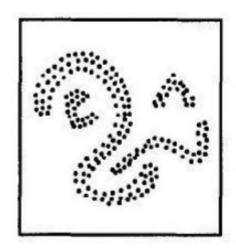
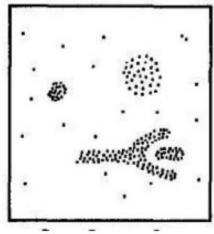
Euclidean DBSCAN

By: Shwetark Patel

Density-based clustering

- Cluster points so that there is a "sparse region" in between clusters
- DBSCAN is a type of density-based clustering





- Let B(p,r) be the ball centered at the point p with radius r
- Let dist(p, q) be the Euclidean distance between points p and q
- There are two user supplied inputs to DBSCAN: ∈ and MinPts

Definition 2.1. A point $p \in P$ is a **core point** if $B(p, \epsilon)$ covers at least *MinPts* points of P (including p itself).

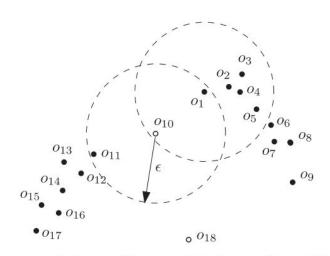


Fig. 2. An example dataset (the two circles have radius ϵ ; MinPts = 4).

o₁ is a core pointo₁₀ is not a core point

Definition 2.2. A point $q \in P$ is **density-reachable** from $p \in P$ if there is a sequence of points $p_1, p_2, \ldots, p_t \in P$ (for some integer $t \ge 2$) such that

- $-p_1 = p$ and $p_t = q$,
- $-p_1, p_2, \ldots, p_{t-1}$ are core points,
- $-p_{i+1} \in B(p_i, \epsilon)$ for each $i \in [1, t-1]$.

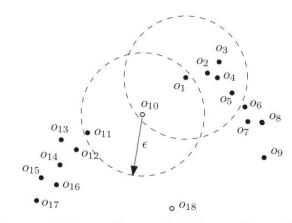


Fig. 2. An example dataset (the two circles have radius ϵ ; MinPts = 4).

Definition 2.3. A **cluster** *C* is a non-empty subset of *P* such that

- —(Maximality) If a core point $p \in C$, then all the points density-reachable from p also belong to C.
- —(Connectivity) For any points $p_1, p_2 \in C$, there is a point $p \in C$ such that both p_1 and p_2 are density-reachable from p.

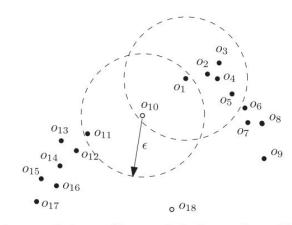


Fig. 2. An example dataset (the two circles have radius ϵ ; MinPts = 4).

Remark. A cluster can contain both core and non-core points. Any non-core point p in a cluster is called a *border point*. Some points may not belong to any clusters at all; they are called *noise points*. In Figure 2, o_{10} is a border point, while o_{18} is noise.

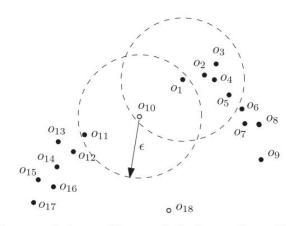


Fig. 2. An example dataset (the two circles have radius ϵ ; MinPts = 4).

PROBLEM 1. The **DBSCAN** problem is to find the unique set \mathscr{C} of clusters of P.

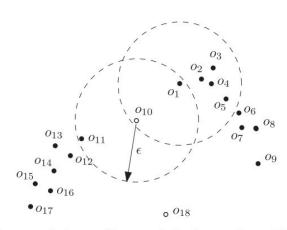


Fig. 2. An example dataset (the two circles have radius ϵ ; MinPts = 4).

