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Density-based clustering
● Cluster points so that there is a “sparse region” in between clusters
● DBSCAN is a type of density-based clustering



Basic Definitions

● Let B(p,r) be the ball centered at the point p with radius r
● Let dist(p, q) be the Euclidean distance between points p and q
● There are two user supplied inputs to DBSCAN: ϵ and MinPts 



Basic Definitions

o1 is a core point 
o10 is not a core point
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Existing Work

● An O(nlogn) worst case solution to 2D DBSCAN already 
exists

● However, our algorithm does better on an approximate 
version of DBSCAN



New DBSCAN Algorithm for d >= 3
● Split up Rd into cells that are hyper-squares with side lengths 

● This ensures that any two points in the same cell are within distance 
ϵ of each other

● A core cell is a cell that contains at least one core point

● Consider two different cells. They are ϵ-neighbors of each other if 
the minimum distance between them is less than ϵ.



New DBSCAN Algorithm for d >= 3
● Create a graph G where we have a node for each core cell

● Connect two nodes c1 and c2 if the distance between any core point 
in c1 and any core point in c2 is <= ϵ

● We can do this by going through all ϵ-neighbors of the cell (of which 
there are a constant number) and using a closest-pairs algorithm

● Compute the connected components of G. Each connected 
component corresponds to a cluster (excluding border points, which 
we need to assign by ourselves). 
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o1, o2, o3, o4  and o1, o2, o3, o4 , o5 are both 

valid clusters
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Sandwich Theorem

● Let A be the set of clusters after running DBSCAN with (ϵ, MinPts)
● Let B be the set of clusters after running DBSCAN  with (ϵ * (1 + p), 

MinPts)
● Let C be the set of clusters after running p-Approximate DBSCAN with 

(ϵ, MinPts)
● Our claim is that C is a result somewhere in between A and B
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p-Approximate DBSCAN

● To generate the edges of a core cell c1, we examine 
each ϵ-neighbor cell c2 of c1, in turn.

● For every core point p in c1, do an approximate range 
count query on the set of core points in c2.

● If the query returns a non-zero answer, add an edge 
(c1,c2) to G



p-Approximate DBSCAN

● In all the cases where we have to add an edge (there is 
a point in c2 within the ϵ-radius circle of the point in c1), 
an edge is added

● In all the cases where we can’t add an edge (there isn’t 
a point in c2 within the ϵ(1+p)-radius circle of the point in 
c1), an edge is not added



Time complexity

● For each core point of a cell c1, we issue an approximate 
range count query for each ϵ-neighbor cell c2

● There are O(1) ϵ-neighbor cells for each cell c1, so we 
issue O(n) approximate range count queries 

● Each approximate range count query is O(1) expected 
time, so O(n) expected time overall



Heuristics

● Instead of maintaining the graph G, just maintain 
connected components using union find

● Store all non-empty ϵ-neighbors of a cell in a list after 
computing them for the first time (acts kind of like a 
cache)  



Another interesting result

● For 2D DBSCAN, if n data points have been presorted 
on each dimension, then 2D DBSCAN can be solved in 
O(n) time
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Strengths

● Better time complexity (O(N) expected time) and 
produces results very similar to regular DBSCAN 



Weakness

● We don’t have a fixed number of clusters based on ϵ and 
MinPts, while we do in k-means clustering.  



Discussion Questions

● When is it best to use K-means clustering over 
DBSCAN, and vice versa?

● How does changing ϵ and MinPts generally change our 
output clusters?


