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Basic Terminology

● σst is the number of shortest paths from s to t
● σst(v) is the number of shortest paths from s to t 

containing v
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σ14 = ?

σ14(3) = ?



Basic Terminology (Part 2)
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δ14(3) = ?

σ14(3) = 1

σ14 = 2
δ14(3) = 0.5



Basic Terminology (Part 3)
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CB(3) = ?

δ14(3) = 0.5
δ12(3) = 0
δ24(3) = 0
CB(3) = 0.5



Problem

● Calculate betweenness centrality for each vertex

● Assumptions: Graph is undirected and connected

● Previous algorithm: O(n3) time and O(n2) space

● New algorithm: O(nm) time for unweighted graphs 
and O(nm + n2log(n)) time on weighted graphs

● New algorithm: O(n + m) space



Step 1

● Need to calculate σst 
● Run Djikstra’s shortest path algorithm starting from s. 

Let dist[i] be the shortest path distance from s to i. 
● Create the “Djikstra DAG”

○ Connect two vertices u and v with a directed edge if 
dist[u] + W[u, v] = dist[v]



Djikstra DAG
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Djikstra starting at 
node 1

dist[1] = 0

dist[2] = 3

dist[3] = 4

dist[4] = 5



Djikstra DAG
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Djikstra DAG

● Any path along the Djikstra DAG is a shortest path
● All shortest paths are paths on the Djikstra DAG
● We can use dynamic programming along the DAG 

to determine number of shortest paths to any node 
from the source 



Djikstra DAG Dynamic Programming

● dp[v] =  

● Let P be the set of all nodes that have a directed 
edge in the Djikstra DAG to a node v

● Base case is dp[source] = 1

● Calculate dp values in topological order

● Let dp[v] represent the number of shortest paths to v 
from the source



Djikstra DP
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dp[1] = 1

dp[2] = 1
dp[3] = dp[1] + dp[2]   
         = 2
dp[4] = dp[1] + dp[4]
         = 3



Step 1 Recap

● We can now compute σst for all pairs (s, t) through 
starting Djikstra’s algorithm from all vertices

● Running Djikstra once takes O(Vlog(V) + E) time
● Running Djikstra V times takes O(V2log(V) + VE) time

● Complexity of our algorithm so far is O(V2log(V) + VE) 
for weighted graphs and O(VE) for unweighted graphs 
(since we can just use BFS instead of Djikstra)



Next steps

● From here, if we store our σst values in an array and 
then naively compute all δst(v) values, our algorithm still 
takes O(V3) time and O(V2) space

● Smarter method: Another DP along the Djikstra DAG

● In order to compute CB(V) for each vertex, let’s first 
solve the simple case where the Djikstra DAG is a 
tree 



Step 2

●

● If we can compute these values quickly then we’d be 
set, since these lead directly to betweenness centrality 

● Let’s see how to quickly compute these values if the 
Djikstra DAG is a tree



Case where Djikstra DAG is tree

● We can use DAG dynamic programming again, given 
a fixed source s as well as the Djikstra DAG

● Let dp[v] = 

● If R is the set of vertices that v has an outgoing edge 
to, then: 

● Calculate dp values in reverse topological order
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dp[4] = 0
dp[5] = 0
dp[6] = 0
dp[2] = (1 + dp[4]) + 
             (1 + dp[5])
         = 2

4
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5 dp[3] = (1 + dp[6])
         = 1
dp[1] = (1 + dp[2]) + 
             (1 + dp[3])
         = 5



General case for Djikstra DAG

● Let dp[v] = 

● If R is the set of vertices that v has an outgoing edge 
to, then: 

● Calculate dp values in reverse topological order
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Say we’ve computed 
dp[3], dp[4], dp[5] and 
want to compute dp[2]
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dp[3] = δ15(3) =     

dp[4] = δ15(4) =     
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dp[2] = δ13(2) + δ14(2) + δ15(2) 

δ15(2) =      
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dp[3]  dp[4]  

δ15(2)
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dp[2] = δ13(2) + δ14(2) + δ15(2) 

δ13(2) = 

δ14(2) = 
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dp[2] = δ13(2) + δ14(2) + δ15(2) 

δ13(2) = 

δ14(2) = 
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dp[2] = δ13(2) + δ14(2) + δ15(2) 



Wrapping up

● Can easily compute betweenness centrality for each 
vertex v now by adding up dp[v] over all sources 
(except when v is the source).  

● Should divide all betweenness centrality values by 2 at 
the end

● Space required is O(V + E) and time required is 
O(V2log(V) + VE) for weighted graphs and O(VE) for 
unweighted graphs.



Wrapping up



Experimental Results

● Groundbreaking algorithm -- Led to significant 
speedups



Experimental Results



Importance

● Betweenness centrality is a very important metric for a 
network 

● This algorithm significantly improved existing methods, 
which had to go through all triples (s, t, v) to compute 
δst(v) 



Discussion

● Combining the results of this paper and 
“Direction-Optimizing Breadth First Search” on social 
networks

● Thinking about time complexities more
○ Previous: O(n2) space and O(n3) time
○ Now: O(n + m) space and O(nm) time


