The Input/Output Com	np		E)	(i	ty	· / (Q			
Sorting and Related F	Pr	O	b	le Ie	e Pr	n N	S S			
Paper by: Alok Aggarwal and Jeffrey S	cot	t Vi	tte	r:						
Presentation by: Bryan Chen										
	•	•	•	•	•	•	·	•	•	•
	•	•	•	•	•	•				

Outline

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•.	1. N	1 ₀ ti	vạt	iọn	•	•	•	•	•	•	•	•
•	•	•.	2,F	rok	bler	n Sto	ate	eme	ent(s).	•	•	•	•
•	•	•.	3 . C	Defi	niti	ons	/Se	etuj	p.	•	•	•	•	•
•	•	••	4: /	٩na	lysi	S∙	•	•	•	•	•	•	•	•
•	•	••	5: F	Refl	ect	ion	•	•	•	•	•	•	•	•
•	•	• •	6: C	Disc	ะนระ	sion	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Motivation

- → Sorting is (really) expensive!
 - Accounts for ~1/4 of all computer cycles still
 - Many of these are due to "external sorts" when file is large

• • • • • •

Motivation

- → Sorting is (really) expensive!
 - Accounts for ~1/4 of all computer cycles still
 - Many of these are due to "external sorts" when file is large
- → Bottleneck
 - I/O between internal memory and external storage (6.004)

	•	•		•	ľ
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Problem Statement(s)

 \rightarrow Model of extended memory (x):

Internal Memory (M)

Secondary Storage

(>=N)

→ 1-indexing: internal memory is x[1] to x[M], disk is x[M+1]...
→ We want to find bounds on I/O for five similar problems

1. Sorting

• • • • •

→ Problem: given records in disk, sort and replace in disk

		5	8	3	9				•	•	•
									•	•	•
						0	٠	•	•	0	•
						0	٠	•	•	0	•
						0	٠	•	•	0	•
						0	٠	•	•	0	•
						•	•	•	•	•	•
						0	•	•	•	0	•
						0	٠	•	•	0	•
						•	•	•	•	•	•
						•	•	•	•	•	•

1. Sorting

• • • • • • •

→ Problem: given records in disk, sort and replace in disk

.

.

.

1. Sorting

.

→ Problem: given records in disk, sort and replace in disk

→ Explicitly: given x[i] = nil for 1 ≤ i ≤ M, x[M+i] = R_i for 1 ≤ i ≤ N, sort them in nondecreasing order by their key values in x[M+1]...x[M+N]

2. Fast Fourier Transform (FFT)

- → Setup: N is a power of 2, everything else same as sorting
 - $x[i] = nil \text{ for } 1 \le i \le M, x[M+i] = R_i \text{ for } 1 \le i \le N$

2. Fast Fourier Transform (FFT)

- → Setup: N is a power of 2, everything else same as sorting
 - $x[i] = nil \text{ for } 1 \le i \le M, x[M+i] = R_i \text{ for } 1 \le i \le N$
- → Goal: N output nodes from FFT directed graph (aka digraph) are pebbled and memory configuration stays the same

2. Fast Fourier Transform (FFT)

→ Setup: N is a power of 2, everything else same as sorting

- $x[i] = nil \text{ for } 1 \le i \le M, x[M+i] = R_i \text{ for } 1 \le i \le N$
- → Goal: N output nodes from FFT directed graph (aka digraph) are pebbled and memory configuration stays the same

The FFT Digraph

- → N rows
- → (log N) + 1 columns
- → Designate node at row i, column j as n_{i,j} (0-indexed)
- → Each $n_{i,j}$ is connected to $n_{i,j-1}$ and $n_{i \text{ XOR } (1 < j-1),j-1}$
- → Can only pebble n_{i,j} if predecessors are pebbled and their records are in internal memory

The FFT Digraph

- → N rows
- → (log N) + 1 columns
- → Designate node at row i, column j as n_{i,j} (0-indexed)
- → Each $n_{i,j}$ is connected to $n_{i,j-1}$ and $n_{i \text{ XOR } (1 < j-1),j-1}$
- → Can only pebble n_{i,j} if predecessors are pebbled and their records are in internal memory
- → Way to delegate flow of records in/out of internal memory and disk

3. Permutation Network

- → Similar setup/description to FFT, but different graph shape
 - N rows, J+1 columns for some $J \ge \log N$
 - Allows for creation of permutations/different calculations
- → Keeping same notation of n_{i,j}, n_{i,j} is connected to n_{i,j-1} and possibly n_{i',j-1}
 - If this is the case, then $n_{i',j}$ is also connected to $n_{i,j-1}$

