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Motivation



Why Radix
Sort?

Takes O(n) work for fixed length
integers.

Comparison-based sorts take
Q(nlog(n)) work.




In-Place
Algorithms

What are in-place algorithms?

e Require at most sublinear
auxiliary space.

Why in-place?

e Smaller memory footprint!
e Potentially better utilization of
cache.




(Most Significant Digit First) Radix Sort
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Radix Sort
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e Sort elements according
to one digit at a time.
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® Most significant digit to

least significant digit.
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® Recurse on elements with
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Terminology: Country

Country: sub-array that
will include elements
belonging to the same
bucket after sorting.
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Radix Sort: Subproblem

Sort elements according
to digits such that each
element is in the correct
country.

lInput: |

|Target: |




Serial In- 1. Find start location of
place Radix

Sort

each country
(Histogram Building).

2. Move items to the
correct country in-
place.
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Histogram Building
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Parallel
Histogram
Building




Serial In-place Radix Sort

In-Place Radix Sort l 1 1 1

For each bucket:

While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer
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Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:

While (pointer not at end) {

- ]
While(item bucket != current l 1 1
bucket) {
Swap item to target bucket
Update target bucket pointer

}

Update current bucket pointer




Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer




Serial In-place Radix Sort

In-Place Radix Sort 1 A 1

For each bucket:

While (pointer not at end) { \
While(item bucket != current w
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer




Serial In-place Radix Sort

In-Place Radix Sort 1 1
For each bucket:
While (pointer not at end) {
While(item bucket != current T
bucket) {

Swap item to target bucket

Update target bucket pointer Swap!

}

Update current bucket pointer
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Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

R |

Swap item to target bucket

Swap!

Update target bucket pointer

}

Update current bucket pointer
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Serial In-place Radix Sort

In-Place Radix Sort l

For each bucket:

While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer




Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer
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Serial In-place Radix Sort

In-Place Radix Sort

For each bucket:
While (pointer not at end) {

While(item bucket != current
bucket) {

Swap item to target bucket

Update target bucket pointer

}

Update current bucket pointer
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Why parallel in-place is hard?!
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Why parallel in-place is hard?!

|Race!|
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Assuming Work-Span Model:

a. Work: is number of operations.
b. Span: longest dependence in the
computation.

Parallelism = Work/Span.

Time = O(Work/Processors + Span).



Related
Work

1. PARADIS [Cho et. al 2015]

e Parallel in-place radix sort.
e Worst case spanis O(n).

1. IPS40 [Axtmann et. al 2017]

e Parallel in-place comparison based
sort.
e Work is O(nlog(n)).

1. RADULS [Kokot et. al 2018]

e Parallel radix sort with auxiliary
memory linear in input size.
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Goal Gdd
0a )
Applicalions Driving Archilectures

Using P processors:

a. Work: O(n).
b. Span: O(log(P) + n/P).
c. Space: O(Plog(n)).

For fixed length integers.




Our Algorithm: Regions Sort



Regions Sort 1. Local Sorting
Overview O Partially sort the input.

2. Regions Graph Building

o Represent dependencies
in partially sorted input
with small amount of
memory.

3. Global Sorting

o Use regions graph to
completely sort the input.
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Local
Sorting

Key ldea:

Divide array into K Blocks and
sort each block independently.

Block: sub-array of
size n/K.
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Local
Sorting
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Regions
Graph
Building

Key ldea: Represent
dependencies in partially
sorted input with small
amount of memory.
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Regions Graph Building

Homogeneous
sub-array: A
subarray with the
same digit
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Regions Graph Building

Region: A

array within same
current country.

homogeneous sub-
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Regions Graph Building
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Regions Graph Building
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Global
Sorting

Key ldea: Use regions graph
to move regions to their target

countries iteratively and
updating the graph.

Two Approaches:

1. Cycle Finding
2. 2-Path Finding
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A 2-path consists of two edges:

Global
Sorting

e |Incoming edge to node x
corresponding to a region that can
be moved into country x.

e Outgoing edge from node x
corresponding to a region that is
in country x and needs to be

moved out of country x.
1

%
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Global Sorting: 2-Path Finding

2-path Finding




Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.




Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges
with outgoing edges.

-
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Global Sorting: 2-Path Finding

2-path Finding

-

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.




Global Sort: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce




Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.

