
Theoretically-Efficient and Practical
Parallel DBSCAN

Yiqiu Wang, Yan Gu, Julian Shun

DBSCAN (ε, minpts)
Minpts = 3

Previous work
● Parallel

○ Xu et al. PDBSCAN
■ Distributed R-Tree, exact answer

○ Patwary et al. PDSDBSCAN
■ Parallel lock based union-find, approximate without guarantee

○ Gotz et al. HPDBSCAN
■ Data partition, process locally and then merge results, exact answer

○ RP-DBSCAN
■ Distributed map-reduce, approximate without guarantee

○ ...

● Serial
○ Gunawan et al.

■ Sequential exact DBSCAN with theoretical guarantees
○ Gan and Tao

■ Sequential approximate DBSCAN with theoretical guarantees

Our contribution
● Practical parallel algorithms for 2D exact DBSCAN, and higher dimensional

exact and approximate DBSCAN with work bounds matching the best
sequential algorithms, and polylogarithmic depth.

● Highly-optimized implementations.
● A comprehensive experimental evaluation

○ 2-38x self-relative speedup (36 cores)
○ 5-33x speedup over best sequential (36 cores)
○ 14-6102x faster than existing parallel implementations
○ Processes largest dataset known for DBSCAN (> 4 billion points) on just one machine

DBSCAN High-level Algorithm (2D)
● Construct cells
● Mark core points
● Cluster core points (cell graph)
● Cluster border points

DBSCAN High-level Algorithm (2D)
● Construct cells
● Mark core points
● Cluster core points (cell graph)
● Cluster border points

● Side length ε/√2
● O(n) work in expectation

O(log n) depth w.h.p.

DBSCAN High-level Algorithm (2D)
● Construct cells
● Mark core points
● Cluster core points (cell graph)
● Cluster border points

● For each cell
○ If |cell| > minpts(3): all are core points
○ Else: perform range count for each point

● O(n ∙ minPts) work
O(log n) depth w.h.p.

Core
cells

DBSCAN High-level Algorithm (2D)
● Construct cells
● Mark core points
● Cluster core points (cell graph)
● Cluster border points

● Cell graph + connected components
● Connect “core cells” (cell with >=1 core

points) if they contain core points with <ε
distance

● Connected components
○ O(n) expected work
○ O(log n) depth w.h.p.

Cell graph - Bichromatic Closest Pair
● Check all pairs of points; pick the minimum
● O(n2) work
● O(log n) depth
● Practice

○ Simple optimization to get rid of most points

Cell graph - Unit-spherical emptiness checking (USEC)

● Serial version, Gan and Tao (2015)
● Create “wavefront” between two cells and check for emptiness
● O(n log n) expected work
● O(log2 n) depth w.h.p.
● Practice

○ Sufficient parallelism on grids
○ Serial construction ε

Cell graph - Delaunay Triangulation
● Serial version, Gan and Tao (2015)
● Connect two cells if they are connected by a Delaunay edge of weight < ε
● Reif & Sen (1992)

○ O(n log n) work
○ O(log n) depth

DBSCAN High-level Algorithm (2D)
● Construct cells
● Mark core points
● Cluster core points (cell graph)
● Cluster border points

● Assign each border point to close (<ε)
core points

● O(n ∙ minPts) work
O(log n) depth w.h.p.

Two types of cells
● Grid cell (Serial version, Gunawan 2013) ● Box cell (Serial version, Gunawan 2013)

Box cell construction in parallel
● Vertical columns + Horizontal columns
● Binary search to find next boundary
● Pointer jumping to mark column starts
● O(log n) depth

Running Times for 2D

Cell construction Grid based O(n) expected work; O(log n) depth w.h.p.

Box based O(n log n) work; O(log n) depth

Mark core O(n) work; O(log n) depth w.h.p.

Cell graph BCP USEC Delaunay

O(n2) work;
O(log n) depth

O(n log n) work;
O(log2 n) depth

O(n log n) work; O(log
n) depth

Connected components O(n) expected work; O(log n) depth w.h.p.

Cluster border O(n) work; O(log n) depth w.h.p

Overall O(n2) expected work;
O(log n) depth w.h.p.

O(n log n) expected
work; O(log2 n) depth

w.h.p.

O(n log n) expected
work; O(log n) depth

w.h.p.

2D Results

2D Results

2D Results

2D Results

Higher dimensional DBSCAN
● More complicated cell-neighbor finding
● Parallel kd-tree for answer spatial range queries

21 neighbor grids ≈5d

Optimization 1 - UnionFind
● Serial version, Gan and Tao (2015)
● BCP & USEC
● Compute CC while constructing the cell graph
● Prunes independent cell-cell connectivity queries

Optimization 2 - Bucketing
● Cells with more points -> more likely connected

○ Connect them early
○ More pruning

● Serial: sort + iterate
● Parallel: sort + bucketing

Cell connectivity using spatial quadtree
● For both exact DBSCAN and approximate DBSCAN

Experiments

Experiments

Experiments

Experiments

GeoLife

Experiments
#data dimension

GeoLife 24.9M 3

Cosmo50 321M 3

OpenStreetMap 2770M 2

TeraClickLog 4373M 13

Experiments - Self-relative speedups

Experiments - Self-relative speedups

Conclusion
● Practical parallel algorithms for 2D exact DBSCAN, and higher dimensional

exact and approximate DBSCAN with work bounds matching the best
sequential algorithms, and polylogarithmic depth.

● Highly-optimized implementations.
● A comprehensive experimental evaluation

○ 2-38x self-relative speedup (36 cores)
○ 5-33x speedup over best sequential (36 cores)
○ 14-6102x faster than existing parallel implementations
○ Processes largest dataset known for DBSCAN (> 4 billion points) on just one machine

Future work
● Our code will be available online soon

Questions