3. Permutation Network

- → Similar setup/description to FFT, but different graph shape
 - N rows, J+1 columns for some $J \ge \log N$
 - Allows for creation of permutations/different calculations
- → Keeping same notation of n_{i,j}, n_{i,j} is connected to n_{i,j-1} and possibly

n_{i',j-1}

- If this is the case, then $n_{i',j}$ is also connected to $n_{i,j-1}$
- This represents a switch between $n_{i,j}$ and $n_{i',j}$ from the preceding column:

The Permutation Digraph

- → The prior constraints on the digraph are not sufficient to determine a permutation network
 - For each of the N! permutations on $\{1...N\}$, we must be able to set the switches so that each $n_{i,0}$ is mapped to some output node $n_{p_{-}i,j}$
 - This mapping represents the permutation
- → Nodes can only be pebbled if predecessors have been pebbled and the corresponding records are in internal memory (as before)

4. Permuting

- → Same setup as sorting, but the keys of the N records must form a permutation of {1...N}
- → Not the same as permutation networks!

•	٠	٠	•	•	0
•	•	٠	٠	•	٠
•	٠	۰	٠	•	٠
•	•	۰	٠	•	•
•	•	۰	٠	•	•
•	•	۰	٠	•	•
•	•	۰	٠	•	•
•	•	۰	٠	•	•
٠	٠	0	•	٠	•

Permuting vs. Permutation Network

- → A permutation network is generated by a sequence of I/Os to represent ways to generate N! permutations
- → A permutation is a set of specific I/Os to end up with that permutation of records

Permuting vs. Permutation Network

- → A permutation network is generated by a sequence of I/Os to represent ways to generate N! permutations
- → A permutation is a set of specific I/Os to end up with that permutation of records
- \rightarrow In short:
 - Network = Same I/Os let you generate N! permutations
 - Permutation = I/Os depend on the specific permutation

5. Matrix Transposition

- → Setup: A pxq matrix (pq = N) of records is stored in row-major order on disk starting from x[M+1], internal storage empty
- → Goal: Replace with column-major order on disk starting from x[M+1], with internal storage empty

5. Matrix Transposition

- → Setup: A pxq matrix (pq = N) of records is stored in row-major order on disk starting from x[M+1], internal storage empty
- → Goal: Replace with column-major order on disk starting from x[M+1], with internal storage empty

Definitions/Setup

- → An I/O operation is *simple* if each record transfer involves being removed from disk (I)/internal memory (O) and placed into an empty spot in internal memory (I)/disk (O)
 - Full movement of data

Definitions/Setup

- → An I/O operation is *simple* if each record transfer involves being removed from disk (I)/internal memory (O) and placed into an empty spot in internal memory (I)/disk (O)
 - Full movement of data
- → Denote the kth (k ≥ 1) set of B continuous locations on disk as the kth track(x[M+(k-1)B+1]...x[M+kB])
 - Since B is the block size, we consider transfers of exactly B records (a complete track)
 - Overflow is handled by simply filling the extra records with nil

Definitions/Setup

- \rightarrow For simplicity, we mostly consider P=1
 - Represents conventional disks
 - Can also shift bounds by a factor of P
- → Assume WLOG that B, M, N are powers of 2 and B < M < N

Analysis (All)

- → Observation: for FFT, permutation network, and matrix transposition, there is no input distribution
 - Average-case and worst-case models are the same
- → For sorting and permuting, assume all N! inputs are equally likely
 - A bit more nuance must be used to separate the models

Analysis (All)

- → Lemma 4.1: for each computation that implements a permutation of the N records R₁, R₂, ..., R_N (or that sorts or that transposes or that computes the FFT digraph or a permutation network), there is a corresponding computation strategy involving only simple I/Os such that the total number of I/Os is no greater
 - Cancel transfer of a record if transfer is not needed for the final result
 - Resulting I/O strategy is simple
- → From now on, assume all I/Os are simple

- → Lemma 4.1 allows us to take the following approach:
 - Bound number of possible permutations after t I/Os
 - At each I/O, we create more possible permutations between records
- → Consider time t
 - At t = 0, we have 1 permutation (haven't done anything yet)
 - At most N/B + t 1 full tracks before the tth output
 - Thus, we have at most N/B + t new places for a new full track to be
 - Amount of space between tracks doesn't matter when considering permutation
- → Thus, at each timestep t we multiply the number of permutations by at most N/B + t
 - Can be bounded by N(1 + log N) for simplicity