3. Execute swaps.

4. Edit edges.




Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.

2. Match incoming edges
with outgoing edges.
Execute swaps.

4. Edit edges.

ce




Analysis
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1. Local Sorting

a. Work: O(n).
b. Span: O(log(K) + n/K).
c. Space = O(KBlog(n)).

e Kis number of blocks.
e B is number of buckets per block.



2. Build Regions Graph

a. Work = O(KB)
b. Span = O(log(KB))
c. Space = O(KBlog(n))

e Since #regions = #edges = O(KB).
e Kis number of blocks.
e B is number of buckets per block.



3. Global Sorting

a. Work = O(n)
b. Span = O(Blog(KB))
c. Space = O(KBlog(n))

O(n) swaps.

#nodes removed = O(B).

#edges at each node removed is O(KB).
Assuming KB = O(n).



Total for one level of recursion

a. Work = O(n).
b. Span = 0(n/K + B log(KB) )
C. Space = O(KB)
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Recursion



Recursion

Each country is recursed on independently.

Each country divided into number of blocks proportional to
its size.

Integers with range r need at most logg(r) recursion levels to
be fully sorted.

For problem sizes smaller than B, we use comparison sort.
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Algorithm: Recursion

Total on all levels

a. Work = O(nlog(r)).
b. Span = O((log(P) + n/P)log(r))
c. Space = O(Plog(r)log(n))

e B=0(1)
e K=0(P)
e KB =0(n)



Algorithm: Recursion

Total on all levels

a. Work = O(n).
b. Span = O((log(P) + n/P))
c. Space = O(Plog(n))

B=0(1)

K =0(P)

KB = 0(n)

r = ©(1) (fixed length integers)



Cycle Finding

Find Cycle in Regions Graph
Execute Cycle to move elements
Remove edge with min weight
Repeat until all edges are consumed




Evaluation
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Evaluation: Control Algorithms

State of the art parallel sorting algorithms:

e __gnu_parallel::sort (MCSTL, included in gcc) [Singler et. al 2007]
o Not fully in-place; uses parallel mergesort

RADULS (parallel out-of-place radix sort) [Kokot et al. 2017]

PBBS parallel out-of-place radix sort [Shun et. al 2012]

PBBS parallel out-of-place sample sort [Shun et. al 2012]

Ska Sort (serial in-place radix sort)

IPS40 (parallel in-place sample sort) [Axtmann et al. 2017]

PARADIS (parallel, in place radix sort) not publically available

Input distribution:

e Uniform.
e Skewed.
e Equal, and almost sorted.
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Evaluation: Our Algorithms

- Our Algorithms

- Cycle finding
- K=P
- B =256

- 2-path finding
- K=5000
- B=256
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Evaluation: Test Environment

AWS c5.9xlarge
Intel Xeon Platinum 8000 series

72 vCPU (~36 cores with hyperthreading)
144 GB RAM

All code compiled with g++-7 with Cilk Plus
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Comparison with other algorithms

Regions Sort performance on various inputs with 1 billion
integers:

e Between 1.1 - 3.6x faster than IPS4o0, the fastest parallel
sample sort, except on one input (1.02x slower).

e Between 1.2 - 4.4 x faster than the fastest out-of-place
Radix Sort (PBBS).

e 1.3x slower to 9.4x faster than RADULS.

e About 2x faster than PARADIS based on their reported
numbers. 63



Speedup over serial 2-path: 1 billion random integers
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Distribution independence: 1 billion integers from Zipf
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Regions Sort: fastest across all input sizes (Random)
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Input Range - Uniform Sequence (1 billion integers)
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Regions Sort is efficient:

Comments

e Since it needs at most 4n writes
for local and global sort (per
recursion level).

e The size of graph is
asymptotically smaller than the
Input size.

e Has good temporal locality
because we split the inputs to
blocks that can more easily fit in
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Our contributions:

Conclusion e Regions Sort: the first parallel in-
place radix sort with strong
theoretical guarantees.

e Empirical evidence showing high
scalability and distribution
independence.

e Almost always outperforms state
of the art parallel sorting
algorithms in our extensive
experiments.
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Regions Sort
Code

https://github.com/o
marobeya/parallel-
inplace-radixsort



https://github.com/omarobeya/parallel-inplace-radixsort

Questions?
Thank you!
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