
In-place Parallel Super Scalar
Samplesort (IPS4o)

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders
Karlsruhe Institute of Technology, Karlsruhe, Germany

Presentation by: Jessica Zhu

Motivations

• Sorting is a fundamental subroutine
• Speed is expected
• Memory is a constraint

• Replace quicksort, a 50-year old algorithm

Quicksort

• O(n log(n)) work
• Parallelizable
• Avoids branch mispredictions
• Cache-efficient
• Almost in-place

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

5 13 8 1 3 2 11 60 8 14 15 9

In-place Parallel Super Scalar Samplesort

5 13 8 1 3 2 11 60 8 14 15 9

1 2 5 3 8 8 13 11 9 14 60 15

Recursion!

In-place Parallel Super Scalar Samplesort

• O(n log(n)) work
• Parallelizable
• Cache-efficient

• Allows branch mispredictions
• Not in-place

In-place Parallel Super Scalar Samplesort

5 13 8 1 3 2 11 60 8 14 15 9

In-place Parallel Super Scalar Samplesort

5 13 8 1 3 2 11 60 8 14 15 9

8

2 14

1 5 3 8 13 11 9 60 15

In-place Parallel Super Scalar Samplesort

• O(n log(n)) work
• Parallelizable
• Cache-efficient
• Avoids branch mispredictions

• Not in-place

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

In-place Parallel Super Scalar Samplesort

Edge Case: Many Identical Keys

Equality buckets
• Introduced if an element appears more than n/k times
• Skipped during recursion
• Implemented with only one extra comparison

In-place Parallel Super Scalar Samplesort

• O(n log(n)) work
• Parallelizable
• Cache-efficient
• Avoids branch mispredictions
• In-place

Theoretical Analysis

I/O Complexity with high probability:

O "
#$ log(

"
")

Additional Space:

O *+# + log(
"
")

Becoming Strictly In-Place

O "#$ + log)
*
*+

Experimental Results

Strengths and Weaknesses

• Thorough comparisons of IPS4o
to other sorting algorithms on
different machines, inputs, input
sizes, memory limitations
• Well structured paper that

explained the algorithm clearly
• Appendix helpful for extra data

and proofs
• Results seem promising

• Pseudocode would be helpful for
implementation details
• Theoretical bounds rely on tight

constraints to be valid
• Complex algorithm that has yet

to be verified

Discussion Questions

• Will IPS4o replace Quicksort in certain situations? If not, what
ultimately will?
• Can taking care of the edge case of many identical keys be applied to

other sorting algorithms to provide the same speed up?