Existing Work

- An O(nlogn) worst case solution to 2D DBSCAN already exists
- However, our algorithm does better on an approximate version of DBSCAN

New DBSCAN Algorithm for d >= 3

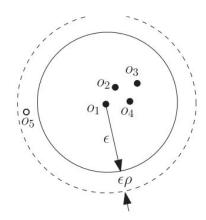
- Split up R^d into cells that are hyper-squares with side lengths $\frac{c}{\sqrt{d}}$
- This ensures that any two points in the same cell are within distance
 ε of each other
- A core cell is a cell that contains at least one core point
- Consider two different cells. They are ε-neighbors of each other if the minimum distance between them is less than ε.

New DBSCAN Algorithm for d >= 3

- Create a graph G where we have a node for each core cell
- Connect two nodes c1 and c2 if the distance between any core point in c1 and any core point in c2 is <= ε
- We can do this by going through all ε-neighbors of the cell (of which there are a constant number) and using a closest-pairs algorithm
- Compute the connected components of G. Each connected component corresponds to a cluster (excluding border points, which we need to assign by ourselves).

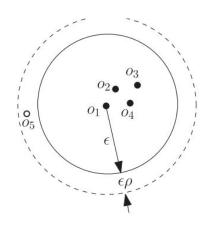
Definition 4.1. A point $q \in P$ is ρ -approximate density-reachable from $p \in P$ if there is a sequence of points $p_1, p_2, \ldots, p_t \in P$ (for some integer $t \ge 2$) such that

- $-p_1 = p$ and $p_t = q$,
- $-p_1, p_2, \ldots, p_{t-1}$ are core points, and
- $-p_{i+1} \in B(p_i, \epsilon(1+\rho))$ for each $i \in [1, t-1]$.



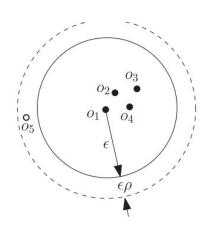
Definition 4.2. A ρ -approximate cluster C is a non-empty subset of P such that

- —(Maximality) If a core point $p \in C$, then all the points density-reachable from p also belong to C.
- $-(\rho$ -Approximate Connectivity) For any points $p_1, p_2 \in C$, there exists a point $p \in C$ such that both p_1 and p_2 are ρ -approximate density-reachable from p.



 $O_{1,}$ $O_{2,}$ $O_{3,}$ O_{4} and $O_{1,}$ $O_{2,}$ $O_{3,}$ $O_{4,}$ O_{5} are both valid clusters

PROBLEM 2. The ρ -approximate DBSCAN problem is to find a set $\mathscr C$ of ρ -approximate clusters of P such that every core point of P appears in exactly one ρ -approximate cluster.

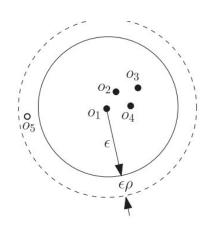


Sandwich Theorem

- Let A be the set of clusters after running DBSCAN with (ε, MinPts)
- Let B be the set of clusters after running DBSCAN with (ε * (1 + p), MinPts)
- Let C be the set of clusters after running p-Approximate DBSCAN with (ε, MinPts)
- Our claim is that C is a result somewhere in between A and B

Approximate Range Counting

Let P still be a set of n points in \mathbb{R}^d where d is a constant. Given any point $q \in \mathbb{R}^d$, a distance threshold $\epsilon > 0$ and an arbitrarily small constant $\rho > 0$, an *approximate range count query* returns an integer that is guaranteed to be between $|B(q,\epsilon) \cap P|$ and $|B(q,\epsilon(1+\rho)) \cap P|$. For example, in Figure 5, given $q = o_1$, a query may return either 4 or 5.



Approximate Range Counting

Lemma 4.5. For any fixed ϵ and ρ , there is a structure of O(n) space that can be built in O(n) expected time, and answers any approximate range count query in O(1) expected time.

Theorem 4.6. There is a ρ -approximate DBSCAN algorithm that terminates in O(n) expected time, regardless of the value of ϵ , the constant approximation ratio ρ , and the fixed dimensionality d.

