
One machine, one 
minute, three 
billion tetrahedra
Authors: Célestin Marot, Jeanne Pellerin, Jean-François Remacle

02/25/2020



Paper Outline
• Focuses on solving the problem of computing Delaunay 

triangulations.

• First, presents a highly optimized improvement of the state-of-the-
art sequential algorithm (Bowyer-Watson) for computing Delaunay 
triangulations.

• Second, presents a scalable, parallelized version of the algorithm 
that avoids many synchronization issues and complexity that 
previous parallel implementations have faced.

• Third, demonstrates how this triangulation algorithm can be plugged 
into a Delaunay refinement mesh generator and improve its 
performance in practice.



Context
• Delaunay Triangulation is a fundamental problem in computational 

geometry, and is used in many domains (3D scanners, astrophysics, 
terrain modeling, etc.)

• Although it can be generalized mathematically to any number of 
dimensions, its main practical applicability comes in 3 dimensions

• As data becomes more abundant, it is becoming more important to be 
able to triangulate efficiently

• Shared-memory, multi-core machines are fairly common now with 
even hundreds of cores, so it is sufficient to develop for a single 
shared-memory machine



Delaunay Triangulation
• Given a set P of points, a Delaunay triangulation is one such that no 

point in P lies within the circumcircle of any triangle in the 
triangulation.

• This has many nice locality properties, such as maximizing the 
minimum angles of all interior angles in the triangulation, that 
make it a problem of interest.

• It can be calculated numerically through the Bowyer-Watson 
algorithm, an incremental insertion algorithm.



Bowyer-Watson Algorithm
• An incremental insertion algorithm that builds the triangulation 

point-by-point, stepwise fashion.

• Given the Delaunay Triangulation DTk of subset Sk = {p1,…,pk} of S, 
the algorithm insert point pk+1 into the triangulation and creates 
DTk+1, a valid triangulation of the subset Sk+1 = {p1,…,pk+1} of S.

• The insertion first identifies the set of tetrahedra in DTk whose 
circumspheres contain pk+1. This is the cavity of pk+1 in DTk.

• It then removes this set, as they violate the definition.

• It then adds back a set of tetrahedra that fill the resulting space but 
incorporate pk+1 (basically pk+1 connected to every boundary triangle). 
This is the Delaunay Ball of pk+1 in DTk.



Bowyer-Watson Algorithm
• The insertion step can be concisely expressed as:

• C(DTk, pk+1) is the cavity of pk+1 in DTk

• B(DTk, pk+1) is the is the Delaunay Ball of pk+1 in DTk

• This process is repeated until the full Delaunay triangulation is 
obtained.

• It can be broken into three parts. First, a walk to find the 
tetrahedron that contains pk+1. Then, a search to find the cavity. 
Finally, a constructive process to add the Delaunay Ball.



Bowyer-Watson Algorithm



Bowyer-Watson Algorithm



Optimization 1: Mesh 
Representation
• 32-byte aligned struct to represent vertices (alignment allows cache 

efficiency because objects don’t span across cache lines)

• Parallel arrays to represent tetrahedra – each tetrahedron gets 4 
entries in 3 arrays, representing vertices, neighbors, and sub-
determinants respectively.

• The indices of these parallel arrays are specifically set up to make 
the walk step fast.

• Overall, the mesh struct contains a list of vertices and a list of 
tetrahedra.



Optimization 1: Mesh 
Representation



Optimization 1: Mesh 
Representation



Optimization 2: Sort
• The walk and cavity complexity depends on the order in which the 

points are inserted.

• It has been shown by Boissonnat, et al that a biased-randomized 
insertion order (BRIO) achieves a small, constant number of steps 
during the walks and a small average cavity size.

• BRIO works by separating the points into successively larger rounds 
of insertions, and ordering each round by spatial locality.

• The spatial sorting is done by assigning the points indices based on 
their position on a Hilbert/Moore space-filling curve, and then 
sorting them by their indices (tradeoff in cost vs resolution).

• The Hilbert/Moore indices tend to be relatively small in range, 
because they use a low-resolution curve with respect to the number 
of points.



Moore Space-Filling Curves

2mx2mx2m lattice, choose m = klog2(n) for a constant number of 

overlaps



Optimization 2: Sort
• The paper provides a highly optimized, parallel radix sort routine 

that operates specifically over Hilbert/Moore indices and provides 
essentially linear time sort.

• It is multithreaded and uses vectorized instructions (e.g. AVX 512).

• Because it takes advantage of the short keys, it outperforms existing 
sort routines.

• The keys are short because the choice of m is O(logn), so the number 
of keys is logarithmic in the number of actual points to be sorted.



Optimization 2: Sort



Optimization 3: Geometric 
Predicates
• During the cavity step of the algorithm, we perform a BFS on the 

tetrahedra, using the inSphere geometric predicate to determine 
whether the new point is inside the sphere of each tetrahedron.

• This calculation is a very expensive 4x4 matrix determinant

• It is optimized by breaking it into a sum of products of 4 3x3 sub-
determinants that only depend on the vertices of the tetrahedron in 
question. These sub-determinants can be precomputed and cached 
for each tetrahedron.

• There is also an orient3D geometric predicate that is used during the 
walk step to determine which face to walk through at each step.



Optimization 3: Geometric 
Predicates



Optimization 4: Cavity 
Representation
• The most expensive step of the triangulation is recalculating the 

adjacencies of the newly inserted tetrahedra in the Delaunay Ball.

• The paper proposes a two step process to perform this process very 
efficiently.

• First, it notes that the adjacency opposite the new point pk+1 of every 
tetrahedron is already known from the BFS step during the cavity 
exploration (because we would have explored the boundary layer 
around the cavity).

