One machine, one

minute, three
billion tetrahedra

Authors: Célestin Marot, Jeanne Pellerin, Jean-Francois Remacle

02/25/2020

Paper Outline

- Focuses on solving the problem of computing Delaunay
triangulations.

- First, presents a highly optimized improvement of the state-of-the-
art sequential algorithm (Bowyer-Watson) for computing Delaunay
triangulations.

- Second, presents a scalable, parallelized version of the algorithm
that avoids many synchronization issues and complexity that
previous parallel implementations have faced.

- Third, demonstrates how this triangulation algorithm can be plugged
into a Delaunay refinement mesh generator and improve its
performance in practice.

Context

- Delaunay Triangulation is a fundamental problem in computational
geometry, and 1s used i1n many domains (3D scanners, astrophysics,
terrain modeling, etc.)

- Although it can be generalized mathematically to any number of
dimensions, its main practical applicability comes in 3 dimensions

- As data becomes more abundant, it is becoming more important to be
able to triangulate efficiently

- Shared-memory, multi-core machines are fairly common now with
even hundreds of cores, so it 1s sufficient to develop for a single
shared-memory machine

Delaunay Triangulation

- Given a set P of points, a Delaunay triangulation is one such that no
point in P lies within the circumcircle of any triangle in the
triangulation.

- This has many nice locality properties, such as maximizing the
minimum angles of all interior angles in the triangulation, that
make it a problem of interest.

- It can be calculated numerically through the Bowyer-Watson
algorithm, an incremental insertion algorithm.

Bowyer-Watson Algorithm

- An incremental insertion algorithm that builds the triangulation
point-by-point, stepwise fashion.

- Given the Delaunay Triangulation DT, of subset S, = {p;,...,p.} of S,
the algorithm insert point p,,, into the triangulation and creates
DT,,,, a valid triangulation of the subset S,.; = {p;,..-,Pr+1} Of S.

- The insertion first identifies the set of tetrahedra in DT, whose
circumspheres contain p,,,. This is the cavity of p,,; in DT,.

- It then removes this set, as they violate the definition.

- It then adds back a set of tetrahedra that fill the resulting space but
incorporate p,,; (basically p,,,; connected to every boundary triangle).
This is the Delaunay Ball of p,,, in DT,.

Bowyer-Watson Algorithm

- The insertion step can be concisely expressed as:

DTy41 < DTy — C(DTx, pi+1) + B(DTk, pi+1)
- C(DT\, pysq) 18 the cavity of p,,; in DT
- B(DT,, py.1) 1s the is the Delaunay Ball of p,,; in DT

- This process is repeated until the full Delaunay triangulation is
obtained.

- It can be broken into three parts. First, a walk to find the
tetrahedron that contains p,,;. Then, a search to find the cavity.
Finally, a constructive process to add the Delaunay Ball.

Bowyer-Watson Algorithm

A\ BDT. pi.y)

ot == D\ AT py) P\ ADT. i)
(A) (B) ©

FIGURE1 Insertion of a vertex p, , , in the Delaunay triangulation DT}. (A) The triangle containing p, , , is obtained by walking toward
Pi+1- The WALK starts from 7 € B, . (B) The CAvITY function finds all cavity triangles (orange) whose circumcircle contains the vertex p; _ ;.
They are deleted, whereas cavity adjacent triangles (green) are kept. (C) The DELAUNAYBALL function creates new triangles (blue) by
connecting p, ., , to the edges of the cavity boundary

Bowyer-Watson Algorithm

Algorithm 1 Sequential computation of the Delaunay triangulation DT of a set of vertices S
Input: S
Output: DT(S) > Section 2.2
1: function SEQUENTIAL_DELAUNAY(S)
T « INIT(S) > 7 is the current tetrahedron
DT 1
S" « SORT(S \ 1) > Section 2.3
forall p € S’ do
7 «— WALK(DT, 7, p)
C « CaviTY(DT, 7, p) > Section 2.4
DT « DT\ C
B <« DELAUNAYBALL(C. p) > Section 2.5
DT « DTuUB
T—teb
end for
13: return DT
14: end function

L N o

—
o R

Optimization 1: Mesh
Representation

- 32-byte aligned struct to represent vertices (alignment allows cache
efficiency because objects don’t span across cache lines)

- Parallel arrays to represent tetrahedra — each tetrahedron gets 4
entries in 3 arrays, representing vertices, neighbors, and sub-
determinants respectively.

