
Exploring Betweenness
Centrality

By: Shwetark Patel

Basic Terminology

● σst is the number of shortest paths from s to t
● σst(v) is the number of shortest paths from s to t

containing v

1
2

3
4

σ14 = ?

σ14(3) = ?

Basic Terminology (Part 2)

1
2

3
4

δ14(3) = ?

σ14(3) = 1

σ14 = 2
δ14(3) = 0.5

Basic Terminology (Part 3)

1
2

3
4

CB(3) = ?

δ14(3) = 0.5
δ12(3) = 0
δ24(3) = 0
CB(3) = 0.5

Problem

● Calculate betweenness centrality for each vertex

● Assumptions: Graph is undirected and connected

● Previous algorithm: O(n3) time and O(n2) space

● New algorithm: O(nm) time for unweighted graphs
and O(nm + n2log(n)) time on weighted graphs

● New algorithm: O(n + m) space

Step 1

● Need to calculate σst
● Run Djikstra’s shortest path algorithm starting from s.

Let dist[i] be the shortest path distance from s to i.
● Create the “Djikstra DAG”

○ Connect two vertices u and v with a directed edge if
dist[u] + W[u, v] = dist[v]

Djikstra DAG

1
2

3
4

3 5

4 1

5

1

Djikstra starting at
node 1

dist[1] = 0

dist[2] = 3

dist[3] = 4

dist[4] = 5

Djikstra DAG

1
2

3
4

Djikstra DAG

● Any path along the Djikstra DAG is a shortest path
● All shortest paths are paths on the Djikstra DAG
● We can use dynamic programming along the DAG

to determine number of shortest paths to any node
from the source

Djikstra DAG Dynamic Programming

● dp[v] =

● Let P be the set of all nodes that have a directed
edge in the Djikstra DAG to a node v

● Base case is dp[source] = 1

● Calculate dp values in topological order

● Let dp[v] represent the number of shortest paths to v
from the source

Djikstra DP

1
2

3
4

dp[1] = 1

dp[2] = 1
dp[3] = dp[1] + dp[2]
 = 2
dp[4] = dp[1] + dp[4]
 = 3

Step 1 Recap

● We can now compute σst for all pairs (s, t) through
starting Djikstra’s algorithm from all vertices

● Running Djikstra once takes O(Vlog(V) + E) time
● Running Djikstra V times takes O(V2log(V) + VE) time

● Complexity of our algorithm so far is O(V2log(V) + VE)
for weighted graphs and O(VE) for unweighted graphs
(since we can just use BFS instead of Djikstra)

Next steps

● From here, if we store our σst values in an array and
then naively compute all δst(v) values, our algorithm still
takes O(V3) time and O(V2) space

● Smarter method: Another DP along the Djikstra DAG

● In order to compute CB(V) for each vertex, let’s first
solve the simple case where the Djikstra DAG is a
tree

Step 2

●

● If we can compute these values quickly then we’d be
set, since these lead directly to betweenness centrality

● Let’s see how to quickly compute these values if the
Djikstra DAG is a tree

Case where Djikstra DAG is tree

● We can use DAG dynamic programming again, given
a fixed source s as well as the Djikstra DAG

● Let dp[v] =

● If R is the set of vertices that v has an outgoing edge
to, then:

● Calculate dp values in reverse topological order

1
2

3

dp[4] = 0
dp[5] = 0
dp[6] = 0
dp[2] = (1 + dp[4]) +
 (1 + dp[5])
 = 2

4

6

5 dp[3] = (1 + dp[6])
 = 1
dp[1] = (1 + dp[2]) +
 (1 + dp[3])
 = 5

General case for Djikstra DAG

● Let dp[v] =

● If R is the set of vertices that v has an outgoing edge
to, then:

● Calculate dp values in reverse topological order

1
2

3
4 5

Say we’ve computed
dp[3], dp[4], dp[5] and
want to compute dp[2]

1
2

3
4 5

dp[3] = δ15(3) =

dp[4] = δ15(4) =

1
2

3
4 5

dp[2] = δ13(2) + δ14(2) + δ15(2)

δ15(2) =

1
2

3
4 5

dp[3] dp[4]

δ15(2)

1
2

3
4 5

dp[2] = δ13(2) + δ14(2) + δ15(2)

δ13(2) =

δ14(2) =

1
2

3
4 5

dp[2] = δ13(2) + δ14(2) + δ15(2)

δ13(2) =

δ14(2) =

1
2

3
4 5

dp[2] = δ13(2) + δ14(2) + δ15(2)

Wrapping up

● Can easily compute betweenness centrality for each
vertex v now by adding up dp[v] over all sources
(except when v is the source).

● Should divide all betweenness centrality values by 2 at
the end

● Space required is O(V + E) and time required is
O(V2log(V) + VE) for weighted graphs and O(VE) for
unweighted graphs.

Wrapping up

Experimental Results

● Groundbreaking algorithm -- Led to significant
speedups

Experimental Results

Importance

● Betweenness centrality is a very important metric for a
network

● This algorithm significantly improved existing methods,
which had to go through all triples (s, t, v) to compute
δst(v)

Discussion

● Combining the results of this paper and
“Direction-Optimizing Breadth First Search” on social
networks

● Thinking about time complexities more
○ Previous: O(n2) space and O(n3) time
○ Now: O(n + m) space and O(nm) time

