Direction-
Optimizing
Breadth-First
Search

Authors: Scott Beamer, Krste Asanovi¢, David Patterson
Rahul Yesantharao
02/11/2020

Context

- Graphs can represent an immense range of problem classes, but it 1s
hard to write high-performance graph algorithms in the most general
sense

- By focusing on specific types of graphs, we can write much higher
performance graph algorithms than would otherwise be possible

- Breadth-First Search is a fundamental but important piece of many
graph-processing programs

- One specific application domain for BFS is the analysis of social
networks, which are often represented by very large graphs

Social Network Graphs

- Low-diameter: Graphs that have small diameters, relative to the
graph size
* Diameter: Maximum (shortest) distance between any two vertices
« Small-World: The diameter grows logarithmically in the number of nodes

- Scale-Free: The degree distribution follows a power law

* There are a few nodes with very high degrees, and many more with
geometrically smaller degrees

- Difficult to parallelize because the small diameter makes it difficult
to partition them equitably, and the geometric degree distribution
causes the work per node to vary drastically

Breadth-First Search

- Common algorithm for exploring a graph
- Executed in a stepwise fashion

- At each step, maintains a “frontier” of nodes that will be explored at
that step

« Starts with the single source vertex in the frontier

- At each step, expands the “frontier” by traversing all of the “frontier
edges” (edges with at least one end-vertex in the frontier) and adding
all the unvisited vertices to the next frontier

- This traversal can happen 1in two directions

Breadth-First Search

function breadth-first-search{vertices. source)

frontier +— {source}

next +— 1}

parents +— [-1.-1,...-1]

while frontier # {} do
top-down-step(vertices, frontier, next, parents)
frontier +— next
next + {}

end while

return ftree

Fig. 1. Conventional BFS Algonthm

Top-Down BFS Step

function top-down-step{vertices, frontier, next, parents)
for v £ frontier do
for n £ neighbors[v] do
if parents[n] = -1 then
parents[n] + v
next +— next U {n}
end if
end for
end for

Fig. 1. Single Swep of Top-Down Approach

Bottom-Up BF'S Step

function bottom-up-step(vertices, frontier, next, parents)
for v = vertices do
if parents[v] = -1 then
for n £ neighbors|v] do
if n £ frontier then
parents[v] +— n
next +— next U {v}
break
end if
end for
end if
end for

Fig. 5. 3Single Step of Bottom-Up Approach

BFS on Social Network Graphs

- Because of the structure of social network graphs, BFS has a
distinctive execution pattern.

- Low-Diameter: The BFS completes in a relatively small number of
steps, and thus visits a large fraction of vertices on each of the first
few steps

- Scale-Free: Some vertices will have a geometrically larger degree
than others, so the frontier growth will be significantly faster than
1mplied by the average degree

- Overall, the frontier size grows and then decreases exponentially
within the first few steps

BFS Work

- The majority of the work comes from exploring all of the frontier
edges

- In social-network graphs, after the first few steps, most of these
explorations are wasted

- They can be placed in four categories
- Valid parent: A neighbor from the previous frontier
* Peer: A neighbor currently in the same frontier

 Failed child: A new neighbor that has already been visited by another node
in the same frontier

+ Claimed child: A successful edge traversal

BFS Work

308 .
Claimed Child
2 5E Failed Child |
Pesar
p 2.08 Walid Parent
2
& 1.58 .
‘W
=
1.08 E
0.56 4
0 5 6

Shep

Fig. 3. Breakdown of edges in the frontier for a sample search on kronz?
{Kronecker generated 128M vertices with ZB undirected edges) on the 16-core
system.

100%
g% b
60% F
A0% 1 EEE cClaimed Child
1 Failed Child
20% 0 reer
B aid Parent

Step

Fig. 4. Breakdown of edges in the frontier for a sample search on kronz?
{ Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.

Hybrid BFS Approach

- The conventional top-down approach results in the edge distribution
from before, which 1s very wasteful after a few steps

- The bottom-up approach by itself would be very poor in the first few
steps, because the number of unclaimed vertices is huge, and so we
would be exploring a massive number of edges searching for very few
frontier vertices

- Thus, we combine the two approaches, and use the appropriate
exploration method at each step

- Different frontier representations
* Top-Down: FIFO Queue
* Bottom-Up: Bitmap

Hybrid BFS Approach

- In general, the first few steps are faster with top-down, the intermediate steps
are better with bottom-up, and the final steps are better with top-down (the
tail of the geometric distribution)

- Choosing when to switch is a key decision rule that this paper introduces

*—8 Top-down |_
o0 Bottom-up |

m
&

un B

Fig. 6. Sample search on kron27 (Kronecker 128M vertices with 2B
undirected edges) on the 16-core system.