- The indices of these parallel arrays are specifically set up to make
the walk step fast.

- Overall, the mesh struct contains a list of vertices and a list of
tetrahedra.

Optimization 1: Mesh
Representation

typedef struct {
double coordinates[3];
uint64_t padding;

} point3d_t;

typedef struct {

struct {
uint32_t* vertex_ID;
uint64_t* neighbor_ID;
double* sub_determinant;
uint64_t num; e -etr
uint64_t allocated_num; // capacity [in t

} tetrahedra;

struct {
point3d_t* vertex;
uint32_t num; // numb
uint32_t allocated_num; // capa
} vertices;
} mesh_t;

Optimization 1: Mesh
Representation

memory index vertex_ID neighbor_ID

41,
415+ 1
41, +2
4t,+3

an o8
&

-

+

)

41,
41, + 1
41 +2
41, +3

nARs o>
|

4r,
41, + 1
41, +2
4, +3

e Aan
|

41,
41, + 1
41, +2
41, +3

A o>A
|

410 +2

FIGURE 2 Four adjacent tetrahedra: t,. t;, t,, t; and one of their possible memory representations in the tet rahedra data structure given
in Listing 1. tetrahedra.neighbor ID[4f; + j]/4 gives the index of the adjacent tetrahedron opposite to tetrahedra.vertex ID
[4t; + j]in the tetrahedron ¢; and tetrahedra.neighbor ID[4f; + j] gives the index where the inverse adjacency is stored

Optimization 2: Sort

- The walk and cavity complexity depends on the order in which the
points are inserted.

- It has been shown by Boissonnat, et al that a biased-randomized
insertion order (BRIO) achieves a small, constant number of steps
during the walks and a small average cavity size.

- BRIO works by separating the points into successively larger rounds
of insertions, and ordering each round by spatial locality.

- The spatial sorting is done by assigning the points indices based on
their position on a Hilbert/Moore space-filling curve, and then
sorting them by their indices (tradeoff in cost vs resolution).

- The Hilbert/Moore indices tend to be relatively small in range,
because they use a low-resolution curve with respect to the number
of points.

Moore Space-Filling Curves

2 Dl
¢¢ .'-Tﬁﬁ'ﬂf s —TE

T e 1 gm0k I _
— o e
; l—ﬂr O 1) | T 4236

2mx2mx2m]attice, choose m = klog,(n) for a constant number of
overlaps

Optimization 2: Sort

- The paper provides a highly optimized, parallel radix sort routine
that operates specifically over Hilbert/Moore indices and provides
essentially linear time sort.

- It 1s multithreaded and uses vectorized instructions (e.g. AVX 512).

- Because 1t takes advantage of the short keys, it outperforms existing
sort routines.

- The keys are short because the choice of m 1s O(logn), so the number
of keys i1s logarithmic in the number of actual points to be sorted.

Optimization 2: Sort

1,000 || —e— Ours , >
-« - GCC libstdc++ parallel mode: std: :sort () S)
oo bl ™ « - Intel PSTL: std: :sort(par_unseq,..) B ey

~4- Intel TBB: parallel_sort()
~ =~ Boost: block_indirect_sort()
10 || — = - Boost: sample_sort ()
- = - Boost: parallel_stable_sort()
4 GCC libstdc++: std: :sort()
1 || = + - glibc: gsort ()

Time [s]
A Y

»

\

\

L
|
:

0.1 . SRt

0.01 - i SR

0.001

0.0001

10° 10° 107 10° 107
Number of {key, value} pairs sorted (uniform distribution of 64-bit keys, 64-bit values)

Optimization 3: Geometric
Predicates

- During the cavity step of the algorithm, we perform a BFS on the
tetrahedra, using the inSphere geometric predicate to determine
whether the new point is inside the sphere of each tetrahedron.

