Theoretically-Efficient and
Practical Parallel In-Place
Radix Sorting

Authors: Omar Obeya, Endrias Kahssay, Edward Fan,
Prof. Julian Shun

Affiliation: Massachusetts Institute of Technology

e Introduction

o Motivation
o Related Work

e Regions Sort

o Algorithm Design
o Theoretical Analysis

e EXperiments

o Setup
o Results

Motivation

Why Radix
Sort?

Takes O(n) work for fixed length
integers.

Comparison-based sorts take
Q(nlog(n)) work.

In-Place
Algorithms

What are in-place algorithms?

e Require at most sublinear
auxiliary space.

Why in-place?

e Smaller memory footprint!
e Potentially better utilization of
cache.

(Most Significant Digit First) Radix Sort

W
N
!
-
SN
@) |
-
AN
@) |
-
AN
@)

Radix Sort

N
—
—
-
@)
@) |
-
AN
@) |
-
AN
@)

~N g W
~O
!!
-
SN
@) |
-
@)
@) |

e Sort elements according
to one digit at a time.

-
@)
@) |

® Most significant digit to

least significant digit.

OV
o0
RN

H
oo
o

® Recurse on elements with

—
EaN
&)
\l
aN
&)

equal digits.

oo
oo
W

Terminology: Country

Country: sub-array that
will include elements
belonging to the same
bucket after sorting.

g [T
Targer) (T TEEEEER [=

=0

Radix Sort: Subproblem

Sort elements according
to digits such that each
element is in the correct
country.

lInput: |

|Target: |

Serial In- 1. Find start location of
place Radix

Sort

each country
(Histogram Building).

2. Move items to the
correct country in-
place.

Histogram Building
el 00705 200000
)

777

Ll i)
Output [TTTTTTTTIT]

Histogram Building

lInput:
|
'
ISizes: | 3 4 2| |2
|
: '
Prefix 0 ; 21 s
Sum. l
I

[output:_| [ofol2fofsaf sl

Parallel
Histogram
Building

Serial In-place Radix Sort

In-Place Radix Sort l 1 1 1

For each bucket:

While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

3

Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:

While (pointer not at end) {

-]
While(item bucket != current l 1 1
bucket) {
Swap item to target bucket
Update target bucket pointer

}

Update current bucket pointer

Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

Serial In-place Radix Sort

In-Place Radix Sort 1 A 1

For each bucket:

While (pointer not at end) { \
While(item bucket != current w
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

Serial In-place Radix Sort

In-Place Radix Sort 1 1
For each bucket:
While (pointer not at end) {
While(item bucket != current T
bucket) {

Swap item to target bucket

Update target bucket pointer Swap!

}

Update current bucket pointer

-’
h
h
h
h

7

Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

R |

Swap item to target bucket

Swap!

Update target bucket pointer

}

Update current bucket pointer

-’
h
h
h
h

8

Serial In-place Radix Sort

In-Place Radix Sort l

For each bucket:

While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

—

Swap!

S S N

Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer

IQ ? l

wap!

[S

Why parallel in-place is hard?!

22

Why parallel in-place is hard?!

|Race!|

A

Assuming Work-Span Model:

a. Work: is number of operations.
b. Span: longest dependence in the
computation.

Parallelism = Work/Span.

Time = O(Work/Processors + Span).

Related
Work

1. PARADIS [Cho et. al 2015]

e Parallel in-place radix sort.
e Worst case spanis O(n).

1. IPS40 [Axtmann et. al 2017]

e Parallel in-place comparison based
sort.
e Work is O(nlog(n)).

1. RADULS [Kokot et. al 2018]

e Parallel radix sort with auxiliary
memory linear in input size.

25

Goal Gdd
0a)
Applicalions Driving Archilectures

Using P processors:

a. Work: O(n).
b. Span: O(log(P) + n/P).
c. Space: O(Plog(n)).

For fixed length integers.

Our Algorithm: Regions Sort

Regions Sort 1. Local Sorting
Overview O Partially sort the input.

2. Regions Graph Building

o Represent dependencies
in partially sorted input
with small amount of
memory.

3. Global Sorting

o Use regions graph to
completely sort the input.

28

Local
Sorting

Key ldea:

Divide array into K Blocks and
sort each block independently.