Hybrid BFS Approach

Ng: number of vertices on the frontier

n: number of vertices

me = Cop & growing
f TR -

[convert)
5 He < -E'ET& shrinking

ms: number of frontier edges

(convert)
- m,: number of edges from unexplored
vertices me=Crg ne=Cpr
- a, f: tunable parameters Fig. 7. Control algorithm for hybrid algorithm. (convert) indicates the frontier

must be converted from a gueue to a bitmap or vice versa between the
steps. Growing and shrinking refer o the frontier size. and although they
are typically redundant, their inclusion yields a speedup of about 10/%.

My, m

— = Crpg E={:ET

1005

=
#

Tuning Parameters

Peak Performance
=
F

i
. . Q0 erdos2s e ljournal
- Parameter tuning is done by - 00 ma2s = okt ||
sweeping the two parameters over a D
wide range of possible values for 2353
N i3
several test graphs and choosing the
. Fig. 8. Performance of fvkbrid-hewristic on each graph relative o its best on
values that result in the best average that graph for the range of o examined.
and minimum performance values] A PRSP
.'_’_ o e =

-a=14,0 = 24

2
&

Peak Performance
=
F

hollywood

erdos25 = ljournal

A0% rmat3s S orkut

O Q facebook wikipedia

*—8 flickr M= twitter
zn% 1 i al all L L
w' 1wt 1wt 1w 1wt 1w w0t

i)

Fig. 9. Performance of frvbrigd-heuristic on each graph relative w its best on
that graph for the range of 4 examined.

Related Work

- Bader and Madduri: Parallel BFS that parallelizes across vertices
and edges, specifically on an MTA-2 (shared memory, no caching)

- Agarwal, et al: Optimize memory locality and memory traffic by
pinning threads to specific sockets and minimizing messages
between sockets

- Hong, et al: Use both CPUs and GPUs, with a decision rule to switch
between them (always top-down) and specific data structures to
optimize locality in each case.

- Merrill, et al: Optimize GPU performance by using prefix sums and
bitmaps; considered the fastest shared memory BFS

- Chhugani, et al: Many optimizations to memory usage, locality, and
socket communications

Experimental Results

g I L I | I] I] Ll I
S - T B Topdown ||
I Top-down-check
?_- Bonom-up -
6} I Hybrid-heuristic |-
s M R B Hybrid-oracle
D
a
& 4r 7
3._
2-
1_

kron25 erdos25 rmat25 facebook flickr hollywood ljournal orkut wikipedia twitter

Fig. 10. Speedups on the 16-core machine relative to Top-down-check.

Experimental Results

kron_ random. rmat.

System 2500-logn20 | 2Mv.128Me | 2Mv.128Me
GPU results from Merrill et al. [20]

Single-GPU 1.25 2.40 2.60

Quad-GPU 3.10 7.40 8.30
Hybrid-heuristic results on multicore

8-core 776 6.75 6.14

16-core 1238 12.61 10.45

40-core 8.89 9.01 7.14

TABLE IV

Hybrid-heuristic ON MULTICORE SYSTEMS IN THIS STUDY COMPARED TO
GPU RESULTS FROM MERRILL ET AL. [20] (1x GTEPS).

rmat-8 | rmat-32 | erdos-8 | erdos-32 | orkut | facebook

Prior 750 1100 590 1010 | 2050 920

8-core 1580 4630 850 2250 | 4690 1360
TABLE III

PERFORMANCE IN MTEPS OF Hybrid-heuristic ON THE 8-CORE SYSTEM
COMPARED TO CHHUGANI ET AL. [10]. SYNTHETIC GRAPHS ARE ALL
16M VERTICES, AND THE LAST NUMBER IN THE NAME IS THE DEGREE.

Experimental Results

100%

=
(=]

80%

=
(2]

60%

Fraction of Edge Examinations
o
[=}]

40%
0.4
0.2 20%
0.0 = 0 o e a—— N
E P 3 & E T
-3 B £ : 2 g
= o o = = =
z = - =
B eottom-up Redundant L Transition Skipped [w, Calculation B sottom-up
I Top-down Redundant B Bottom-up Checked 1 conversion I Top-down
1 Bsottom-up Skipped Bl 1o0-down Checked

Fig. 12. Breakdown of time spent per search.
Fig. 11. Breakdown of edge examinations.

Parallelization

G000

3000

4000

3000

Search Rate (MTEPS)

Pl
=
=)
=
T

1000F

1 10 20 40 a0
Threads

Fig. 14. Parallel scaling of Hyvbrid-hewrnistic on the 40-core syvsiem for an
BEMAT graph with 16M vertices and varied degree.

Thoughts

- Strengths
+ Achieves speedup over many existing BF'S implementations
* Is empirically competitive with the offline optimal oracle

* Focuses on reducing the total number of edges traversed rather than
speeding up conventional BFS

- Manages to parallelize the algorithm pretty well

- Weaknesses

* Does not focus too heavily on tuning its parameters, using a simple grid
search over a rather small set of training data

* Does not use a particularly sophisticated decision rule for switching

Discussion

- What are 1deas for extending this algorithm?
- How can we extend the decision rules?

- What other features seem relevant to the switching thresholds?

