: Bioinformatic applications

e Suffix trees allow us to do this

— O(N) work for construction with O(M) work for search,
where N is the text size and M is the pattern size

* In contrast, Knuth-Morris-Pratt’s algorithm takes O(M) work
for construction and O(N) work for search

— Other supported operations: longest common
substring, maximal repeats, longest palindrome, etc.

— There are sequential implementations but no parallel
ones that are both theoretically and practically
efficient

 We developed a new (practical) linear-work
parallel algorithm and analyzed it experimentally

Outline: Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

—————————————————
e
-
-
-
-

(interleave SA and LCPs)

————————
-
-~
~

N~~
-~
-
———————————————

-
-
-
-
-
p—
—

Suffix tree

(label edges,
insert into hash table)

There are standard techniques
to perform all of these steps in
parallel, except for building the
multiway Cartesian Tree

Original String

Suffix Arrays and

Longest-common-prefixes (LCPs)

mississippi$

Suffixes
mississippiS
ississippiS
ssissippiS
sissippiS
issippiS
ssippiS
SippiS
ippiS
pPpiS
piS

Suffix array

—
O
O
wn

Sort suffixes

S \
IS/

ippis

issippiS

ississippiS :
MississippiS

piS

pPpiS

sippis —

sissippiS
SSippiS
ssissippiS

\ 4

W R N Ok, OO0 &, +—» O

Suffix Trees

* String = mississippiS
e Store suffixes in a patricia tree (trie with one-child nodes

collapsed)
5 (O s

‘ i P ‘

Si
‘ mississippi$ ‘
i$/ ‘ ‘

ssi pis
® Ppi$ () O ssippi$ Sippid
‘ ‘ ‘ ‘ pPpi$
ppi$
ppi$ ssippi$ ‘ ‘ ‘ ‘
O O

Multiway Cartesian Tree

* Maintains heap property * Components of same value
* Inorder traversal gives back the sequence treated as one “cluster”

Sequence = 1 2 0 4 1 1 3 1 2

Suffix Tree History

Sequential O(n) work algorithms based on

incrementally adding suffixes [\Weiner /3,
McCreight 76, Ukkonen ‘95]

Parallel O(n) work algorithms very complicated,
no implementations [Sahinalp-Vishkin '94,
Hariharan ‘94, Farach-Muthukrishnan "96]

Parallel algorithms used in practice are not
Inear-work

Practical linear-work parallel algorithm?
« Simple O(n) work parallel algorithm
« Fastest algorithm in practice

More Related Work
 Cartesian trees

— Sequential O(n) work stack-based algorithm

— Work-optimal parallel algorithm for Cartesian tree on
distinct values (Berkman, Schieber and Vishkin 1993)

e Suffix arrays to suffix trees
— Sequential O(n) work algorithms

— Two parallel algorithms for converting a suffix array
into a suffix tree (lliopoulos and Rytter 2004)

e Both require O(n log n) work
e Our contributions

— A parallel algorithm for converting suffix arrays to
suffix trees, which requires only O(n) work and is
based on multiway Cartesian trees

Suffix Array/LCPs = Suffix Tree

* Interleave suffix lengths and LCP values
* Build a multiway Cartesian tree on that
* This returns the suffix tree!

Suffixlengths 1, 2, 5, 8 11, 12, 3, 4, 6, 9, 7, 10
LCP values o, 1, 1, 4, O, o 1, O, 2, 1, 3,

Interleaved

String = mississippiS = Contracted internal
node with LCP value

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0,12,0,3,1,4,0,6,2,9,1, 7,3, 10
(interleaved)

Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

(interleave SA and LCPs)

——————
- -~

~ -
Sso -
- -
. o
T —— -

(label edges,
insert into hash table)

Suffix tree

Karkkainen and Sander’s algorithm
O(n) work and O(log?n) span

Cartesian Tree (in parallel)

Divide-and-conquer approach

Merge spines of subtrees (represented as lists) together using
standard techniques

SA + LCPs =
1,0,2,0,5,1,8,1,11,4,12,0,3)0,4,1,6,0,9,2,8,1, 7, 3, 10

-——
——--
~

Left subtree Merged tree Right subtree

Cartesian Tree (in parallel)

! 0
i
i Left spine f
i (right tree) @
! “ Right spine
| (right tree)
Left spine — 3
|
* F i /
\ ! 5
Left spine 6 Right spine | Left spine \
(left tree) / v\ (left tree) i (right tree)
I
7 f 8
i
/ i /N
| 9
I
Left subtree i Right subtree

Mergéd tree

Cartesian Tree (in parallel)

* Input: Array A[1...N]

Build(A[1...n]){ Merge(tl, t2){
if n <2 return; R-spine = rightmost branch of t1;
else in parallel do: L-spine = leftmost branch of t2;

t1 = Build(A[1...n/2]); use a parallel merge algorithm
t2 = Build(A[(n/2)+1...n]); on R-spine and L-spine;
Merge(tl, t2);)

String = mississippiS

O = Leaf node with suffix length O = |Internal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0, 12, 0,
(interleaved)

