
Euclidean DBSCAN
By: Shwetark Patel

Density-based clustering
● Cluster points so that there is a “sparse region” in between clusters
● DBSCAN is a type of density-based clustering

Basic Definitions

● Let B(p,r) be the ball centered at the point p with radius r
● Let dist(p, q) be the Euclidean distance between points p and q
● There are two user supplied inputs to DBSCAN: ϵ and MinPts

Basic Definitions

o1 is a core point
o10 is not a core point

Basic Definitions

Basic Definitions

Basic Definitions

Basic Definitions

Existing Work

● An O(nlogn) worst case solution to 2D DBSCAN already
exists

● However, our algorithm does better on an approximate
version of DBSCAN

New DBSCAN Algorithm for d >= 3
● Split up Rd into cells that are hyper-squares with side lengths

● This ensures that any two points in the same cell are within distance
ϵ of each other

● A core cell is a cell that contains at least one core point

● Consider two different cells. They are ϵ-neighbors of each other if
the minimum distance between them is less than ϵ.

New DBSCAN Algorithm for d >= 3
● Create a graph G where we have a node for each core cell

● Connect two nodes c1 and c2 if the distance between any core point
in c1 and any core point in c2 is <= ϵ

● We can do this by going through all ϵ-neighbors of the cell (of which
there are a constant number) and using a closest-pairs algorithm

● Compute the connected components of G. Each connected
component corresponds to a cluster (excluding border points, which
we need to assign by ourselves).

Approximate DBSCAN

Approximate DBSCAN

o1, o2, o3, o4 and o1, o2, o3, o4 , o5 are both

valid clusters

Approximate DBSCAN

Sandwich Theorem

● Let A be the set of clusters after running DBSCAN with (ϵ, MinPts)
● Let B be the set of clusters after running DBSCAN with (ϵ * (1 + p),

MinPts)
● Let C be the set of clusters after running p-Approximate DBSCAN with

(ϵ, MinPts)
● Our claim is that C is a result somewhere in between A and B

Approximate Range Counting

Approximate Range Counting

p-Approximate DBSCAN

p-Approximate DBSCAN

p-Approximate DBSCAN

● To generate the edges of a core cell c1, we examine
each ϵ-neighbor cell c2 of c1, in turn.

● For every core point p in c1, do an approximate range
count query on the set of core points in c2.

● If the query returns a non-zero answer, add an edge
(c1,c2) to G

p-Approximate DBSCAN

● In all the cases where we have to add an edge (there is
a point in c2 within the ϵ-radius circle of the point in c1),
an edge is added

● In all the cases where we can’t add an edge (there isn’t
a point in c2 within the ϵ(1+p)-radius circle of the point in
c1), an edge is not added

Time complexity

● For each core point of a cell c1, we issue an approximate
range count query for each ϵ-neighbor cell c2

● There are O(1) ϵ-neighbor cells for each cell c1, so we
issue O(n) approximate range count queries

● Each approximate range count query is O(1) expected
time, so O(n) expected time overall

Heuristics

● Instead of maintaining the graph G, just maintain
connected components using union find

● Store all non-empty ϵ-neighbors of a cell in a list after
computing them for the first time (acts kind of like a
cache)

Another interesting result

● For 2D DBSCAN, if n data points have been presorted
on each dimension, then 2D DBSCAN can be solved in
O(n) time

Performance

Performance

Performance

Strengths

● Better time complexity (O(N) expected time) and
produces results very similar to regular DBSCAN

Weakness

● We don’t have a fixed number of clusters based on ϵ and
MinPts, while we do in k-means clustering.

Discussion Questions

● When is it best to use K-means clustering over
DBSCAN, and vice versa?

● How does changing ϵ and MinPts generally change our
output clusters?