- This calculation is a very expensive 4x4 matrix determinant

- It 1s optimized by breaking it into a sum of products of 4 3x3 sub-
determinants that only depend on the vertices of the tetrahedron in
question. These sub-determinants can be precomputed and cached
for each tetrahedron.

- There 1s also an orient3D geometric predicate that is used during the
walk step to determine which face to walk through at each step.

Optimization 3: Geometric
Predicates

2
a,a, a. |lal|* 1
x ay a | "2 b,—a, by—a, b,—a, |6 — al|?
b, by, b, |||~ 1 >
y 5 ¢, —a, ¢,—a, ¢c,—a, |c—ad
inSphere(a,b,c,d,e) = ¢, ¢, ¢, |c||” 1| = 3
5 di—a,d,—a,d, —a, ||d—a
d,d,d. ||d|" 1 : >
2 e,—a, e, —a, e, —a, |e—ad
e, e, e, [e]l” 1 -
by—a, b;-a, b — al|? be—ay b;—a; |b-al?
inSphere(a,b,c,d,e)=—(ex—ay) |c,—a, c;—a; |lc—a|*|+(e,—ay)|ex—ax ¢;—a; |c—al?
dy—a, d;—a; ||d-al? dy—ay d;—a; ||d—al?
bx e ax by = ay "b — a"2 bx = ax b)' — ay bz m— az

~@-a) |a-a -, le-al|+le-alf|a-o &g, G-a
dy—ay d,—a, Id — alf? dc—a, dy—a, d;—a;

Optimization 4: Cavity
Representation

- The most expensive step of the triangulation is recalculating the
adjacencies of the newly inserted tetrahedra in the Delaunay Ball.

- The paper proposes a two step process to perform this process very
efficiently.

- First, it notes that the adjacency opposite the new point p,,; of every
tetrahedron is already known from the BFS step during the cavity
exploration (because we would have explored the boundary layer
around the cavity).

- For the remainder of the points, it creates an nxn lookup table that
allows for the adjacencies to be read out in constant time.

Optimization 4: Cavity
Representation

- Each vertex p; 1s assigned index 1; in [0, n) for the lookup table.

- Every new tetrahedron t; consists of points {p,., P1, P2, P53}, Where p;,
Py, P3 are on the boundary of the cavity. Then, adjacency index 4t.+1
1s written to position (1,, 15). Then, the adjacent tetrahedron that
shares edge p,p; will be able to directly read this value out as its
adjacency index, and similarly for all the other directed edges on the
boundary.

- This lookup is predicated on the idea that the number of boundary
vertices of a cavity i1s small, bounded by a prechosen n (chosen as 32).
The paper demonstrates that this value i1s sufficient for almost all
cases, and provides a fallback linear search in the rare case of a
larger cavity.

Optimization 4: Cavity
Representation

typedef struct {
uint32_t new_tetrahedron_vertices [4]; !/ facet wvertices + vertex to insert
uint64_t adjacent_tetrahedron_ID;

} cavityBoundaryFacet_t

typedef struct{

uint64_t adjacency_map[1024]; // optimization purposes, see Section 2.5
struct {
cavityBoundaryFacet_t* boundary_facets;
uint64_t num; // number of boundary facets
uint64_t allocated_num; // capacity [in cavityBoundaryFacet_t
} to_create;
struct {
uint64_t* tetrahedra_ID; _
uint64_t num; // number of deleted tetrahedra

uint64_t allocated_num; //
} deleted;
} cavity_t;

Implementation Details

- The implementation as described does not work if the newly inserted
point does not already lie within the convex hull of already inserted
points.

- In order to solve this problem, the paper introduces a ghost point at
infinity that forms tetrahedra with the entire boundary of the
Delaunay triangulation. In this way, it covers the entire space.