- → Now, consider each block of B records from a given track
 - Could have B! possible orders based on rearrangement of internal memory
 - Implies an increase in number of possible permutations
- → Apply mathematical computation and Stirling's approximation

→ Now, consider each block of B records from a given track

- Could have B! possible orders based on rearrangement of internal memory
 - Implies an increase in number of possible permutations

Apply mathematical computation and Stirling's approximation

THEOREM 3.2. The average-case and worst-case number of I/Os required to permute N records is

$$\Theta\left(\min\left\{\frac{N}{P}, \frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right\}\right).$$
 (3.

THEOREM 3.2. The average-case and worst-case number of I/Os required to permute N records is

$$\Theta\left(\min\left\{\frac{N}{P}, \frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right\}\right).$$
 (3.4)

→ It turns out that for small B and M, it's better to just do the naive solution of moving records once per block transfer

Analysis (FFT/Permutation Networks)

- → Observation: by stacking three FFT digraphs, we can construct a permutation network
 - The output nodes of one FFT digraph should be the input nodes of the next
 - We need three FFT digraphs to capture all permutation possibilities
- → This makes the two problems essentially equivalent in terms of I/O
 - Lower bound for permutation networks matches upper bound for FFT

Analysis (FFT/Permutation Networks)

- → Observation: by stacking three FFT digraphs, we can construct a permutation network
 - The output nodes of one FFT digraph should be the input nodes of the next
 - We need three FFT digraphs to capture all permutation possibilities
- → This makes the two problems essentially equivalent in terms of I/O
 - Lower bound for permutation networks matches upper bound for FFT
 - Consider permutation networks

Analysis (Permutation Networks)

- → Observation: I/O sequence is fixed for a permutation network
- → Can still apply similar analysis to permuting
 - Allows us to not have to deal with the fact that I/O depends on a desired permutation
 - Records transferred during I/O and track accessed are fixed for each I/O
 - Eliminates N/B + t term that we had to account for earlier
- → In addition, each output can at most double the amount of generated permutations
 - Due to the swapping formulation of permutation network nodes' predecessors

Analysis (Permutation Networks)

→ Apply Stirling's approximation again THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Permutation Networks)

 → Apply Stirling's approximation again
 → The Ω-bound is tight: permutation networks exist with necessary I/Os equal to

$$O\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Sorting)

- → Can immediately derive bounds based on permuting
 - Sorting is just one special case of permuting
- → But we can do better!
 - Sorting is different since we know which permutation to generate based on what belongs where
- → Can immediately derive bounds based on permuting
 - Sorting is just one special case of permuting
- → But we can do better!
 - Sorting is different since we know which permutation to generate based on what belongs where
- → Adversarial argument for lower-bound:
 - In the worst case, all our simple I/Os compare against all the records in internal memory
 - At each step, when importing B new records, we will need to compare against at most M-B records

→ After similar mathematical computation to permutation networks, we can arrive at the following (familiar) bound for worst-case:

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

- → We wish to show this bound also holds in the average-case scenario
- → Consider the comparison tree with N! leaves, representing all the N! orderings possible
 - Each node represents an input operation

- • • •
- → Each node has a degree of at most M choose B, except for nodes corresponding to track input
 - These have degree at most B!(M choose B)
 - There can be at most N/B of these
- → Taking the sum of leaf depths divided by N! (averaging), minimizing over all possible computation trees, and normalizing P yields the same bounds as Theorem 3.1

- → Approach using a potential function POT(t) over time t
- \rightarrow WLOG, assume *p* and *q* (matrix dimensions) are powers of 2 \sim \sim
- → Let the ith target group (1 ≤ i ≤ N/B) be the set of records we want in the ith track in the end

 \rightarrow Let f(x) be a continuous function:

 $f(x) = \begin{cases} x \log x, & \text{if } x > 0; \\ 0, & \text{if } x = 0. \end{cases}$

- \rightarrow Define togetherness to the kth track at time t:
 - $x_{i,k}$ records contained by k^{th} track belonging to i^{th} target group
- \rightarrow Also define togetherness of internal memory $C_{M}(t) =$
 - y_i is number of records belonging to ith target group in memory

$$C_k(t) = \sum_{1 \le i \le N/B} f(x_{i,k})$$

 $1 \le i \le N/B$

 $f(y_i)$

- → Define the potential function POT(t) to be the sum of togetherness ratings of internal memory and all tracks
 - At the end of the algorithm, internal memory is empty and each track has all the records it should have

