Exploring Betweenness
Centrality

By: Shwetark Patel

Basic Terminology

e O_ is the number of shortest paths from s to t
e O_(v)is the number of shortest paths from s to t

containing v

Basic Terminology (Part 2)
G5 (V)

Oy (V) =

Basic Terminology (Part 3)

Ce(v)= Y du(v). CB(3) =7

s#EVF#LEV

Problem

Calculate betweenness centrality for each vertex
Assumptions: Graph is undirected and connected
Previous algorithm: O(n®) time and O(n?) space

New algorithm: O(nm) time for unweighted graphs
and O(nm + n?log(n)) time on weighted graphs
New algorithm: O(n + m) space

Step 1

e Need to calculate O

e Run Djikstra’s shortest path algorithm starting from s.
Let dist[i] be the shortest path distance from s to i.

e Create the “Djikstra DAG”
o Connect two vertices u and v with a directed edge if
dist[u] + W]u, v] = dist[v]

Djikstra DAG

Djikstra starting at
node 1

dist[1] = 0
dist[2] = 3
dist[3] = 4

dist[4] = 5

Djikstra DAG

Djikstra DAG

e Any path along the Djikstra DAG is a shortest path
e All shortest paths are paths on the Djikstra DAG
e Ve can use dynamic programming along the DAG

to determine number of shortest paths to any node
from the source

Djikstra DAG Dynamic Programming

Let dp[v] represent the number of shortest paths to v
from the source

Let P be the set of all nodes that have a directed
edge in the Djikstra DAG to a node v

Base case is dp[source] = 1

dp[v] = Z dplu]

ueP
Calculate dp values in topological order

Dijikstra DP

B LN =

WoNag 4o A

O

O

1] + dp[2]
] +dp[4

Step 1 Recap

We can now compute o, for all pairs (s, t) through
starting Djikstra’s algorithm from all vertices

Running Djikstra once takes O(Vlog(V) + E) time
Running Djikstra V times takes O(V?log(V) + VE) time
Complexity of our algorithm so far is O(V4log(V) + VE)

for weighted graphs and O(VE) for unweighted graphs
(since we can just use BFS instead of Djikstra)

Next steps

e From here, if we store our o, values in an array and
then naively compute all o () values, our algorithm still
takes O(V?) time and O(VZ) space

e Smarter method: Another DP along the Djikstra DAG

e In order to compute C,(V) for each vertex, let’s first
solve the simple case where the Djikstra DAG is a

tree

Step 2
® bu(v) =) &u(v).

e If we can compute these values quickly then we'd be
set, since these lead directly to betweenness centrality

e Let's see how to quickly compute these values if the
Dijikstra DAG is a tree

Case where Djikstra DAG is tree

e \We can use DAG dynamic programming again, given
a fixed source s as well as the Djikstra DAG
e Letdp[v]= 0. (V)

e If Ris the set of vertices that v has an outgoing edge
to, then:

dp[v] = Z | + dp[t]
IER
e (alculate dp values in reverse topological order

dp[4] = 0

dp[5] = 0

dp[6] = 0

dp[2] = (1 + dp[4]) +
2(1 + dp[5])

dp[3] = (1 + dp[6])

dp[1] =

(

1

(1 +dp[2]) +
(1 + dp[3])
5

General case for Djikstra DAG

o Letdp[vl=¢_, (v)

e If Ris the set of vertices that v has an outgoing edge
to, then:

dplv] = Y1 +dpl[t]) X

IER 0'5,

Osv

e (alculate dp values in reverse topological order

Say we've computed
dp[3], dp[4], dp[5] and
want to compute dp[2]

c15(4)
dp[4] = 615(4) -

Gis
c15(3)
= 615(3) - o5
dp[s] 013 * 035

015

dp[2] = 0,,(2) +0,,(2) + 0,,(2)
5,5(2) = c15(2)

Oi5

_ O %025 Op2 * (035 + 04s)

G5 O15

dp[3] _ 013 * 035 G4 * 045

015 dp[4] N G5
15(2)= C12 *Cp5 _ O12 * (035 + O4s)
Ois O15
015(2) =2 X dp[3] +—' X dpl4]

013 Cl4

dplo) = ¥ (1 + dplt)) X~

ER O g7

dp[2] = 5,,(2) + 5,,(2) + 5,4(2)

dp[2] = 5,,(2) + 5,,(2) + 5,4(2)

dp[2] = 5,,(2) + 5,,(2) + 5,4(2)

=212 o dp[3] + 1) + 22 x (dp[4] + 1)
013 Cl4

Wrapping up

e Can easily compute betweenness centrality for each
vertex v now by adding up dp[v] over all sources

(except when v is the source).
e Should divide all betweenness centrality values by 2 at

the end

e Space required is O(V + E) and time required is
O(V?4log(V) + VE) for weighted graphs and O(VE) for
unweighted graphs.

Wrapping up

év] —0,v e V;

// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w «+— S;

for v € P[w] do §[v] < 6[v] + g4 U[w] - (1 + d[w));

if w # s then Cglw] «— Cglw| + d[w];

end

Experimental Results

e Groundbreaking algorithm -- Led to significant
speedups

Experimental Results

1000
800 |-
600 [
w
©
[=
(o]
3
(2]
400
200
standard algorithm —&—
our algorithm —=—
. shortest paths only ---%---

0 1000 2000 3000 4000 5000 6000
number of vertices

Importance

e Betweenness centrality is a very important metric for a

network
e This algorithm significantly improved existing methods,

which had to go through all triples (s, t, v) to compute
O (V)
st

Discussion

e Combining the results of this paper and
“Direction-Optimizing Breadth First Search” on social
networks

e Thinking about time complexities more
o Previous: O(n?) space and O(n?) time
o Now: O(n + m) space and O(nm) time