- The orient3D subroutine has to be slightly modified to account for
the infinite tetrahedra, but it otherwise works with no modification
in the algorithm.

Results

TABLE1 Timings for the different steps of the Delaunay incremental insertion

(Algorithm 1) for four implementations, ie, ours, Geogram,'” TetGen,'* and CGAL.'® Timings
in seconds are given for five million points (random uniform distribution). The = prefix
indicates that no accurate timing is available

Ours Geogram TetGemn = CGAL

SEQUENTIAL DELAUNAY 12.7 34.6 329 33.8
INIT + SORT 0.5 42 21 1.3
INCREMENTAL INSERTION 12.2 304 30.8 325

WALK 1.0 21 1.6 14
orient3d 0.7 14 1.1 =05
CAvITY 6.2 11.4 =~ 10 149
inSphere 3.2 6.2 5.6 10.5
DELAUNAYBALL 4.5 12.4 = 15 153
Computing subdeterminants 1.3 / / /

Other operations 0.5 4.5 ~ 4 ~1

Results

100
—— s
= =~ - Geogram 1.5.4
10 - w=-0GAL 412
_ e TetGen 1.5.1-betal # vertices 10* 10° 108 107
E n Ours 0027 021 203 2166
E é Geogram 0060 051 3553 56.02
i CGAL 0062 064 665 6624
0.1 == = TetGen 0.054 056 589 63.99
. | |
10 10¢ 1 107
(A) Number of points (random uniform distribution)
]l.'l.l'JOl'l I E
—— Ours =
- =~ Geogram 1.5.4
1,000 g - # - CGAL4.12
I | TetGen 1.5.1-betal # vertices w108 10 107
E % 1 Ours 0.134 098 936 9797
B g Geogram 0240 247 2534 25974
E T] CGAL 0.265 281 2836 286.54
e - = TetGen 0283 297 3113 33621
=
0l | | 1
10 ¥ e 1’
(B} Number of points (random uniform distribution)

FIGURE 6 Performances of our sequential Delaunay triangulation implementation (Algorithm 1) on a laptop (A) and on a slow CPU
having AVX-512 vectorized instructions (B). Timings are in seconds and exclude the initial spatial sort. A, Intel® Core™ i7-6700HQ CPU,
maximum core frequency of 3.5Ghz; B, Intel® Xeon Phi™ 7210 CPU, maximum core frequency of 1.5Ghz [Colour figure can be viewed at
wileyonlinelibrary.com]|

Parallelization

- Focuses on three key ideas to parallelize the sequential algorithm.

- The first i1s to divide into fully independent subproblems and have a
thread work on each of them sequentially.

- The second is to minimize synchronization of shared memory access.

« The third is to minimize memory writes in general to save memory

bandwidth.

Partitioning

- In order to properly parallelize without data races, there are two key
points to be observed.

- First, the two threads cannot access the same tetrahedra (the
cavities must not overlap, the boundaries must not overlap with the
other cavities, and the walks cannot go through other thread’s
boundaries).

- In order to observe these rules without synchronization overhead, it
1s sufficient to partition the points into independent sets, and to only
allow a thread to process a tetrahedron if it owns at least 3 of its
vertices.

- The second is that two threads cannot insert a tetrahedron into the
same index of the global mesh array. This is done with explicit
synchronization.

Partitioning

Partitioning

- The partitioning is again done with Moore space-filling curves. The
curve 1s drawn with an explicit start and end, and then the points
are assigned indices on the curve. Then, they are split equally
amongst the threads.

- Each partition owns the tetrahedra that have at least 3 vertices in
that partition.

- After all the insertions, there are some points left over in the buffer
regions whose cavities span multiple partitions. The Moore curve is
then transformed and rotated, and the points are repartitioned.