• For the remainder of the points, it creates an nxn lookup table that 
allows for the adjacencies to be read out in constant time.



Optimization 4: Cavity 
Representation
• Each vertex pj is assigned index ij in [0, n) for the lookup table.

• Every new tetrahedron ti consists of points {pk+1, p1, p2, p3}, where p1, 
p2, p3 are on the boundary of the cavity. Then, adjacency index 4ti+1 
is written to position (i2, i3). Then, the adjacent tetrahedron that 
shares edge p2p3 will be able to directly read this value out as its 
adjacency index, and similarly for all the other directed edges on the 
boundary.

• This lookup is predicated on the idea that the number of boundary 
vertices of a cavity is small, bounded by a prechosen n (chosen as 32). 
The paper demonstrates that this value is sufficient for almost all 
cases, and provides a fallback linear search in the rare case of a 
larger cavity.



Optimization 4: Cavity 
Representation



Implementation Details
• The implementation as described does not work if the newly inserted 

point does not already lie within the convex hull of already inserted 
points.

• In order to solve this problem, the paper introduces a ghost point at 
infinity that forms tetrahedra with the entire boundary of the 
Delaunay triangulation. In this way, it covers the entire space.

• The orient3D subroutine has to be slightly modified to account for 
the infinite tetrahedra, but it otherwise works with no modification 
in the algorithm.



Results



Results



Parallelization
• Focuses on three key ideas to parallelize the sequential algorithm.

• The first is to divide into fully independent subproblems and have a 
thread work on each of them sequentially.

• The second is to minimize synchronization of shared memory access.

• The third is to minimize memory writes in general to save memory 
bandwidth.



Partitioning
• In order to properly parallelize without data races, there are two key 

points to be observed. 

• First, the two threads cannot access the same tetrahedra (the 
cavities must not overlap, the boundaries must not overlap with the 
other cavities, and the walks cannot go through other thread’s 
boundaries).

• In order to observe these rules without synchronization overhead, it 
is sufficient to partition the points into independent sets, and to only 
allow a thread to process a tetrahedron if it owns at least 3 of its 
vertices.

• The second is that two threads cannot insert a tetrahedron into the 
same index of the global mesh array. This is done with explicit 
synchronization.



Partitioning



Partitioning
• The partitioning is again done with Moore space-filling curves. The 

curve is drawn with an explicit start and end, and then the points 
are assigned indices on the curve. Then, they are split equally 
amongst the threads.

• Each partition owns the tetrahedra that have at least 3 vertices in 
that partition.

• After all the insertions, there are some points left over in the buffer 
regions whose cavities span multiple partitions. The Moore curve is 
then transformed and rotated, and the points are repartitioned.

• In order to terminate, the number of threads is decreased 
proportionally with the number of points so that the buffer regions 
don’t get too large. Eventually, the points are inserted sequentially.



Partitioning



Partitioning



Partitioning



Data Structures
• The sub-determinant optimization is removed for the parallel 

implementation, because the memory bandwidth becomes a 
bottleneck (due to all the cores working in parallel) rather than the 
computational time.

• The extra parallel array is just used to store whether the tetrahedra 
is deleted or not.



Synchronized Memory Access
• All of the threads have to insert into the global mesh array. This 

requires memory synchronization.

• As a first order optimization, the threads each have their own cavity 
object and reuse the deleted tetrahedron spaces to insert new 
tetrahedra.

• If a thread runs out of deleted space and needs to insert more, it 
needs to atomically claim memory in the global mesh array.

• The threads claim memory in chunks of 8192 (experimentally 
chosen) in order to minimize the amount of synchronization required 
- tradeoff between thread synchronization and wasted memory.

• The thread synchronization is done with OpenMP.



Synchronized Memory Access



Synchronized Memory Access
• If the space entirely runs out of the global mesh array, more space 

needs to be allocated in the global array.

• This is done by a single thread in a locked section.

• This does not occur that often because the static space requirements 
of the entire algorithm can be very well approximated based on the 
input size.



Synchronized Memory Access



Results



Results



Mesh Generation
• Mesh generation is the problem of taking a boundary and producing 

a tetrahedron mesh that has the given boundary.

• It includes Delaunay triangulation as a subprocess.

• The paper introduces a mesh generation routine based on existing 
work in which they implemented their new triangulation routine and 
the parallelization techniques discussed above.

• They demonstrate that their parallelization techniques extend to this 
practical application.



Mesh Generation



Mesh Generation



Mesh Generation



Mesh Generation



Mesh Generation



Related Work
• There are many existing implementations of the sequential Bowyer-

Watson algorithm.

• There are many existing parallelizations as well.

• Many of them perform merge steps to combine independent 
triangulations; these merge steps tend to be expensive and serial.

• There are many divide-and-conquer strategies as well, but they use 
locks or barriers (Remacle, et al) to coordinate access to memory. 
This causes too much overhead on large numbers of cores.

• Loseille, et al do partitioning based on space-filling curves, but do not 
perform the repartitioning step in between rounds to insert points 
that couldn’t be inserted previously.



Thoughts
• Strengths

 This paper has many novel ideas, such as portioning based on Moore curve 
and repartitioning by using transformations of the indices.

 It takes advantage of cache operations to design very efficient data 
structures.

 It manages to parallelize operations without synchronization overhead, 
allowing for high scalability.

 It outperforms state-of-the-art Delaunay triangulation routines.

• Weaknesses

 This paper focuses specifically on shared-memory machines and does not 
work on distributed-memory architectures.

 Does not present the data that led to specific parameter choices.



Discussion
• How could these ideas be extended to distributed-memory 

architectures?

• What new architectural features would be most beneficial to 
speeding up this algorithm?

• Does the work capacity of an extra thread always outweigh the 
potential loss of memory bandwidth?


