Delaunay Triangulations

Computational Geometry - Algorithms and Applications (Ch. 9)

Problem

Motivation

Approaches

Nearest Neighbor **Triangulation**

Definitions

- \bullet $P = \{p_1, p_2, ..., p_n\}$:= set of reference points in the plane
- Triangulation := maximal planar graph of a given vertex set

How to pick good triangulation?

Small angles are bad

Angle Vectors

- \bullet $A(T)$:= sorted list of all angles in increasing order
- Angle-optimal triangulation has largest lexicographical angle vector

Thales Theorem

Theorem 9.2 Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, and s points lying on the same side of ℓ . Suppose that p and q lie on C, that r lies inside C , and that s lies outside C . Then

 \angle arb > \angle apb = \angle agb > \angle asb.

Illegal Edges

 $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i.$

Illegal Edges

Observation 9.3

Simple Algorithm

Algorithm LEGALTRIANGULATION(T) *Input.* Some triangulation T of a point set P. Output. A legal triangulation of P.

- while T contains an illegal edge $\overline{p_i p_j}$ 1.
- 2. **do** (* Flip $\overline{p_i p_j}$ *)
- Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to $\overline{p_i p_j}$. 3.
- Remove $\overline{p_i p_j}$ from T, and add $\overline{p_k p_l}$ instead. 4.

5. return $\mathfrak T$

Voronoi diagram

Theorem 7.4 For the Voronoi diagram $\text{Vor}(P)$ of a set of points P the following holds:

- A point q is a vertex of $\text{Vor}(P)$ if and only if its largest empty circle $C_P(q)$ (i) contains three or more sites on its boundary.
- The bisector between sites p_i and p_j defines an edge of $\text{Vor}(P)$ if and only (ii) if there is a point q on the bisector such that $C_P(q)$ contains both p_i and p_j on its boundary but no other site.

Delaunay Graph

Theorem 9.5 The Delaunay graph of a planar point set is a plane graph.

General Position

- All planes of DG(P) are triangles if no four points of P lie on a circle
- Delaunay Triangulation (may or may not need to add edges to DG(P))

Theorem 9.6 Let P be a set of points in the plane.

- Three points $p_i, p_j, p_k \in P$ are vertices of the same face of the Delaunay (i) graph of P if and only if the circle through p_i , p_j , p_k contains no point of P in its interior.
- Two points $p_i, p_j \in P$ form an edge of the Delaunay graph of P if and only (ii) if there is a closed disc C that contains p_i and p_j on its boundary and does

Theorem 9.6 readily implies the following characterization of Delaunay triangulations.

Theorem 9.7 Let P be a set of points in the plane, and let $\mathcal T$ be a triangulation of P. Then $\mathcal T$ is a Delaunay triangulation of P if and only if the circumcircle of any triangle of $\mathcal T$ does not contain a point of P in its interior.

Theorem 9.8 Let P be a set of points in the plane. A triangulation \mathcal{T} of P is legal if and only if $\mathcal T$ is a Delaunay triangulation of P.

Theorem 9.9 Let P be a set of points in the plane. Any angle-optimal triangulation of P is a Delaunay triangulation of P . Furthermore, any Delaunay triangulation of P maximizes the minimum angle over all triangulations of P .

Computing the Delaunay Triangulation

• Randomized, incremental approach

Algorithm DELAUNAYTRIANGULATION(P)

Input. A set P of $n+1$ points in the plane.

Output. A Delaunay triangulation of P.

Let p_0 be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate. Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that P $|2.$ is contained in the triangle $p_0 p_{-1} p_{-2}$. Initialize T as the triangulation consisting of the single triangle $p_0 p_{-1} p_{-2}$. $\vert 3. \vert$ Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}.$ $\overline{4}$. for $r \leftarrow 1$ to n 5. **do** (* Insert p_r into $\mathcal{T}:$ *) 6. 7. Find a triangle $p_i p_j p_k \in \mathcal{T}$ containing p_r . $\frac{8}{19}$ if p_r lies in the interior of the triangle $p_i p_j p_k$ **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles. $\frac{1}{1}$ 10.
11. LEGALIZEEDGE($p_r, \overline{p_i p_j}, \mathcal{T}$) LEGALIZEEDGE(p_r , $\overline{p_j p_k}$, T) $\frac{112}{13}$. LEGALIZEEDGE($p_r, \overline{p_k p_i}, \mathcal{T}$) else $(* p_r$ lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j * }$ $\overline{14}$. Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the two triangles incident to $\overline{p_i p_j}$ into four triangles. LEGALIZEEDGE($p_r, \overline{p_i p_l}, \mathcal{T}$) $|15.$ LEGALIZEEDGE(p_r , $\overline{p_l p_j}$, T) $:16.$ ¹17. LEGALIZEEDGE(p_r , $\overline{p_j p_k}$, T) $|18.$ LEGALIZEEDGE($p_r, \overline{p_k p_i}, \mathcal{T}$) 19. Discard p_{-1} and p_{-2} with all their incident edges from \overline{T} . 20. return $\mathfrak T$

 p_i

 p_r

 p_l

LEGALIZEEDGE($p_r, \overline{p_i p_j}, \mathcal{T}$)

- (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of $\mathcal T$ that may need 1. to be flipped. $*)$
- **if** $\overline{p_i p_j}$ is illegal 2.
- **then** Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$. 3.
- (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$. 4.
- LEGALIZEEDGE($p_r, \overline{p_i p_k}, \mathcal{T}$) 5.
- LEGALIZEEDGE(p_r , $\overline{p_k p_i}$, $\overline{\mathcal{D}}$) 6.