- Define the potential function POT(t) to be the sum of togetherness ratings of internal memory and all tracks
 - At the end of the algorithm, internal memory is empty and each track has all the records it should have
 - Internal memory contributes 0 to potential, each block contributes Blog B
 - Thus, at termination I/O number T, POT(T) = Nlog B

- Define the potential function POT(t) to be the sum of togetherness ratings of internal memory and all tracks
 - At the end of the algorithm, internal memory is empty and each track has all the records it should have
 - Internal memory contributes 0 to potential, each block contributes Blog B
 - Thus, at termination I/O number T, POT(T) = Nlog B
- \rightarrow Casework at t=0 based on size of B vs. p and q yields

$$= \begin{cases} 0, & \text{if } B < \min\{p, q\}; \\ N \log \frac{B}{\min\{p, q\}}, & \text{if } \min\{p, q\} \le B \le \max\{p, q\}; \\ N \log \frac{B^2}{N}, & \text{f } \max\{p, q\} < B; \end{cases}$$
(4.15)

- → Properties of the potential function
 - Does not increase when a block is output from internal memory to disk
 - Increases when a track is input from disk to internal memory
- → Can show inputs cause potential function to increase by O(B log M/B)
 - Monitoring how togetherness changes in independent components and applying a convexity argument

 \rightarrow We can use the potential function to then prove:

THEOREM 3.3. The number of I/Os required to transpose a $p \times q$ matrix stored in row-major order, is

$$\Theta\left(\frac{N}{PB}\frac{\log\min\{M, 1 + \min\{p, q\}, 1 + N/B\}}{\log(1 + M/B)}\right).$$
 (3.5)

Analysis (Conclusion)

- → Of the theorems we've seen, all the non-trivial bounds include N/PB
 - N/PB is the number of I/O operations necessary to scan N records once

(3.2)

6

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$

THEOREM 3.2. The average-case and worst-case number of I/Os required to permute N records is

$$\Theta\left(\min\left\{\frac{N}{P}, \frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right\}\right).$$
(3.4)

THEOREM 3.3. The number of I/Os required to transpose a $p \times q$ matrix stored in row-major order, is

$$O\left(\frac{N}{PB}\frac{\log\min\{M, 1 + \min\{p, q\}, 1 + N/B\}}{\log(1 + M/B)}\right).$$
 (3.5)

Analysis (Conclusion)

- → Of the theorems we've seen, all the non-trivial bounds include N/PB
 - N/PB is the number of I/O operations necessary to scan N records once
- → Coefficients of N/PB represent number of "passes" through file
 - A "linear-time" algorithm in terms of passes would use O(N/PB) I/Os

(3.2)

• Thus, the terms below intuitively indicate degree of nonlinearity

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$

THEOREM 3.2. The average-case and worst-case number of I/Os required to permute N records is

$$\Theta\left(\min\left\{\frac{N}{P}, \frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right\}\right).$$
(3.4)

THEOREM 3.3. The number of I/Os required to transpose a $p \times q$ matrix stored in row-major order, is

$$O\left(\frac{N}{PB}\frac{\log\min\{M, 1 + \min\{p, q\}, 1 + N/B\}}{\log(1 + M/B)}\right).$$
 (3.5)

Analysis (Optimal Algorithms)

- → Some promising theoretical constraints are presented
 - Unclear how exactly they constrain explicit algorithms
- → Leads to discussion of "optimal algorithms" which are able to achieve bounds in Theorems 3.1-3.3
- → WLOG, again assume B < M < N are all powers of 2
- → Suffices to just consider worst-case complexity: average-case result follows immediately

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

→ Two sorting algorithms examined: merge and

Analysis (Optimal Algorithms: Sorting)

distribution

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

7	6	3	1	8	4

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

7	6	3
---	---	---

1	8	4	0
	_		

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)

Analysis (Optimal Algorithms: Sorting)

• Combine them iteratively

1	4	8	۰

.

