Delaunay Triangulations

Computational Geometry - Algorithms and Applications (Ch. 9)

Problem

Motivation

Approaches

Nearest Neighbor

Triangulation

Definitions

- $P = \{p_1, p_2, ..., p_n\}$:= set of reference points in the plane
- Triangulation := maximal planar graph of a given vertex set

How to pick good triangulation?

Small angles are bad

Angle Vectors

- A(T) := sorted list of all angles in increasing order
- Angle-optimal triangulation has largest lexicographical angle vector

Thales Theorem

Theorem 9.2 Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, and s points lying on the same side of ℓ . Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then

 $\measuredangle arb > \measuredangle apb = \measuredangle aqb > \measuredangle asb.$

Illegal Edges

 $\min_{1\leqslant i\leqslant 6}\alpha_i < \min_{1\leqslant i\leqslant 6}\alpha'_i.$

Illegal Edges

Observation 9.3

Simple Algorithm

Algorithm LEGALTRIANGULATION(\mathcal{T}) Input. Some triangulation \mathcal{T} of a point set P. Output. A legal triangulation of P.

- 1. while \mathcal{T} contains an illegal edge $\overline{p_i p_j}$
- 2. **do** (* Flip $\overline{p_i p_j}$ *)
- 3. Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to $\overline{p_i p_j}$.
- 4. Remove $\overline{p_i p_j}$ from \mathcal{T} , and add $\overline{p_k p_l}$ instead.

5. return T

Voronoi diagram

Theorem 7.4 For the Voronoi diagram Vor(P) of a set of points P the following holds:

- (i) A point q is a vertex of Vor(P) if and only if its largest empty circle $C_P(q)$ contains three or more sites on its boundary.
- (ii) The bisector between sites p_i and p_j defines an edge of Vor(P) if and only if there is a point q on the bisector such that $C_P(q)$ contains both p_i and p_j on its boundary but no other site.

Delaunay Graph

Theorem 9.5 The Delaunay graph of a planar point set is a plane graph.

General Position

- All planes of DG(P) are triangles if no four points of P lie on a circle
- Delaunay Triangulation (may or may not need to add edges to DG(P))

Theorem 9.6 Let P be a set of points in the plane.

- (i) Three points p_i, p_j, p_k ∈ P are vertices of the same face of the Delaunay graph of P if and only if the circle through p_i, p_j, p_k contains no point of P in its interior.
- (ii) Two points $p_i, p_j \in P$ form an edge of the Delaunay graph of P if and only if there is a closed disc C that contains p_i and p_j on its boundary and does

Theorem 9.6 readily implies the following characterization of Delaunay triangulations.

Theorem 9.7 Let P be a set of points in the plane, and let T be a triangulation of P. Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle of T does not contain a point of P in its interior.

Theorem 9.8 Let P be a set of points in the plane. A triangulation T of P is legal if and only if T is a Delaunay triangulation of P.

Theorem 9.9 Let *P* be a set of points in the plane. Any angle-optimal triangulation of *P* is a Delaunay triangulation of *P*. Furthermore, any Delaunay triangulation of *P* maximizes the minimum angle over all triangulations of *P*.

Computing the Delaunay Triangulation

• Randomized, incremental approach

Algorithm DELAUNAYTRIANGULATION(P)

Input. A set P of n + 1 points in the plane.

Output. A Delaunay triangulation of P.

Let p_0 be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate. Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that P 2. is contained in the triangle $p_0 p_{-1} p_{-2}$. Initialize T as the triangulation consisting of the single triangle $p_0 p_{-1} p_{-2}$. 3. 4. Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$. for $r \leftarrow 1$ to n5. 6. **do** (* Insert p_r into \mathcal{T} : *) 7. Find a triangle $p_i p_i p_k \in \mathcal{T}$ containing p_r . 8. **if** p_r lies in the interior of the triangle $p_i p_j p_k$ 9. **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles. 10. 11. LEGALIZEEDGE $(p_r, \overline{p_i p_i}, \mathcal{T})$ LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathfrak{T})$ 12. 13. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathfrak{T})$ else (* p_r lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j}$ *) 14. Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_i}$, thereby splitting the two triangles incident to $\overline{p_i p_i}$ into four triangles. LEGALIZEEDGE $(p_r, \overline{p_i p_l}, \mathfrak{T})$ 15. LEGALIZEEDGE $(p_r, \overline{p_l p_j}, \mathfrak{T})$:16. 17. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathfrak{T})$ LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$ 18. 19. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T} . 20. return T

 p_i

 p_r

 p_l

LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathfrak{T})$

- 1. (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of \mathcal{T} that may need to be flipped. *)
- 2. **if** $\overline{p_i p_j}$ is illegal
- 3. then Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
- 5. LEGALIZEEDGE $(p_r, \overline{p_i p_k}, \mathcal{T})$
- 6. LEGALIZEEDGE $(p_r, \overline{p_k p_j}, \mathcal{T})$

Correctness

Lemma 9.10 Every new edge created in DELAUNAYTRIANGULATION or in LEGALIZEEDGE during the insertion of p_r is an edge of the Delaunay graph of $\{p_{-2}, p_{-1}, p_0, \dots, p_r\}$.