Correctness

Lemma 9.10 Every new edge created in DELAUNAYTRIANGULATION or in LEGALIZEEDGE during the insertion of p_r is an edge of the Delaunay graph of $\{p_{-2}, p_{-1}, p_0, \ldots, p_r\}.$

Implementation Details

- Finding the triangle that contains a point
- Dummy nodes p_{-1} and p_{-2}

Finding Triangle

● Search tree

Dummy Nodes

$$
p_i \text{ left of } p_j p_{-1} \Leftrightarrow i > j
$$

 $p_j p_j$ illegal \Leftrightarrow min(k, l) < min(i, j)

Analysis

Theorem 9.12 The Delaunay triangulation of a set P of n points in the plane can be computed in $O(n \log n)$ expected time, using $O(n)$ expected storage.

Theorem 9.1 Let P be a set of n points in the plane, not all collinear, and let k denote the number of points in P that lie on the boundary of the convex hull of P. Then any triangulation of P has $2n-2-k$ triangles and $3n-3-k$ edges.

Analysis

Lemma 9.11 The expected number of triangles created by algorithm DELAU-NAYTRIANGULATION is at most $9n + 1$.

Storage for search tree is $O(n)$ \bullet

Analysis

- Every visited triangle in tree has been destroyed
- Can be charged to Delaunay Triangle

 $\sum\mathrm{card}(K(\Delta))$

Lemma 9.13 If P is a point set in general position, then

$$
\sum_{\Delta} \mathrm{card}(K(\Delta)) = O(n \log n),
$$

where the summation is over all Delaunay triangles Δ created by the algorithm.

$$
\sum_{r=1}^n \biggl(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \text{card}(K(\Delta)) \biggr).
$$

$$
\sum_{\Delta \in \mathcal{T}_r \backslash \mathcal{T}_{r-1}} \text{card}(K(\Delta)) = \sum_{q \in P \backslash P_r} k(P_r, q, p_r).
$$

$$
\mathrm{E}\big[k(P_r,q,p_r)\big]\leqslant \frac{3k(P_r,q)}{r}.
$$

$$
\mathrm{E}\bigl[\sum_{\Delta\in\mathcal{T}_r\backslash\mathcal{T}_{r-1}}\mathrm{card}(K(\Delta))\bigr]\leqslant\frac{3}{r}\sum_{q\in P\backslash P_r}k(P_r,q).
$$

$$
\mathbf{E}\big[\sum_{\Delta\in\mathcal{T}_r\backslash\mathcal{T}_{r-1}}\text{card}(K(\Delta))\big]\leqslant\frac{3}{r}\sum_{q\in P\backslash P_r}k(P_r,q).
$$

$$
E\big[k(P_r,p_{r+1})\big]=\frac{1}{n-r}\sum_{q\in P\setminus P_r}k(P_r,q).
$$

$$
\mathrm{E}\big[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\mathrm{card}(K(\Delta))\big]\leqslant 3\left(\frac{n-r}{r}\right)\mathrm{E}\big[k(P_r,p_{r+1})\big].
$$

$$
\mathrm{E}\big[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\mathrm{card}(K(\Delta))\big]\leqslant 3\left(\frac{n-r}{r}\right)\mathrm{E}\big[\mathrm{card}(\mathcal{T}_r\setminus\mathcal{T}_{r+1})\big].
$$

$$
\mathrm{E}\big[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\mathrm{card}(K(\Delta))\big]\leqslant 3\Big(\frac{n-r}{r}\Big)\Big(\mathrm{E}\big[\mathrm{card}(\mathcal{T}_{r+1}\setminus\mathcal{T}_r)\big]-2\Big).
$$

$$
E\big[\sum_{\Delta\in\mathfrak{T}_r\setminus\mathfrak{T}_{r-1}}\text{card}(K(\Delta))\big]\leqslant 3\Big(\frac{n-r}{r}\Big)\Big(E\big[\text{card}(\mathfrak{T}_{r+1}\setminus\mathfrak{T}_r)\big]-2\Big).
$$

$$
\mathbf{E}\big[\sum_{\Delta\in\mathcal{T}_r\backslash\mathcal{T}_{r-1}}\text{card}(K(\Delta))\big]\leqslant 12\Big(\frac{n-r}{r}\Big).
$$

$$
\sum_{r=1}^n \bigg(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \text{card}(K(\Delta)) \bigg) \cdot = O(n \log n)
$$

Framework

Theorem 9.14 Let (X, Π, D, K) be a configuration space, and let T and X_r be defined as above. Then the expected number of configurations in $\mathcal{T}(X_r)$ $\mathfrak{T}(X_{r-1})$ is at most

$$
\frac{d}{r}E[\text{card}(\mathfrak{T}(X_r))],
$$

where d is the maximum degree of the configuration space.

Framework

Theorem 9.15 Let (X, Π, D, K) be a configuration space, and let $\mathcal T$ and X_r be defined as above. Then the expected value of

 \sum card $(K(\Delta)),$

where the summation is over all configurations Δ appearing in at least one $\mathcal{T}(X_r)$ with $1 \leq r \leq n$, is at most

$$
\sum_{r=1}^n d^2 \left(\frac{n-r}{r} \right) \left(\frac{\text{E} \left[\text{card}(\mathcal{T}(X_r)) \right]}{r} \right),
$$

where d is the maximum degree of the configuration space.

History

- Descartes 1644
- **Georgy Feodosievych Voronoy 1908**
- Boris Delone 1934

Discussion

- Why maximize the smallest angle instead of minimize the largest angle?
- How necessary is it to compute the exact Delaunay triangulation?