The More the Merrier:
Efficient Multi-Source

Graph Traversal

Then et al.

Presenter: Sai Sameer Pusapaty

Background

e Lot of information held via graphs

o Social networks
o Road Networks
o Comp bio

® Graph analytics to comprehend relationships
o Often requires multiple graph traversals (BFS)
o Graph centrality
o All pairs shortest paths

e Usually do a BFS from each vertex on the graph

° Q ~~Address

® ;0 o

Output
Transaction Q P N
r 4

o g

1 A3
G ¢
4 .
. £ onoceo
° Lo Tozs1a

Small World Assumption

“Distance between any two vertices is very small compared to size of the graph”
“Number of vertices discovered in each iteration grows rapidly”
l.e. only a few iterations of BFS to traverse the entire graph
This assumption is not unreasonable:
O 92% of Facebook users are connected by only 5 steps
o (“Four Degrees of Separation”, L. Backstrom et al. 2012)
o 4.74(2012), 3.57 (2016)
Wikis, WWW, gene networks, electrical power grids

BFS (Single Traversal)

Single source

e Keep track of unexplored neighbors . :‘isc‘:;ing 1 Texthook BES algorithr.
)]) nput: G, s
e Maintain levels of exploration 2 seen < {s}
o Max num of levels = diameter 3 wisit + {s}
4 wvisitNext — @
o Small-world assumption 5
T) 6 while visit # @
e Optimizations: 7 for each v € visit
o Parallel BFS 8 for each n € neighbors,
. . o 9 if n ¢ seen
o Bottom up approach (direction optimized) 2 % el Tl
11 visitNext < visitNext U {n}
12 do BFS computation on n
Wo rk — @(n + m) 13 visit < visitNext
14 visitNezt < O
Depth = O(A log m)

Motivation for MS-BFS

® Goalis to optimize execution of multiple independent BFSs
o Common graph analytics would benefit from this
e Related work just on improving single execution of BFS
e Compared to old method of repetitive BFSs traversals...
o We want better memory locality since the same vertices are discovered and
explored -> tldr; fewer cache misses
0 We want better resource management as the # of BFSs increase and # of cores
increase
We want to avoid synchronization due to its overhead

Overview of MS-BFS

Listing 2: The MS-BFS algorithm.

e Very similar to a normal BFS 1 Input: G,B,S
N 2 seens; < {b;} for all b; € B
[] G .8
Each vertex maintains seen, holds BFSs that have 5 ... Uy, cal(si, {51}
already visited it 4 visitNext « &
.. . . 5
e Visit contains a tuple of the vertex and BFS thatis ¢ . 1ie visit oy
currently visiting it -- unioned together 7 for]EB?Ch v in visit
8 | — @
e Neighbors not seen before are explored 9 for each (v/,B') € visit where v/ = v
! . !
Main Idea: BFS that share common sub-traversal ° B+ By
L1 for each n € neighbors,
travel together 12 D « B, \ seenn
13 ifD+# o
14 visitNext « visitNext U {(n, D)}
L5 seen,, < seen, UD
L6 do BFS computation on n
L7 visit < visitNext
L8 visitNext +— &

An Example

Initial State 1st BFS Level 2nd BFS Level

SN "

seeny = {b1} seeny = {b1} seeng = {b1,ba} ' seen; = {by,ba} seeny = {b1,b2}

seeny = {ba} seeny = {b1,ba} 1 seeny = {b1,b2} seens = {b1, b2}

seeng = {b1,ba} seeng = {by1,ba}

seeny = {ba}

(1. {b1)) el
visit = {(2: {bz})} visit = (1: {bz’})
(2,{b1})

| I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
| I I
I I I
I I I
| | I
| | I
| I I
I I I
| I I
I | I

Figure 2: An example of the MS-BFS algorithm, where vertices 3 and 4 are explored once for two BF'Ss.

In practice set unions and differences are expensive
Use bit operations instead
seen is a bit-field for each vertex v, such that if the ith
bit is 1, that means the ith BFS has already seen v
e Similarly visit and visitNext are set up s.t. If the ith bit is
1, then v still needs to be explored by the ith BFS
Set operations become binary operations

e Store these three bitfields in arrays for constant time
access -> visit_v = visit[v]

Improving with Bit Operations

Listing 3: MS-BF'S using bit operations.
1 Input: G,B, S
2 for each b; € B
3 seen[s; | + 1 << b;
visit] s; | +— 1 << b;
reset visitNext

fori=1,...,N
if visit[v;] = Bg, skip

4
5
6
7 while visit # &
8
9
L0 for each n € neighbors|v;]

11 D « visit[vi] & ~seen[n]

12 if D # By

13 visitNext[n] < visitNext[n] | D
14 seen[n| < seen[n| | D

15 do BFS computation on n

16 visit < visitNext

17 reset visitNext

An Example

Initial State

LW =

b1 bo

1st BFS Level

C il

b1 bo

visit

SEEMN

b1 b2

SOt WN =

visit

2nd BFS Level

b il

b1 b2

1[X

2 -

4>

5

6
SEeEen

N

Sl bW

b1 bo

visit

Figure 3: An example showing the steps of MS-BFS
when using bit operations. Each row represents the
bit field for a vertex, and each column corresponds
to one BFS. The symbol X indicates that the value
of the bit is 1.