3,1,4,0,6,2,9,1,7, 3,10

00000000000

String = mississippiS

O = Leaf node with suffix length O = |Internal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0, 12, 0,
(interleaved)

3,1,4,0,6,2,9,1,7, 3,10

o e © 5

String = mississippiS

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0, 12, 0,
(interleaved)

3,1,4,0,6,2,9,1,7, 3,10

R PA T

String = mississippiS

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0,12,0/3,1,4,0,6,2,9,1, 7,3, 10
(interleaved)

ONONONONCECEONMONMONONOMNT

String = mississippiS

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0,12,0/3,1,4,0,6,2,9,1, 7,3, 10
(interleaved)

String = mississippiS

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0,12,0,3,1,4,0,6,2,9,1, 7,3, 10

—————
-
-
,’
’

-
-y
.....
-
-~
~
~
~
~
S

h- =
n-,-::: ———————————————
227 \ A TmeSagrmmmmmmmmmmmmadmmm—————TT
’ S

V:

) \

| I

\ U

\

\~~
-~
N

String = mississippiS = Contracted internal
node with LCP value

O = Leaf node with suffix length O = |nternal node with LCP value

SA+LCPs =1,0,2,1,5,1,8,4,11,0,12,0,3,1,4,0,6,2,9,1, 7,3, 10
(interleaved)

Cartesian Tree (in parallel)

* Almost all merged nodes
will never be processed again

(they are “protected”)

0

!
|
i Left spine f
: (right tree) “

i Right spine
_- Charge to merge =---y.====x2

P e X (right tree)
ranny ol Left spine —» 3 \
\‘ __-i -------- \\\ ,,’
P i TTTe==s A =L
i ~~~‘~
. - 5 1 N\\
Left ,9;5rne 6 m&m S Leefg e \ \\
(left tree) 7 \ (left tre|3 ' gt tree) \‘
i rotecté® |
\ :
) 5 8
/ !
|
S SSEee L i —
Left subtree N Right subtree

Mergéd tree

Cartesian Tree - Complexity bounds

* Observation: All nodes processed, Spine portion
not processed

except for two, become protected
\\ 4

during a merge.
: Ch .
* Charge the processing of those two arge lomeree
nodes to the merge itself (there are
only 2n-1 merges). Other nodes pay for
themselves and then get protected.

— It is important that when one spine has
been completely processed, the merge LN
does not process the rest of the other
spine, otherwise we get O(n log n) work

* Therefore, the merges contribute a
total of O(n) work to the algorithm

o~

Spine portions in
here processed

mmm———
V4

Nodes in here are processed
and pay for themselves

Cartesian Tree - Complexity bounds

Maintain binary search trees for

each spine so that the endpoint of Spine portion
the merge can be found efficiently not processed

(in O(log n) work and span) g A
A parallel merge takes linear work Charge tomerge ‘
and O(log n) span ¥

Merges contribute O(n) work, and o
searches and binary tree N\
maintenance in the spine cost L

O(log n) work per merge I\ A

— W(n) =2W(n/2) + O(log n) = O(n)
Span: O(log n) levels of recursion,

and merges + binary search tree
operations take O(Iog n) Span Nodes in here are processed

— S(n) =S(n/2) + O(log n) = O(log? n) and pay for themselves

Spine portions in
here processed

TTTmem——es

Multiway Cartesian Tree - Complexity bounds

e To obtain multiway Cartesian tree, Spine portion
use parallel tree contraction to hot proceSSfd
contract adjacent nodes with the Charge to merge " :‘
same value ,_ne"

This can be done in O(n) work and (I ,'___/___i
O(log n) span, which is within our (/ \
bounds .

~ -

We have a O(n) work and O(log? n)
span algorithm for constructing a
multiway Cartesian tree

Spine portions in
here processed

TTEEE———

Nodes in here are processed
and pay for themselves

—
—_ O © 00~ O Ui Wi =

ND

1

—
= Wt

-
Ut

—
O 00~ O

20
21
22

Parallel Cartesian Tree Code

struct node { nodex parent; int value; };

void merge (nodex left , nodex right) {
nodex head ;
if (left —>value > right-—>value) {
head = left; left = left —>parent;}

else {head = right; right= right —>parent;}

while (1) {

if (left = NULL) {head—parent = right; break;}
if (right = NULL) {head—>parent = left; break;}

if (left —>value > right-—>value) {

head—>parent = left; left = left —parent;}
else {head—>parent = right; right = right —parent;}

head = head—>parent;}}

void cartesianTree (nodex Nodes, int n) {
Wf (1 « 2) return;
cilk_spawn cartesianTree(Nodes,n/2);
cartesianTree (Nodes+n /2 ,n—n/2);
cilk_sywe:
merge (Nodes+n/2—1,Nodes4+n /2); }

Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Karkkainen and Sander’s algorithm
J O(n) work and O(log?n) span

(interleave SA and LCPs)

Our parallel merging algorithm

Multiway Cartesian tree 0(n) work and O(log?n) span

Parallel hash table
O(n) work and O(logn) span

(label edges,
insert into hash table)