Algorithm. Our ρ -approximate algorithm differs from the exact algorithm we proposed in Section 3.2 *only* in the definition and computation of the graph G. We re-define G = (V, E) as follows:

- —As before, each vertex in V is a core cell of the grid T (remember that the algorithm of Section 3.2 imposes a grid T on \mathbb{R}^d , where a cell is a core cell if it covers at least one core point).
- -Given two different core cells c_1 , c_2 , whether E has an edge between c_1 and c_2 obeys the rules below:
 - —yes, if there exist core points p_1, p_2 in c_1, c_2 , respectively, such that $dist(p_1, p_2) \le \epsilon$;
 - —no, if no core point in c_1 is within distance $\epsilon(1+\rho)$ from any core point in c_2 ;
 - -don't care, in all the other cases.

- To generate the edges of a core cell c₁, we examine each ε-neighbor cell c₂ of c₁, in turn.
- For every core point p in c₁, do an approximate range count query on the set of core points in c₂.
- If the query returns a non-zero answer, add an edge (c₁,c₂) to G

- In all the cases where we have to add an edge (there is a point in c_2 within the ϵ -radius circle of the point in c_1), an edge is added
- In all the cases where we can't add an edge (there isn't a point in c₂ within the ε(1+p)-radius circle of the point in c₁), an edge is not added

Time complexity

- For each core point of a cell c₁, we issue an approximate range count query for each ε-neighbor cell c₂
- There are O(1) ε-neighbor cells for each cell c₁, so we issue O(n) approximate range count queries
- Each approximate range count query is O(1) expected time, so O(n) expected time overall

Heuristics

- Instead of maintaining the graph G, just maintain connected components using union find
- Store all non-empty ε-neighbors of a cell in a list after computing them for the first time (acts kind of like a cache)

Another interesting result

 For 2D DBSCAN, if n data points have been presorted on each dimension, then 2D DBSCAN can be solved in O(n) time

Performance

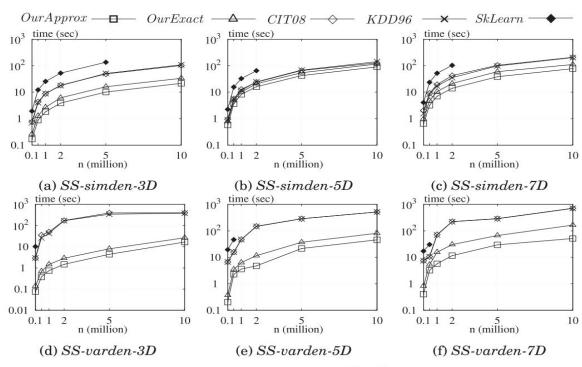


Fig. 19. Running time vs. $n (d \ge 3)$.

Performance

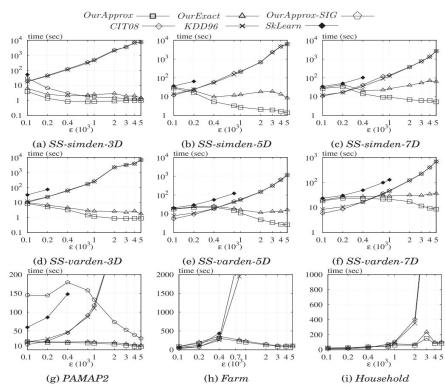


Fig. 18. Running time vs. ϵ ($d \ge 3$).

Performance

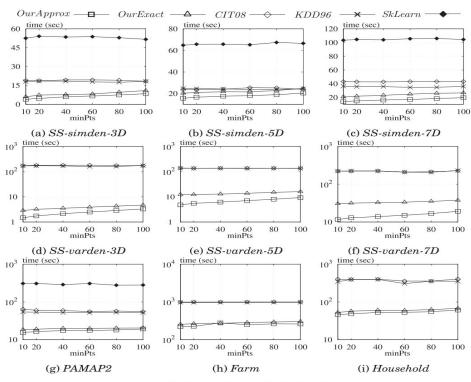


Fig. 21. Running time vs. MinPts ($d \ge 3$).

Strengths

 Better time complexity (O(N) expected time) and produces results very similar to regular DBSCAN

Weakness

 We don't have a fixed number of clusters based on ε and MinPts, while we do in k-means clustering.

Discussion Questions

- When is it best to use K-means clustering over DBSCAN, and vice versa?
- How does changing ε and MinPts generally change our output clusters?