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

3	6	7	1	4	8

1			0	٥	•	٠	0

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

3	6	7	1	4	8
					-

1 3	•
-----	---

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

1 3 4 6 7	8	4	1	7	6	3
1 2 1 6 7	0 0 0 0					
1 5 4 0 7	8 0 0	7	6	4	3	1

• • • • •

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

→ Merge Sort

- Divide and conquer algorithm
- Given an array of unsorted records:
 - Split them into two halves
 - Sort each half independently (e.g. with mergesort)
 - Combine them iteratively

1	3	4	6	7	8

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

	•	•	•	•	•	٠
	•	•	•	•	•	•
	•	•	•	•	•	•
	٠	•	٠	٠	٠	•
	٠	0	٠	٠	٠	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	٠	•	٠	٠	٠	•
	•	•	•	•	•	•
	•	•	•	•	•	٠

Analysis (Optimal Algorithms: Sorting)

- → Merge Sort
- → I/O Complexity
 - In this formulation, we sort our tracks into runs and then combine them
 - At each merging step, one block being merged resides in internal memory
 - We don't know which block to fetch next

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Analysis (Optimal Algorithms: Sorting)

- → Merge Sort
- → I/O Complexity
 - In this formulation, we sort our tracks into runs and then combine them
 - At each merging step, one block being merged resides in internal memory
 - We don't know which block to fetch next
 - In each track, we can place P-1 markers telling us the key values of the next P-1 tracks of the run
 - Using this forecasting information, we can achieve the bounds in Theorem 3.1

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

	•	•	•	•	•	•
	٠	•	٠	•	•	•
	٠	•	٠	٠	٠	•
	٠	٠	٠	٠	٠	•
	٠	٠	٠	٠	٠	•
	٠	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•		•	•
	0	•	0	•	0	•

Analysis (Optimal Algorithms: Sorting)

- → Distribution Sort
 - Assume M/B is a perfect square, and let S = $\sqrt{(M/B)}$
 - With O(N/PB) I/Os we can find S partitioning elements to bucket the records
 - Can repeatedly use a linear rank-finding algorithm via median of medians (e.g. 6.046)
 - Recursively sort the buckets

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

 \rightarrow I/O Complexity

→ Distribution Sort

• Define T(n) to be I/Os needed to sort n records

Analysis (Optimal Algorithms: Sorting)

$$T(N) = \sum_{1 \leq i \leq S+1} T(N_i) + O\left(\frac{N}{PB}\right).$$

۰.

→ By solving this, we get the bounds in Theorem 3.1

.

Analysis (Optimal Algorithms: Permuting)

THEOREM 3.2. The average-case and worst-case number of 1/Os required to permute N records is

 $\Theta\left(\min\left\{\frac{N}{P}, \frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right\}\right).$ (3.4)

- → Special case of the sorting algorithm
 - Can just re-use it here to get the same bounds as sorting
 - Additional naive case when B and M are small for the N/P min term
 - If $B \log(M/B) = o(\log N/B)$
- → Either of the two above prior sorting algorithms will work

Analysis (Optimal Algorithms: Matrix Transposition)

- \rightarrow WLOG, assume p and q are powers of 2
- → In each track of B records, partition records into *target sub-groups* based on end location
 - Merge these target subgroups over course of algorithm
 - Records in same target subgroup should stay together
 - If x is the initial size of target-subgroups, then:

$$x = \begin{cases} 1, & \text{if } B < \min\{p, q\}; \\ \frac{B}{\min\{p, q\},} & \text{if } \min\{p, q\} \le B \le \max\{p, q\}; \\ \frac{B^2}{N}, & \text{if } \max\{p, q\} < B. \end{cases}$$
(5.6)

THEOREM 3.3. The number of I/Os required to transpose a $p \times q$ matrix stored in row-major order, is

 $\Theta\left(\frac{N}{PB}\frac{\log\min\{M, 1 + \min\{p, q\}, 1 + N/B\}}{\log(1 + M/B)}\right).$ (3.5)

0	٠	۰	٠	٠	0
٠	•	•	•	•	٠
۰	٠	٠	٠	٠	0
•	•	•	•	٠	٠
۰	٠	•	•	٠	0
0	٠	٠	۰	۰	0
0	•	۰	٠	٠	٠
•	٠	•	•	•	٠
•	•	•		•	•
۰	•	٠	٠	•	0

Analysis (Optimal Algorithms: Matrix Transposition)

→ I/O Complexity

- Each pass (O(N/PB) I/Os) multiplies size of target subgroup by M/B
- Calculating amount of passes (and thus number of I/Os) results in Theorem 3.3

THEOREM 3.3. The number of I/Os required to transpose a $p \times q$ matrix stored in row-major order, is

 $\Theta\left(\frac{N}{PB}\frac{\log\min\{M,\,1\,+\,\min\{p,\,q\},\,1\,+\,N/B\}}{\log(1\,+\,M/B)}\right).$ (3.5)

Analysis (Optimal Algorithms: FFT/Permutation Network)

→ Again, three FFT digraphs form a permutation

network

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

• • • • • •

Analysis (Optimal Algorithms: FFT/Permutation Network)

→ Again, three FFT digraphs form a permutation

network

• Only consider FFT

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

.

