In-place Parallel Super Scalar Samplesort (IPS4o)

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany

Presentation by: Jessica Zhu

Motivations

- Sorting is a fundamental subroutine
 - Speed is expected
 - Memory is a constraint
- Replace quicksort, a 50-year old algorithm

Quicksort

- O(n log(n)) work
- Parallelizable
- Avoids branch mispredictions
- Cache-efficient
- Almost in-place

5 13 8 1 3 2 11 60 8 14 15 9

5 13 8 1 3 2 11 60 8 14 15 9

1 **2** 5 3 8 **8** 13 11 9 **14** 60 15

Recursion!

- O(n log(n)) work
- Parallelizable
- Cache-efficient

- Allows branch mispredictions
- Not in-place

5 13 8 1 3 2 11 60 8 14 15 9

5 13 8 1 3 2 11 60 8 14 15 9

• O(n log(n)) work

• Not in-place

- Parallelizable
- Cache-efficient
- Avoids branch mispredictions

- (a) Swapping a block into its correct position.
- (b) Moving a block into an empty position, followed by refilling the swap buffer.

Edge Case: Many Identical Keys

Equality buckets

- Introduced if an element appears more than n/k times
- Skipped during recursion
- Implemented with only one extra comparison

- O(n log(n)) work
- Parallelizable
- Cache-efficient
- Avoids branch mispredictions
- In-place

Theoretical Analysis

I/O Complexity with high probability:

$$O\left(\frac{n}{tB}\log_k\frac{n}{n_0}\right)$$

Additional Space:

$$O\left(kbt + \log_k \frac{n}{n_0}\right)$$

Becoming Strictly In-Place

$$O\left(kbt + \log_k \frac{n}{n_0}\right)$$

i := 1 j := n + 1while i < n do if $j - i < n_0$ then smallSort(a, i, j - 1); i := j j := searchNextLargest(A[i], A, i + 1, n) -- first element of current bucket -- first element of next bucket -- base case -- partition first unsorted bucket -- find beginning of next bucket

Experimental Results

Figure 6 Running times of sequential algorithms on input distribution Uniform executed on machine Intel2S. **Figure 7** Speedup of parallel algorithms with different number of cores relative to our sequential implementation IS⁴ o on Intel2S, sorting 2³⁰ elements of input distribution Uniform.

-- IPS⁴o -- PBBS -- MCSTLmwm -- MCSTLbq -- MCSTLubq -- TBB

Item count n

Item count n

Machine	Algo	Competitor	Uniform	Exponential	Almost	$\operatorname{RootDup}$	TwoDup
Intel2S	IS^4o	both	1.14	1.23	0.59	0.97	1.17
Intel4S	IS^4o	both	1.21	1.54	0.77	1.65	1.44
AMD1S	IS^4o	both	1.57	2.02	0.65	1.37	1.17
Intel2S	IPS^4o	in-place	2.54	3.43	1.88	2.73	3.02
		non-in-place	2.13	1.79	1.29	1.19	1.86
Intel4S	IPS^4o	in-place	3.52	4.35	3.62	3.19	2.89
		non-in-place	1.75	1.69	1.84	1.15	1.19
AMD1S	IPS^4o	in-place	1.57	3.18	1.81	2.37	2.02
		non-in-place	ООМ	OOM	OOM	OOM	OOM

Table 1 The first three rows show the speedups of IS^4o relative to the fastest sequential in-place and non-in-place competitor on different input types executed on machine Intel2S, Intel4S, and AMD1S for $n = 2^{32}$. The last rows show the speedups of IPS^4o relative to the fastest parallel in-place and non-in-place competitor on different input types executed on different machine instances for $n = 2^{32}$. Measurements in cells labeled with OOM ran out of memory.

Strengths and Weaknesses

- Thorough comparisons of IPS4o to other sorting algorithms on different machines, inputs, input sizes, memory limitations
- Well structured paper that explained the algorithm clearly
- Appendix helpful for extra data and proofs
- Results seem promising

- Pseudocode would be helpful for implementation details
- Theoretical bounds rely on tight constraints to be valid
- Complex algorithm that has yet to be verified

Discussion Questions

- Will IPS4o replace Quicksort in certain situations? If not, what ultimately will?
- Can taking care of the edge case of many identical keys be applied to other sorting algorithms to provide the same speed up?