Euclidean DBSCAN

By: Shwetark Patel

Density-based clustering

e Cluster points so that there is a “sparse region” in between clusters
e DBSCAN is a type of density-based clustering

oo ol " :':‘. .-.‘.§.
o . &
‘\'S:. . o':. -
o e :‘
o;:.." ’f H Sees . . l}"
<Y o .. e
o.o? é. .:o: ’m‘{\ .@"l e&b
...0 Can? ‘.o..‘ . q i
- ’ ' ‘ " o = 5 .

Basic Definitions

e Let B(p,r) be the ball centered at the point p with radius r
e Letdist(p, q) be the Euclidean distance between points p and q

e There are two user supplied inputs to DBSCAN: € and MinPts

Basic Definitions

Definition 2.1. A pointp € Pisa core pointif B(p, €) covers at least MinPts points of P (including
p itself).

7/ N
/ \
S 03 |
. SL 02 e \
// I e, %004 | . -
SR W O 1 O, IS a Core pomt
) /
4 \ 010 ‘] 05 ¢06 1
\O -
013 X) e e . .
S I A 0., IS not a core point
e ° \ € T) 10
014 0 1\2\ B / ° 09
o5 ° Vg i
. ¥
® 016
L] -
017 o 018

Fig. 2. An example dataset (the two circles have radius €; MinPts = 4).

Basic Definitions

Definition 2.2. A point q € P is density-reachable from p € P if there is a sequence of points
P1,D2, - - -, Pt € P (for some integer ¢t > 2) such that

—p1 =pandp; = q,
—p1, P2, . . ., Pr—1 are core points,
—pi+1 € B(pi,€) foreachi € [1,t —1].

®
® 016

®0~
017 o 018

Fig. 2. An example dataset (the two circles have radius €; MinPts = 4).

Basic Definitions

Definition 2.3. A cluster C is a non-empty subset of P such that

—(Maximality) If a core point p € C, then all the points density-reachable from p also belong
to C.

—(Connectivity) For any points py, p, € C, there is a point p € C such that both p; and p, are
density-reachable from p.

P g 02 e \
/ : o, %004 |
/ \\ o1 % |
/ 05 /
[v 010 ! 5 /.OG
\O 08
| S | e o
013 o 011 N s =z o7
X € T
L]
014 012 o
O] L] S -
® 016
L] -
017 o 018

Fig. 2. An example dataset (the two circles have radius €; MinPts = 4).

Basic Definitions

Remark. A cluster can contain both core and non-core points. Any non-core point p in a cluster
is called a border point. Some points may not belong to any clusters at all; they are called noise
points. In Figure 2, 0y is a border point, while 0,5 is noise.

7 X
/ \
S 03
//l \\ 02 e \
& o, %004 |
/ \\ 01 e !
/
1 \ 010 . 95 906
N .
01« ! » I // L4 .08
13 w011 N s =z o7
* o \ € / .
014 01\2\ // o9
o15 ° N 22
S S
® 016
®017 o 018

Fig. 2. An example dataset (the two circles have radius €; MinPts = 4).

Basic Definitions

PrOBLEM 1. The DBSCAN problem is to find the unique set € of clusters of P.

Fig. 2.

7 X
/ \
P 03
- / \\ 02 e \
7 ! e, ®e04 |
/ ‘\ 01)
p) /
l’ v 010 \l 05 o06
\O Os
01« ! » I // ® o 8
13 e 011 o _ 157 o7
* o \ € T B
014 Om\ // 9
015 ° Vg W
® 016
L] -
017 o 018

An example dataset (the two circles have radius €; MinPts = 4).

Existing Work

e An O(nlogn) worst case solution to 2D DBSCAN already
exists

e However, our algorithm does better on an approximate
version of DBSCAN

New DBSCAN Algorithm ford >= 3

€

Split up R? into cells that are hyper-squares with side lengths W
(

This ensures that any two points in the same cell are within distance
e of each other

A core cell is a cell that contains at least one core point

Consider two different cells. They are e-neighbors of each other if
the minimum distance between them is less than €.

