
Direction-
Optimizing 
Breadth-First 
Search
Authors: Scott Beamer, Krste Asanović, David Patterson

Rahul Yesantharao

02/11/2020



Context
• Graphs can represent an immense range of problem classes, but it is 

hard to write high-performance graph algorithms in the most general 
sense

• By focusing on specific types of graphs, we can write much higher 
performance graph algorithms than would otherwise be possible

• Breadth-First Search is a fundamental but important piece of many 
graph-processing programs

• One specific application domain for BFS is the analysis of social 
networks, which are often represented by very large graphs



Social Network Graphs
• Low-diameter: Graphs that have small diameters, relative to the 

graph size

 Diameter: Maximum (shortest) distance between any two vertices

 Small-World: The diameter grows logarithmically in the number of nodes

• Scale-Free: The degree distribution follows a power law

 There are a few nodes with very high degrees, and many more with 
geometrically smaller degrees

• Difficult to parallelize because the small diameter makes it difficult 
to partition them equitably, and the geometric degree distribution 
causes the work per node to vary drastically



Breadth-First Search
• Common algorithm for exploring a graph

• Executed in a stepwise fashion

• At each step, maintains a “frontier” of nodes that will be explored at 
that step

 Starts with the single source vertex in the frontier

• At each step, expands the “frontier” by traversing all of the “frontier 
edges” (edges with at least one end-vertex in the frontier) and adding 
all the unvisited vertices to the next frontier

• This traversal can happen in two directions



Breadth-First Search



Top-Down BFS Step



Bottom-Up BFS Step



BFS on Social Network Graphs
• Because of the structure of social network graphs, BFS has a 

distinctive execution pattern.

• Low-Diameter: The BFS completes in a relatively small number of 
steps, and thus visits a large fraction of vertices on each of the first 
few steps

• Scale-Free: Some vertices will have a geometrically larger degree 
than others, so the frontier growth will be significantly faster than 
implied by the average degree

• Overall, the frontier size grows and then decreases exponentially 
within the first few steps



BFS Work
• The majority of the work comes from exploring all of the frontier 

edges

• In social-network graphs, after the first few steps, most of these 
explorations are wasted

• They can be placed in four categories

 Valid parent: A neighbor from the previous frontier

 Peer: A neighbor currently in the same frontier

 Failed child: A new neighbor that has already been visited by another node 
in the same frontier

 Claimed child: A successful edge traversal



BFS Work



Hybrid BFS Approach
• The conventional top-down approach results in the edge distribution 

from before, which is very wasteful after a few steps

• The bottom-up approach by itself would be very poor in the first few 
steps, because the number of unclaimed vertices is huge, and so we 
would be exploring a massive number of edges searching for very few 
frontier vertices

• Thus, we combine the two approaches, and use the appropriate 
exploration method at each step

• Different frontier representations

 Top-Down: FIFO Queue

 Bottom-Up: Bitmap



Hybrid BFS Approach
• In general, the first few steps are faster with top-down, the intermediate steps 

are better with bottom-up, and the final steps are better with top-down (the 
tail of the geometric distribution)

• Choosing when to switch is a key decision rule that this paper introduces



Hybrid BFS Approach
• 𝑛𝑓: number of vertices on the frontier

• 𝑛: number of vertices

• 𝑚𝑓: number of frontier edges

• 𝑚𝑢: number of edges from unexplored 
vertices

• 𝛼, 𝛽: tunable parameters



Tuning Parameters
• Parameter tuning is done by 

sweeping the two parameters over a 
wide range of possible values for 
several test graphs and choosing the 
values that result in the best average 
and minimum performance values

• 𝛼 = 14, 𝛽 = 24



Related Work
• Bader and Madduri: Parallel BFS that parallelizes across vertices 

and edges, specifically on an MTA-2 (shared memory, no caching)

• Agarwal, et al: Optimize memory locality and memory traffic by 
pinning threads to specific sockets and minimizing messages 
between sockets

• Hong, et al: Use both CPUs and GPUs, with a decision rule to switch 
between them (always top-down) and specific data structures to 
optimize locality in each case.

• Merrill, et al: Optimize GPU performance by using prefix sums and 
bitmaps; considered the fastest shared memory BFS

• Chhugani, et al: Many optimizations to memory usage, locality, and 
socket communications



Experimental Results



Experimental Results



Experimental Results



Parallelization



Thoughts
• Strengths

 Achieves speedup over many existing BFS implementations

 Is empirically competitive with the offline optimal oracle

 Focuses on reducing the total number of edges traversed rather than 
speeding up conventional BFS

 Manages to parallelize the algorithm pretty well

• Weaknesses

 Does not focus too heavily on tuning its parameters, using a simple grid 
search over a rather small set of training data

 Does not use a particularly sophisticated decision rule for switching



Discussion
• What are ideas for extending this algorithm?

• How can we extend the decision rules?

• What other features seem relevant to the switching thresholds?