« In order to terminate, the number of threads i1s decreased
proportionally with the number of points so that the buffer regions
don’t get too large. Eventually, the points are inserted sequentially.

artitioning

—I—l*' =

i
=
!
=]
iy
=
A)

(

partition . partition .
start end fipoints start end f#points
1* thread 0 94 5 1¥ thread 0 50 5
2™ thread 94 133 5 2™ thread 50 109 5
3 thread 133 190 5 3 thread 109 188 5
4" thread 190 o 5 4" thread 188 oo 5
© (D)

FIGURE S8 Partitioning of 20 points in 2D using the Moore indices, on the right, the supporting grid of the Moore curve is transformed and
the curve is shifted. In both cases, each partition contains 5 points. Indeed, the starting and ending Moore index of each partition are defined
in a way that balances the point insertions between threads

Partitioning

TABLE 2 Numbers of threads used to insert points in our parallel Delaunay
triangulation implementation according to the number of points to insert, the
mesh size and the insertion success at the previous step. 94.5% of points are
inserted using 8 threads and 5% using 4 threads

toinsert inserted P vertices

Initial mesh 4
BRIO Round 1 2044 2044 100% 1 2048
BRIO Round 2 12288 6988 57% 4 9036
5300 3544 67% 2 12580

1756 1756 100% 1 14336

BRIO Round 3 86016 59907 70% 8 74243
26109 11738 45% 8 85981

14371 7092 49% 4 93073

7279 5332 73% 2 98 405

1947 1947 100% 1 100 352

BRIO Round 4 602112 503730 84% 8 604 082
98 382 44959 46% 8 649041

53423 31702 59% 8 680743

21721 7903 36% 8 688 646

13818 9400 68% 4 698 046

4418 3641 82% 2 701 687

777 777 100% 1 702464

BRIO Round 5 297536 271511 91% 8 973975
26025 16426 63% 8 990401

9599 8092 84% 4 998 493

1507 1507 100% 1 1000000

Partitioning

—a— Intel i17-6700HQ
—e— Intel Xeon Phi 7210
—e— AMD EPYC 7551

=
3
]
1

L 1T T TTT

10

Ll

\\Im'

i

Million tetrahedra per second

-

Lil

| | ! |

10* 10° 106 107 10% 10°
Number of points (random uniform distribution)

FIGURE 9 Number of tetrahedra created per second by our parallel implementation for different number of points. Tetrahedra are created
more quickly when there is a lot of points because the proportion of conflicts is lower. An average rate of 65 million tetrahedra created per
second is obtained on the EPYC

Data Structures

- The sub-determinant optimization is removed for the parallel
1mplementation, because the memory bandwidth becomes a
bottleneck (due to all the cores working in parallel) rather than the
computational time.

- The extra parallel array 1s just used to store whether the tetrahedra
1s deleted or not.

Synchronized Memory Access

- All of the threads have to insert into the global mesh array. This
requires memory synchronization.

- As a first order optimization, the threads each have their own cavity
object and reuse the deleted tetrahedron spaces to insert new
tetrahedra.

- If a thread runs out of deleted space and needs to insert more, it
needs to atomically claim memory in the global mesh array.

- The threads claim memory in chunks of 8192 (experimentally
chosen) in order to minimize the amount of synchronization required
- tradeoff between thread synchronization and wasted memory.

- The thread synchronization is done with OpenMP.

Synchronized Memory Access

if (cavity->to_create.num > cavity->deleted.num)

uint64_t nTetNeeded = MAX(8192, cavity->to_create.num) - cavity->deleted.num;

5 uint64_t nTet;
#pragma omp atomic capture

nTet = mesh->tetrahedra.num;
mesh->tetrahedra.num+=nTetNeeded;

10 b

reallocTetrahedralfNeeded (mesh);
reallocDeletedIfNeeded (state, cavity->deleted.num + nTetNeeded) ;

5 for (uint64_t i=0; i<nTetNeeded; i++){
cavity->deleted.tetrahedra_ID[cavity->deleted.num+i] = 4*(nTet+i);
mesh->tetrahedra.color[nTet+i] = DELETED_COLOR;

20 cavity->deleted.num += nTetNeeded;

' |

Listing3 When there are less deleted tetrahedra than there are tetrahedra in the Delaunay ball, 8192 new “deleted tetrahedra” indices are
reserved by the thread. As the mesh data structure is shared by all threads, mesh->tetrahedra.num must be increased in one single
atomic operation

Synchronized Memory Access

- If the space entirely runs out of the global mesh array, more space
needs to be allocated in the global array.