New DBSCAN Algorithm ford >= 3

Create a graph G where we have a node for each core cell

Connect two nodes ¢1 and c2 if the distance between any core point
in ¢c1 and any core pointin c2 is <= ¢

We can do this by going through all e-neighbors of the cell (of which
there are a constant number) and using a closest-pairs algorithm

Compute the connected components of G. Each connected
component corresponds to a cluster (excluding border points, which
we need to assign by ourselves).

Approximate DBSCAN

Definition 4.1. A point q € P is p-approximate density-reachable from p € P if there is a

sequence of points py, ps, ..., p; € P (for some integer ¢t > 2) such that
_pl =P andpt = qa
—pP1, P2, - - -, Pr—1 are core points, and

—pi+1 € B(pi,e(1 + p)) foreach i € [1,t —1].

EP_ P

Approximate DBSCAN

Definition 4.2. A p-approximate cluster C is a non-empty subset of P such that

—(Maximality) If a core point p € C, then all the points density-reachable from p also belong
to C.

—(p-Approximate Connectivity) For any points p;, p, € C, there exists a point p € C such that
both p; and p, are p-approximate density-reachable from p.

O O 03 O4 ando O O O c)5areboth

valid clusters

Approximate DBSCAN

PROBLEM 2. The p-approximate DBSCAN problem is to find a set € of p-approximate clusters
of P such that every core point of P appears in exactly one p-approximate cluster.

EP P

Sandwich Theorem

e Let Abe the set of clusters after running DBSCAN with (€, MinPts)
e Let B be the set of clusters after running DBSCAN with (¢ * (1 + p),

MinPts)
e Let C be the set of clusters after running p-Approximate DBSCAN with

(e, MinPts)
e Qurclaim is that C is a result somewhere in between A and B

Approximate Range Counting

g 50 ¥ s

Let P still be a set of n points in R¢ where d is a constant. Given any point ¢ € R¢, a distance
threshold € > 0 and an arbitrarily small constant p > 0, an approximate range count query returns
an integer that is guaranteed to be between |B(g, €) N P| and |B(q, €(1 + p)) N P|. For example, in
Figure 5, given g = 0y, a query may return either 4 or 5.

EP P

Approximate Range Counting

LEMMA 4.5. For any fixed € and p, there is a structure of O(n) space that can be built in O(n)
expected time, and answers any approximate range count query in O(1) expected time.

p-Approximate DBSCAN

THEOREM 4.6. There is a p-approximate DBSCAN algorithm that terminates in O(n) expected time,
regardless of the value of €, the constant approximation ratio p, and the fixed dimensionality d.

p-Approximate DBSCAN

Algorithm. Our p-approximate algorithm differs from the exact algorithm we proposed in Sec-
tion 3.2 onlyin the definition and computation of the graph G. We re-define G = (V, E) as follows:

— As before, each vertex in V is a core cell of the grid T (remember that the algorithm of
Section 3.2 imposes a grid T on R?, where a cell is a core cell if it covers at least one core
point).

—Given two different core cells ¢y, c;, whether E has an edge between c¢; and c; obeys the
rules below:

—yes, if there exist core points p;, p; in ¢y, ¢;, respectively, such that dist(p;, p;) < €;
—no, if no core point in c; is within distance €(1 + p) from any core point in cy;
—don’t care, in all the other cases.

p-Approximate DBSCAN

e To generate the edges of a core cell c,, we examine
each e-neighbor cell c, of c,, in turn.

e For every core point p in c,, do an approximate range
count query on the set of core points in c,,.

e If the query returns a non-zero answer, add an edge
(c,,c,)t0 G

p-Approximate DBSCAN

e In all the cases where we have to add an edge (there is
a point in C, within the e-radius circle of the point in C,),
an edge is added

e In all the cases where we can’t add an edge (there isn’t
a point in ¢, within the €(1+p)-radius circle of the point in
C,), an edge is not added