Analysis (Optimal Algorithms: FFT)

- \rightarrow For simplicity, assume log M divides log N
- → Decompose FFT graph into (log N)/(log M) equal size stages by column

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when $B \log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

FIGURE 2. Decomposition of the FFT digraph into stages, for N = 8, M = 2

Analysis (Optimal Algorithms: FFT)

- → For simplicity, assume log M divides log N
- → Decompose FFT graph into (log N)/(log M) equal size stages by column
 - Stage k (1 ≤ k ≤ (log N)/(log M)) corresponds to pebbling of columns (k-1)log M to klog M in the digraph
 - To compute pebbling on these log M columns, we must take M columns as input via a transposition permutation

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of I/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

FIGURE 2. Decomposition of the FFT digraph into stages, for N = 8, M = 2

Analysis (Optimal Algorithms: FFT)

- → For simplicity, assume log M divides log N
- → Decompose FFT graph into (log N)/(log M) equal size stages by column
 - Stage k (1 ≤ k ≤ (log N)/(log M)) corresponds to pebbling of columns (k-1)log M to klog M in the digraph
 - To compute pebbling on these log M columns, we must take M columns as input via a transposition permutation
- → By combining prior results and some mathematical reorganization, get Theorem 3.1

THEOREM 3.1. The average-case and worst-case number of I/Os required for sorting N records and for computing the N-input FFT digraph is

$$\Theta\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right).$$
(3.1)

For the sorting lower bound, the comparison model is used, but only for the case when M and B are extremely small with respect to N, namely, when B $\log(1 + M/B) =$ $o(\log(1 + N/B))$. The average-case and worst-case number of 1/Os required for computing any N-input permutation network is

$$\Omega\left(\frac{N}{PB}\frac{\log(1+N/B)}{\log(1+M/B)}\right);$$
(3.2)

Reflection (Strengths)

- → Introduction is solid with interesting premise
 - Presents a common problem with a relatable issue
- → Good amount of content in the paper
 - Theoretical analysis of I/O
 - Several similar useful problems presented
 - Corresponding algorithms for each of the five problems shown

	٠	•	•	٠	•	٠
	•	•	•	•	•	•
	•	•	•	•	•	٠
	•	•	0	•	•	•
	٠	٠	0	٠	٠	٠
	٠	٠	0	٠	٠	٠
	•	٠	0	٠	٠	0
	•	٠	0	٠	٠	٠
	٠	٠	0	٠	٠	0
	٠	٠	0	٠	٠	0
nown	٠	•	0	٠	٠	•
	•	•	•	•	•	•
	•	•	•	•	•	۰
	•	•	•	•	•	٠
	•	٠	0	٠	٠	٠
	•	•	•		•	•
	•	0	٠	٠	٠	۰

Reflection (Weaknesses)

- → Organization style somewhat lackluster
 - Lots of context switching between the five problems in each section
 - Not consistent: theorems presented in different order than they are proved
 - Somewhat hurts readability
 - Intimidating theorems presented upright instead of leading into them
- → Use of jargon is sometimes unexplained/excessive
 - e.g. "pebbling" is not explained
- → Math is quite involved, sometimes lacking explanation
 - Some more diagrams could also be helpful as a visual break
 - Problem formulation, algorithms, etc.
Reflection (Future Work)

- → Assumption that records are indivisible simplifies much of the theoretical computation
 - Being able to operate on individual bits could be useful, but hard to examine
 - Would help gain insight on information transfer
- Analysis on other memory paradigms to represent different kinds of systems
- → Implementing real memory checks to examine performance in practice

Discussion Questions

- • • •
- → Did you find the paper's relatively unique flow confusing? Or did it help to relate the problems together? When was it helpful/harmful?
- → Why can we assume WLOG that B < M < N? Or that they are powers of 2?</p>
- → What are some applications for the graph formulation of FFT the authors provide?
- → Do you think the paper has aged well in the past ~30 years with all the technological progress that has been made?