- This 1s done by a single thread in a locked section.

- This does not occur that often because the static space requirements
of the entire algorithm can be very well approximated based on the
Input size.

Synchronized Memory Access

void reallocTetrahedralfNeeded (mesh_t* mesh)
{
if (mesh->tetrahedra.num > mesh->tetrahedra.allocated_num)
5 #pragma omp barrier
// all threads are blocked except the one doing the reallocation
#pragma omp single
10 uint64_t nTet = mesh->tetrahedra.num;
alignedRealloc (&mesh->tetrahedra.neighbor_ID, nTet#*8%*sizeof (uint64_t));
alignedRealloc (kmesh->tetrahedra.vertex_ID, nTet*8*sizeof (uint32_t));
alignedRealloc (&mesh->tetrahedra.color, nTet*2*sizeof (uinti6_t));
mesh->tetrahedra.allocated_num = 2*nTet;
15
} // implicit OpenMP barrier here
}
}

Listing4 Memory allocation for new tetrahedra is synchronized with OpenMP barriers

Results

1

—a— Intel i7-6700HQ

\\ —e— Intel Xeon Phi 7210
100

—s— AMD EPYC 7551
- - - perfect scaling

It i tiil

Time [s]

10

Number of threads

FIGURE 10 Strong scaling of our parallel Delaunay for a random uniform distribution of 15 million points, resulting in over 100 million
tetrahedra on three machines, ie, a quad-core laptop, an Intel Xeon Phi with 64 cores, and a dual-socket AMD EPYC 2 X 32 cores

esults

e Ours | | L
10 | - - Geogram 1.5.4
| - » - CGAL4.12
E g # vertices 10t 100 100 107
= e {1 Ous 0032 013 085 740
'_,,"r"' 1 Geogram 0.041 0.19 173 17.11
bt | | || L CGAL 0037 024 220 2337
= i i]
10 105 106 107
Number of points (random uniform distribution)
(A)
Ou in T s T
— rs -
10F. . copmiss P == =asans
| - » - CGAL4.12 .
= 10
g f #vertices 10° 10° 10° 100 10%
= Ours 0.11 043 117 448 2895
TE Geogram 0.10 0.54 458 43.70 /
CGAL 027 048 244 20.15 /
0.1 2z 1 1 1 1
10t 10° 10 10’ 108
Number of points (random uniform distribution)
(B)

FIGURE 11 Comparison of our parallel implementation with the parallel implementation in CGAL’” and Geogram'” with on a high-end
laptop (A) and a many-core computer (B). All timings are in seconds. A, 4-core Intel® Core™ i7-6700HQ CPU; B, 64-core Intel® Xeon Phi™
7210 CPU [Colour figure can be viewed at wileyonlinelibrary.com|

Mesh Generation

- Mesh generation is the problem of taking a boundary and producing
a tetrahedron mesh that has the given boundary.

- It includes Delaunay triangulation as a subprocess.

- The paper introduces a mesh generation routine based on existing
work 1n which they implemented their new triangulation routine and
the parallelization techniques discussed above.

- They demonstrate that their parallelization techniques extend to this
practical application.