Time complexity

e For each core point of a cell c,, we issue an approximate
range count query for each e-neighbor cell c,

e There are O(1) e-neighbor cells for each cell c,, so we
issue O(n) approximate range count queries

e Each approximate range count query is O(1) expected
time, so O(n) expected time overall

Heuristics

e Instead of maintaining the graph G, just maintain
connected components using union find

e Store all non-empty e-neighbors of a cell in a list after
computing them for the first time (acts kind of like a

cache)

Another interesting result

e For 2D DBSCAN, if n data points have been presorted
on each dimension, then 2D DBSCAN can be solved in
O(n) time

Performance

OurAppror —8— OurEzact —&— CIT08 —<— KDD96 —%— SkLearn ——

3 ti

me (sec)

10

-

5
n (million)

(a) SS-simden-3D

ime (sec)

103 time (sec) 10° time (sec)
10° B 10

10 10

1 1
0.1 0.1

5
n (million)

(b) SS-simden-5D

3 time (sec)

5
n (million)

(c) SS-simden-7D

3 time (sec)

10°

10
102

10 3387

n (million)

(d) SS-varden-3D

n (miilion)

(e) SS-varden-5D

Fig. 19. Running time vs. n (d > 3).

n (million)

() SS-varden-7D

Performance

OurApprox —8— OurEzact —&— OurApproz-SIG —&—
CIT0O8 —<— KDD96 ——— SkLearn —€—

104 time (sec) e 104 time (sec) 104 time (sec)
10°
10

é

10 h

0.1 1 1

0.1 02 04 51 2 345 0.1 02 04 5l 2 345 0.1 02 04 5l 2. 345
€(107) €(107) £(107)
(a) SS-simden-3D (b) SS-simden-5D (¢) SS-simden-7D

4 time (sec) 4 time (sec) 3 time (sec)

10

>

0.1
0.1 02 04

21 45 01 02 04 I 345
€(107) £(107)
(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D
200 time (sec) 2000 time (sec) 1000 time (sec)
1500 800
600
1000
400
=00 200
P & 4 B
0¥ 0
01 02 04 1 2 345 01 02 04071 2 345 01 02 04 1 345
e (107) £(107) £(107)
(g) PAMAP2 (h) Farm (i) Household

Fig. 18. Running time vs. € (d > 3).

Performance

OurAppror —8— OurEzract —&— CIT08 —<&— KDD96 —%—— SkLearn —€—

60

45

g:gzé:ér;——é;iéﬁ
0

time (sec)

4

10 20 40 60 80 100

minPts

(a) SS-simden-3D

time (sec)

>

10

10

10°

>

107

10

Aao———a—aba—4A——
EM

g

1

10 20 40 60 80 100

minPts
(d) SS-varden-3D

time (sec)

o — O — o o

==

5 = =

10 20 40 60 80 100
minPts

(g) PAMAP2

g0 time (sec)
4
60
40
3
2
20 F
10 20 40 60 80 100
minPts
(b) SS-simden-5D
103 time (sec)
10
L oA A A A4
10 ‘MJ
q
1
10 20 40 60 80 100
minPts

10*

10°

(0]
10 20

(e) SS-varden-5D

time (sec)

———a——10

100

. 60
minPts

(h) Farm

40 80

time (sec)

> o — ¢ ¢ ——9

120
100 1
80
60

B — T—
20 hba—a—o—E4

80

10 20 40 60 100

minPts

(c) SS-simden-7D

3 time (sec)

10

10°

Ao A A A& —B

10 20 40 60 80 100

minPts

(f) SS-varden-7D

3 time (sec)

10

10°

e——a—t— 0

10

10 20 40 60 80 100

minPts

(i) Household

Fig. 21. Running time vs. MinPts (d = 3).

Strengths

e Better time complexity (O(N) expected time) and
produces results very similar to regular DBSCAN

Weakness

e \We don’t have a fixed number of clusters based on € and
MinPts, while we do in k-means clustering.

Discussion Questions

e \When is it best to use K-means clustering over
DBSCAN, and vice versa?

e How does changing € and MinPts generally change our
output clusters?

