
The More the Merrier: 
Efficient Multi-Source 

Graph Traversal

Presenter: Sai Sameer Pusapaty

Then et al.



Background
● Lot of information held via graphs

○ Social networks

○ Road Networks

○ Comp bio

● Graph analytics to comprehend relationships

○ Often requires multiple graph traversals (BFS)

○ Graph centrality

○ All pairs shortest paths

● Usually do a BFS from each vertex on the graph



Small World Assumption
● “Distance between any two vertices is very small compared to size of the graph”

● “Number of vertices discovered in each iteration grows rapidly”

● I.e. only a few iterations of BFS to traverse the entire graph

● This assumption is not unreasonable:

○ 92% of Facebook users are connected by only 5 steps

○ (“Four Degrees of Separation”, L. Backstrom et al. 2012)

○ 4.74 (2012), 3.57 (2016)

● Wikis, WWW, gene networks, electrical power grids



BFS (Single Traversal)
● Single source

● Keep track of unexplored neighbors

● Maintain levels of exploration

○ Max num of levels = diameter

○ Small-world assumption

● Optimizations:

○ Parallel BFS

○ Bottom up approach (direction optimized)



Motivation for MS-BFS
● Goal is to optimize execution of multiple independent BFSs

○ Common graph analytics would benefit from this

● Related work just on improving single execution of BFS

● Compared to old method of repetitive BFSs traversals…
○ We want better memory locality since the same vertices are discovered and 

explored -> tldr; fewer cache misses

○ We want better resource management as the # of BFSs increase and # of cores 

increase

○ We want to avoid synchronization due to its overhead



Overview of MS-BFS 
● Very similar to a normal BFS

● Each vertex maintains seen, holds BFSs that have 

already visited it

● Visit contains a tuple of the vertex and BFS that is 

currently visiting it -- unioned together

● Neighbors not seen before are explored

● Main Idea: BFS that share common sub-traversal 

travel together



An Example



Improving with Bit Operations

● In practice set unions and differences are expensive

● Use bit operations instead

● seen is a bit-field for each vertex v, such that if the ith 

bit is 1, that means the ith BFS has already seen v

● Similarly visit and visitNext are set up s.t. If the ith bit is 

1, then v still needs to be explored by the ith BFS

● Set operations become binary operations

● Store these three bitfields in arrays for constant time 

access -> visit_v = visit[v]



An Example



Aggregated Neighbor Processing

● Still some bad memory access

● seen has a lot of random accesses which lead to cache 

misses

● ANP first collects all the vertices needed to be explored 

in the next level (lines 8-11)

● seen is updated in batch

● Improvement include

○ Fewer calls to seen (once per discovered vertex)

○ Thus, fewer iterations of BFS computation

○ Memory access is sequential

● Direction Optimized Traversal, prefetching, max 

sharing heuristic 



Experimental Results



More Results



Relative Speedups



Strengths

● Outperforms T-BFS and DO-BFS on a single core (main goal)

● Scales well with an increasing number of cores

● Generally scales well even as the number of BFSs increase

● Paper provides further improvements which experimentally did well

● Works well on real life graphs

● Can be parallelized naturally (no immediate barriers -- kind of)



Weaknesses
● Some limitations if the number of BFSs increase past register width

○ Paper proposes some alternatives

○ Parallelizing, Using multiple registers, running many instances

○ Performance/Memory tradeoff

● Graph set is limited to those that follow the small world assumption

● Memory overhead with large graphs to store BFS states at each vertex

● Provides the benefit to vertices that multiple BFSs access on the same level

○ No memory if the vertices have already been accessed before

○ Potential for further decrease in computation



Future Work
● Look at parallelizing at the frontier level

● Adapting MS-BFS for distributed environments and GPUs

● Apply it to other graph analytics algorithms

● Testing MS-BFS on various graph types

● New heuristics to maximize sharing



Discussion

● What are some other strengths and weaknesses you see in MS-BFS?

● Can MS-BFS generalize to other graphs besides small-world graphs?

● Do you have your own thoughts for improvement of future extensions?