Block: sub-array of
size n/K.

29

Local
Sorting

30

Regions
Graph
Building

Key ldea: Represent
dependencies in partially
sorted input with small
amount of memory.

31

Regions Graph Building

Homogeneous
sub-array: A
subarray with the
same digit

1 00 T
[elolol I T]
U

/

Regions Graph Building

Region: A

array within same
current country.

homogeneous sub-

]

n

Regions Graph Building

NI
Ranagaung
n n

L

Regions Graph Building

[] ﬂﬂl_l-ﬂ\
LPAR AR
J Uy U

/

Global
Sorting

Key ldea: Use regions graph
to move regions to their target

countries iteratively and
updating the graph.

Two Approaches:

1. Cycle Finding
2. 2-Path Finding

36

A 2-path consists of two edges:

Global
Sorting

e |Incoming edge to node x
corresponding to a region that can
be moved into country x.

e Outgoing edge from node x
corresponding to a region that is
in country x and needs to be

moved out of country x.
1

%

37

Global Sorting: 2-Path Finding

2-path Finding

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.

40

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.

-

41

Global Sorting: 2-Path Finding

2-path Finding

-

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

Global Sort: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

45

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

46

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce

Analysis

49

1. Local Sorting

a. Work: O(n).
b. Span: O(log(K) + n/K).
c. Space = O(KBlog(n)).

e Kis number of blocks.
e B is number of buckets per block.

2. Build Regions Graph

a. Work = O(KB)
b. Span = O(log(KB))
c. Space = O(KBlog(n))

e Since #regions = #edges = O(KB).
e Kis number of blocks.
e B is number of buckets per block.

3. Global Sorting

a. Work = O(n)
b. Span = O(Blog(KB))
c. Space = O(KBlog(n))

O(n) swaps.

#nodes removed = O(B).

#edges at each node removed is O(KB).
Assuming KB = O(n).

Total for one level of recursion

a. Work = O(n).
b. Span = 0(n/K + B log(KB))
C. Space = O(KB)

53

Recursion

Recursion

Each country is recursed on independently.

Each country divided into number of blocks proportional to
its size.

Integers with range r need at most logg(r) recursion levels to
be fully sorted.

For problem sizes smaller than B, we use comparison sort.

55

Algorithm: Recursion

Total on all levels

a. Work = O(nlog(r)).
b. Span = O((log(P) + n/P)log(r))
c. Space = O(Plog(r)log(n))

e B=0(1)
e K=0(P)
e KB =0(n)

Algorithm: Recursion

Total on all levels

a. Work = O(n).
b. Span = O((log(P) + n/P))
c. Space = O(Plog(n))

B=0(1)

K =0(P)

KB = 0(n)

r = ©(1) (fixed length integers)

Cycle Finding

Find Cycle in Regions Graph
Execute Cycle to move elements
Remove edge with min weight
Repeat until all edges are consumed

Evaluation

59

Evaluation: Control Algorithms

State of the art parallel sorting algorithms:

e __gnu_parallel::sort (MCSTL, included in gcc) [Singler et. al 2007]
o Not fully in-place; uses parallel mergesort

RADULS (parallel out-of-place radix sort) [Kokot et al. 2017]

PBBS parallel out-of-place radix sort [Shun et. al 2012]

PBBS parallel out-of-place sample sort [Shun et. al 2012]

Ska Sort (serial in-place radix sort)

IPS40 (parallel in-place sample sort) [Axtmann et al. 2017]

PARADIS (parallel, in place radix sort) not publically available

Input distribution:

e Uniform.
e Skewed.
e Equal, and almost sorted.