Implementation Details

- Finding the triangle that contains a point
- Dummy nodes p₋₁ and p₋₂

Finding Triangle

• Search tree

Dummy Nodes

$$p_i \text{ left of } p_j p_{-1} \Leftrightarrow i > j$$

p_ip_j illegal ⇔ min(k, l) < min(i, j)

Analysis

Theorem 9.12 The Delaunay triangulation of a set P of n points in the plane can be computed in $O(n \log n)$ expected time, using O(n) expected storage.

Theorem 9.1 Let *P* be a set of *n* points in the plane, not all collinear, and let *k* denote the number of points in *P* that lie on the boundary of the convex hull of *P*. Then any triangulation of *P* has 2n - 2 - k triangles and 3n - 3 - k edges.

Analysis

Lemma 9.11 The expected number of triangles created by algorithm DELAU-NAYTRIANGULATION is at most 9n + 1.

• Storage for search tree is O(n)

Analysis

- Every visited triangle in tree has been destroyed
- Can be charged to Delaunay Triangle

 $\sum_{\Delta} \operatorname{card}(K(\Delta))$

Lemma 9.13 If P is a point set in general position, then

$$\sum_{\Delta} \operatorname{card}(K(\Delta)) = O(n \log n),$$

where the summation is over all Delaunay triangles Δ created by the algorithm.

$$\sum_{r=1}^{n} \left(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \right).$$

$$\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) = \sum_{q \in P \setminus P_r} k(P_r, q, p_r).$$

$$\mathbb{E}[k(P_r,q,p_r)] \leqslant \frac{3k(P_r,q)}{r}.$$

$$\mathbb{E}\Big[\sum_{\Delta\in\mathfrak{T}_r\backslash\mathfrak{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant\frac{3}{r}\sum_{q\in P\backslash P_r}k(P_r,q).$$

$$\mathbb{E}\Big[\sum_{\Delta\in\mathfrak{T}_r\backslash\mathfrak{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant\frac{3}{r}\sum_{q\in P\backslash P_r}k(P_r,q).$$

$$\mathbf{E}[k(P_r, p_{r+1})] = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

$$\mathbf{E}\Big[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant 3\Big(\frac{n-r}{r}\Big)\mathbf{E}\big[k(P_r,p_{r+1})\big].$$

$$\mathbb{E}\Big[\sum_{\Delta\in\mathfrak{T}_r\setminus\mathfrak{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant 3\Big(\frac{n-r}{r}\Big)\mathbb{E}\Big[\operatorname{card}(\mathfrak{T}_r\setminus\mathfrak{T}_{r+1})\Big].$$

$$\mathbb{E}\Big[\sum_{\Delta\in\mathfrak{T}_r\setminus\mathfrak{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant 3\Big(\frac{n-r}{r}\Big)\Big(\mathbb{E}\big[\operatorname{card}(\mathfrak{T}_{r+1}\setminus\mathfrak{T}_r)\big]-2\Big).$$

$$\mathbf{E}\Big[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant 3\Big(\frac{n-r}{r}\Big)\Big(\mathbf{E}\big[\operatorname{card}(\mathcal{T}_{r+1}\setminus\mathcal{T}_r)\big]-2\Big).$$

$$\mathbb{E}\Big[\sum_{\Delta \in \mathfrak{T}_r \setminus \mathfrak{T}_{r-1}} \operatorname{card}(K(\Delta))\Big] \leq 12\Big(\frac{n-r}{r}\Big).$$

$$\sum_{r=1}^{n} \left(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \right) = O(n \log n)$$

Framework

Theorem 9.14 Let (X,Π,D,K) be a configuration space, and let \mathcal{T} and X_r be defined as above. Then the expected number of configurations in $\mathcal{T}(X_r) \setminus \mathcal{T}(X_{r-1})$ is at most

$$\frac{d}{r}E[\operatorname{card}(\mathfrak{T}(X_r))],$$

where d is the maximum degree of the configuration space.

Framework

Theorem 9.15 Let (X,Π,D,K) be a configuration space, and let T and X_r be defined as above. Then the expected value of

 $\sum_{\Delta} \operatorname{card}(K(\Delta)),$

where the summation is over all configurations Δ appearing in at least one $\mathcal{T}(X_r)$ with $1 \leq r \leq n$, is at most

$$\sum_{r=1}^n d^2 \left(\frac{n-r}{r}\right) \left(\frac{\mathrm{E}\left[\mathrm{card}(\mathcal{T}(X_r))\right]}{r}\right),\,$$

where d is the maximum degree of the configuration space.

History

- Descartes 1644
- Georgy Feodosievych Voronoy 1908
- Boris Delone 1934

Discussion

- Why maximize the smallest angle instead of minimize the largest angle?
- How necessary is it to compute the exact Delaunay triangulation?