Suffix tree

LA A A

WIKIPEDIA
The Free Encyclopedia

Experimental Setup

Implementations in Cilk Plus
40-core Intel Nehalem machine
 |nputs: real-world and artificial texts

> GRAGAGGNEGQERC

CAGCTCARANTTIGAAATCT GGATCUMICGGIpes

ACGIGHEGCOTAGHE GAGRTCCOIGGARCGGIAC IS
GRACGGGEGCHTACTGAGRECCARGGARCGGARY
GGGRGAGAGCCCCGRHRGGTAGGACACCCAGECO N
GEGCGGGITCOTTCCGAGRTCCARGGAACGGGACIT
GGREGCGGGTITCOMTCCGAGIMICCURGGAAMGOGALT

AT GG CCTTCCGAGTTCCORGGARCGGGALGEE
hCOTDACTACAT GGATAACCGEGGRANTRCRAGHGCN
CO% GGAACGGGACGCCATAGAGGGRGAGAGECCC
GGCGGGITCHPTCCGAGEICCATGGAACGOGACIE
A GO COOE GGAACGGGACGCCARAGAGGGRGAGH

L AT GAAATOT GGARCOTTCGGGGCCCGAGER

h GGG GAGAGCCCEGTAE GGECGGAMCCCAGEDS

A n G c

G GAGCCCCGRARGARCOa

Q«néomﬁx*‘éener-a‘#orﬂcom 341 183

Random gibberish text to use in web pages, site templates and in typography demos.
Get rid of Lorem Ipsum forever. A tool for web designers who want to save time.

New! Are you already coding the HTML for your web design ? Select HTML output from the box bellow.
Plain text ~||Please select a language ~|| Go

You are viewing dummy text in English

New the her nor case that lady paid read. Invitation friendship travelling eat everything the out two. Shy
you who scarcely expenses debating hastened resolved. Always polite moment on is warmth spirit it to
hearts. Downs those still witty an balls so chief so. Moment an little remain no up lively no. Way brought
may off our regular country towards adapted cheered.

Add you viewing ten equally believe put. Separate families my on drawings do oh offended strictly
elegance. Perceive jointure be mistress by jennings properly. An admiration at he discovered difficulty
continuing. We in building removing possible suitable friendly on. Nay middleton him admitting consulted
and behaviour son household. Recurred advanced he oh together entrance speedily suitable. Ready tried
gay state fat could boy its among shall.

Do in laughter securing smallest sensible no mr hastened. As perhaps proceed in in brandon of limited
unknown greatly. Distrusts fulfilled happiness unwilling as explained of difficult. No landlord of peculiar
ladyship attended if contempt ecstatic. Loud wish made on is am as hard. Court so avoid in plate hence.
Of received mr breeding concerns peculiar securing landlord. Spot to many it four bred soon well to. Or
am promotion in no departure abilities. Whatever landlord yourself at by pleasure of children be.

Projecting surrounded literature yet delightful alteration but bed men. Open are from long why cold. If
must snug by upon sang loud left. As me do preference entreaties compliment motionless ye literature.
Day behaviour explained law remainder. Produce can cousins account you pasture. Peculiar delicate an
pleasant provided do perceive.

Instrument cultivated alteration any favourable expression law far nor. Both new like tore but year. An
from mean on with when sing pain. Oh to as principles devonshire companions unsatiable an delightful.

28

Suffix Tree Experiments

« Compared to best sequential algorithm [Kuriz '99]

Speedup relative to Kurtz Self-relative speedup

50

—etext99 25 P

40

—rfc 20

30
—w3c2 15

/
/
20 / _—
T e
OM —random . /

0 10 20 30 40 0 10 20 30 40
Number of cores Number of cores

« Speedup varies from 5.4x to 50x on 40 cores
« Self-relative speedup 23x to 26x on 40 cores

29

Suffix Tree on Human Genome (=3 GB)

_ _ Not linear-work
 Differences due to various factors

« Shared memory vs. distributed memory
 Algorithmic differences

30

Conclusions

* Developed an O(n) work and O(log? n) span
algorithm for parallel multiway Cartesian Tree
construction

* This allows us to transform a suffix array into a
suffix tree in parallel

* Experiments show that our implementations
outperform existing ones and achieve good
speedup

Project Presentation

* Project presentations on Tuesday

— 5 minutes per team member, and 5 minutes for
Q&A

— Problem and motivation

— Prior work

— Your technical contributions

— Challenges encountered

— Experimental results

— Work breakdown among team members

* Project report due on Tuesday

Course Summary

Congratulations on making it through all the
lectures!

Lots of exciting research going on in algorithm
and performance engineering

Look out for relevant seminars

— MIT Fast Code Seminar:
http://fast-code.csail.mit.edu
(Mondays 2-3pm ET via Zoom)

— CSAIL seminars mailing list: seminars@csail.mit.edu

Relevant conferences: SPAA, APOCS, PPoPP,
ALENEX, ESA, SEA, PODC, IPDPS, SC, VLDB,
SIGMOD, and more

http://fast-code.csail.mit.edu/
mailto:seminars@csail.mit.edu