60

Evaluation: Our Algorithms

- Our Algorithms

- Cycle finding
- K=P
- B =256

- 2-path finding
- K=5000
- B=256

61

Evaluation: Test Environment

AWS c5.9xlarge
Intel Xeon Platinum 8000 series

72 vCPU (~36 cores with hyperthreading)
144 GB RAM

All code compiled with g++-7 with Cilk Plus

62

Comparison with other algorithms

Regions Sort performance on various inputs with 1 billion
integers:

e Between 1.1 - 3.6x faster than IPS4o0, the fastest parallel
sample sort, except on one input (1.02x slower).

e Between 1.2 - 4.4 x faster than the fastest out-of-place
Radix Sort (PBBS).

e 1.3x slower to 9.4x faster than RADULS.

e About 2x faster than PARADIS based on their reported
numbers. 63

Speedup over serial 2-path: 1 billion random integers

404 —®— 2-path
—&— Cycle
35 —i— [PS4o
= —— MCSTL
2,30 RADULS
N —#— PBBS radix sort —@
'.TE 25 - —4— PBBS samplesort
g 2
S 20
3
=15 - |
e
g
2.1() -
5 i
——
O - 7 T T T T T T T
0 10 20 30 40 50 60 70
Threads y

Distribution independence: 1 billion integers from Zipf

5000 1 —&— 2-path
—&— Cycle
—8— IPS4o
4000 1 —=#— MCSTL
RADULS
—#— PBBS radix sort
’g 3000 - —4— PBBS samplesort
)
=
) 0 ‘ o \‘k
1000 - t - l ‘
() +— - . :
0.25 0.50 0.75 1.00
Theta °°

Regions Sort: fastest across all input sizes (Random)

—8— 2-path
2500 1 —a— Cycle
—i— [PS4do
—&#— MCSTL
2000 - RADULS
—#— PBBS radix sort
—~ —4— PBBS samplesort
E 1500 4
O
=
-
1000 -
500 1 A
=
g — g
0 I | : ' ! T
0.2 0.4 0.6 0.8 1.0
Length x 10” N

Input Range - Uniform Sequence (1 billion integers)

4000
—&— 2-path
3500 | —— C}'Cle
—i— [PS4o
—$— MCSTL
3000 1 RADULS
—#— PBBS radix sort
— — 2500 1 —4§— PBBS samplesort
g
o 2000 A
=
= 1500 -
1000 +
500 -
0

102100 100 10° 108 107 108 10°

Range 67

Regions Sort is efficient:

Comments

e Since it needs at most 4n writes
for local and global sort (per
recursion level).

e The size of graph is
asymptotically smaller than the
Input size.

e Has good temporal locality
because we split the inputs to
blocks that can more easily fit in

68

Our contributions:

Conclusion e Regions Sort: the first parallel in-
place radix sort with strong
theoretical guarantees.

e Empirical evidence showing high
scalability and distribution
independence.

e Almost always outperforms state
of the art parallel sorting
algorithms in our extensive
experiments.

69

Regions Sort
Code

https://github.com/o
marobeya/parallel-
inplace-radixsort

https://github.com/omarobeya/parallel-inplace-radixsort

Questions?
Thank you!

71

e Cho, Minsik, Daniel Brand, Rajesh Bordawekar,
Ulrich Finkler, Vincent Kulandaisamy, and
Ruchir Puri. "PARADIS: an efficient parallel

Refe rences algorithm for in-place radix sort." Proceedings
of the VLDB Endowment 8, no. 12 (2015):
1518-1529.

e Axtmann, Michael, Sascha Witt, Daniel
Ferizovic, and Peter Sanders. "In-place Parallel
Super Scalar Samplesort (IPS40)." arXiv
preprint arXiv:1705.02257 (2017).

e Kokot, Marek, Sebastian Deorowicz, and
Agnieszka Debudaj-Grabysz. "Sorting data on
ultra-large scale with RADULS." In
International Conference: Beyond Databases,
Architectures and Structures, pp. 235-245.
Springer, Cham, 2017.

72

e Shun, Julian, Guy E. Blelloch, Jeremy T.
Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat

Refe rences Tangwongsan. "Brief announcement: the

problem based benchmark suite.” In

Proceedings of the twenty-fourth annual ACM

symposium on Parallelism in algorithms and

architectures, pp. 68-70. ACM, 2012.

e Singler, Johannes, Peter Sanders, and Felix
Putze. "MCSTL: The multi-core standard
template library." In European Conference on
Parallel Processing, pp. 682-694. Springer,
Berlin, Heidelberg, 2007.

e Malte Skarupke. 2016. | Wrote a Faster
Sorting Algorithm.
https://probablydance.com/2016/12/27/i-
wrote-a-faster-sorting-algorithm/.

73

https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/