Mesh Generation

Algorithm 2 Mesh generation algorithm
Input: A set of triangles ¢
Output: A tetrahedral mesh 7
1: function PARALLEL MESHER(?)
To < EMPTYMESH(t)
T « RECOVERBOUNDARY(Ty)
while 7 contains large tetrahedra do
S «— SAMPLEPOINTS(T)
S < FILTERPOINTS(S)
T « INSERTPOINTS(T, S)
end while
9: return 7
10: end function

Nswm R oW

Mesh Generation

100 fibers

Timings (s)
BR Refine Total

12608242 0.74 196 208
12600859 0.72 136 146
12567576 0.72 8.7 9.8
12586972 0.71 7.6 8.7

threads # tetrahedra

o0 9 -

300 fibers

Timings (s)
BR Refine Total

52796891 6.03 924 1013
52635891 5.76 612 690
52768565 5.71 394 468
52672898 5.67 325 398

threads # tetrahedra

L O S

Mesh Generation

Mechanical part
Timings (s)
threads # tetrahedra BR Refine Total
1 24275207 8.6 436 563
2 24290299 84 304 418
4 24236112 8.1 246 353
8 24230468 8.1 21.8 326

Mesh Generation

Truck tire

Timings (s)
BR Refine Total

123640429 759 2597 3647
123593913 745 1668 267.1
123625696 742 1074 2036
123452318 742 955 1900

#threads # tetrahedra

0 B -

FIGURE 12 Performances of our parallel mesh generator on an Intel® Core™ i7-6700HQ 4-core CPU. Wall clock times are given for the
whole meshing process for 1 to 8 threads. They include I/Os (sequential), initial mesh generation (parallel), as well as sequential boundary
recovery (BR), and parallel Delaunay refinement for which detailed timings are given [Colour figure can be viewed at wileyonlinelibrary.com]

esh Generation

100 thin fibers

Timings (s)

#threads # tetrahedra BR Refine Total

| 325611841 3.1 4921 4972
2 325786170 29 329.7 3343
4 325691796 2.8 2295 2339
8 325211989 2.7 1546 1587
16 324897471 28 96.8 100.9
32 325221244 27 717 758
64 324701883 28 558 60.1

127 324190447 29 476 520

500 thin fibers

Timings (s)
BR Refine Total
723208595 189 12058 12344

#threads # tetrahedra

1

2 723098577 160 7803 8048
4 722664991 86.6 567.1 6598
8 722329174 158 349.1 370.1
16 723093143 156 2162 2365

32 722013476 156 1497 1698
64 721572235 159 1197 1404
127 721591846 159 1142 1352

Aircraft

Timings (s)
BR Refine Total
672209630 452 13485 14183

#threads # tetrahedra

|

2 671432038 42.1 11489 12115

8 665826109 396 7148 7748
64 664587093 387 3223 3809
127 663921974 38.1 2550 3133

FIGURE 13 Performances of our parallel mesh generator on an AMD® EPYC 64-core machine. Wall clock times are given for the whole
meshing process for 1 to 127 threads. They include I/Os (sequential), initial mesh generation (parallel), as well as sequential boundary
recovery (BR), and parallel Delaunay refinement for which detailed timings are given

Related Work

- There are many existing implementations of the sequential Bowyer-
Watson algorithm.

- There are many existing parallelizations as well.

- Many of them perform merge steps to combine independent
triangulations; these merge steps tend to be expensive and serial.

- There are many divide-and-conquer strategies as well, but they use
locks or barriers (Remacle, et al) to coordinate access to memory.
This causes too much overhead on large numbers of cores.

- Loseille, et al do partitioning based on space-filling curves, but do not
perform the repartitioning step in between rounds to insert points
that couldn’t be inserted previously.

Thoughts

- Strengths

+ This paper has many novel ideas, such as portioning based on Moore curve
and repartitioning by using transformations of the indices.

- It takes advantage of cache operations to design very efficient data
structures.

- It manages to parallelize operations without synchronization overhead,
allowing for high scalability.

* It outperforms state-of-the-art Delaunay triangulation routines.

- Weaknesses

« This paper focuses specifically on shared-memory machines and does not
work on distributed-memory architectures.

- Does not present the data that led to specific parameter choices.

Discussion

- How could these ideas be extended to distributed-memory
architectures?

- What new architectural features would be most beneficial to
speeding up this algorithm?

- Does the work capacity of an extra thread always outweigh the
potential loss of memory bandwidth?