SOl WN =

b1 bo

SEEMN

Aggregated Neighbor Processing

Listing 4: MS-BF'S algorithm using ANP.

e Still some bad memory access 1 Input: G,B,S
. 2 for each b; € B
seen has a lot of random accesses which lead to cache 8l seen] L skl
. 4 visit] s; | 1 << b
misses 5 reset visitNext
® ANP first collects all the vertices needed to be explored ‘73 S
while visit # @
i i - 8 fori=1,...,N
in the next level (lines 8-11) . If visis.] = Bo, skip
seen is updated in batch 10 for each n € neighbors[ui] N
11 visitNext[n] < visitNexzt[n] | visit[v;]
Improvement include 12
. 13 fori=1,...,N
o Fewer calls to seen (once per discovered vertex) 14 if visitNezt[v:] = By, skip
. . . 15 visitNext[v;] < visitNext[v;] & ~seen[v;]
o Thus, fewer iterations of BFS computation 16 seen[vi] seen[vi] | visitNext[v:]
. . 17 if visitNezt[v;] # By
@) Memory access IS Sequentlal 18 do BFS computation on v;
. 19 .sit <— visitNext
e Direction Optimized Traversal, prefetching, max 5 rerchrote BTt

sharing heuristic

Runtime (in minutes)

Experimental Results

400 -

w

o

o
1

N

o

o
1

-l

o

o
1

BFS Algorithm

~o— DO-BFS
MS-BFS 128

¥~ MS-BFS 128 CL

- T-BFS

T
0.0

T
25

I
5.0
Vertices (in millions)

T
7.5

1
10.0

Figure 4: Data size scalability results.

GTEPS

400

200 -

1 I I

T
30 40 50
Cores

20

BFS Algorithm
—o— DO-BFS

MS-BFS 128
—¥—- MS-BFS 128 CL
—-#- MS-BFS 64
~+- MS-BFS 64 CL
-&— T-BFS

Figure 5: Multi-core scalability results.

More Results

12 = 9 -
87
9 - g
c . .
BFS Algorithm S Register Width
=57 256 bits
& MS-BFS 256 5, !
w 6- -g_ 128 bits
5 - Ms-BFS2s6CL S| e
- T-BFS 2
)
i a h

ﬁ T T T 1 . !
0] MS-BFS +ANP +DOT +CL +PF +SHR

; Tuning Technique

1 T T T
0 500 1000 1500 2000 Figure 7: Spee dup achieved by cumulatively apply_

Numberof BESe ing different tuning techniques to MS-BF'S.
Figure 6: BFS count scalability results.

Relative Speedups

Table 4: Runtime and speedup of MS-BFS com-
pared to T-BFS and DO-BFS.

Graph T-BFS DO-BFS MS-BFS Speedup
LDBC 1M 2:15h 0:22h 0:02h 73.8x, 12.1x
LDBC 10M *259:42h *84:13h 2:56h 88.5x, 28.7x
Wikipedia *32:48h *12:50h 0:26h 75.4x, 29.5x

Twitter (1M) *156:06h *36:23h 2:52h 54.6x, 12.7x
*Execution aborted after 8 hours; runtime estimated.

Strengths

Outperforms T-BFS and DO-BFS on a single core (main goal)
Scales well with an increasing number of cores

Generally scales well even as the number of BFSs increase
Paper provides further improvements which experimentally did well
Works well on real life graphs

Can be parallelized naturally (no immediate barriers -- kind of)

VWeaknesses

Some limitations if the number of BFSs increase past register width
o Paper proposes some alternatives
o Parallelizing, Using multiple registers, running many instances
o Performance/Memory tradeoff

® Graph setis limited to those that follow the small world assumption
e Memory overhead with large graphs to store BFS states at each vertex
® Provides the benefit to vertices that multiple BFSs access on the same level

o No memory if the vertices have already been accessed before
o Potential for further decrease in computation

Future Work

Look at parallelizing at the frontier level
Adapting MS-BFS for distributed environments and GPUs
Apply it to other graph analytics algorithms

Testing MS-BFS on various graph types

New heuristics to maximize sharing

Discussion

e What are some other strengths and weaknesses you see in MS-BFS?

e Can MS-BFS generalize to other graphs besides small-world graphs?

e Do you have your own thoughts for improvement of future extensions?

