
The Input/Output Complexity of 
Sorting and Related Problems

Paper by: Alok Aggarwal and Jeffrey Scott Vitter

Presentation by: Bryan Chen



Outline
● 1. Motivation
● 2. Problem Statement(s)
● 3. Definitions/Setup
● 4. Analysis
● 5. Reflection
● 6. Discussion



Motivation

➔ Sorting is (really) expensive!
● Accounts for ~¼ of all computer cycles still

● Many of these are due to "external sorts" when file is large



Motivation

➔ Sorting is (really) expensive!
● Accounts for ~¼ of all computer cycles still
● Many of these are due to "external sorts" when file is large

➔ Bottleneck
● I/O between internal memory and external storage (6.004)



Problem Statement(s)

➔ Model of extended memory (x):

Internal Memory (M) Secondary Storage 
(>=N)

➔ 1-indexing: internal memory is x[1] to x[M], disk is x[M+1]...
➔ We want to find bounds on I/O for five similar problems



1. Sorting

➔ Problem: given records in disk, sort and replace in disk

5 8 3 9



1. Sorting

➔ Problem: given records in disk, sort and replace in disk

5 8 3 9

3 5 8 9



1. Sorting

➔ Problem: given records in disk, sort and replace in disk

➔ Explicitly: given x[i] = nil for 1 ≤ i ≤ M, x[M+i] = Ri for 1 ≤ i ≤ N, sort 

them in nondecreasing order by their key values in x[M+1]...x[M+N]

5 8 3 9

3 5 8 9



2. Fast Fourier Transform (FFT)

➔ Setup: N is a power of 2, everything else same as sorting
● x[i] = nil for 1 ≤ i ≤ M, x[M+i] = Ri for 1 ≤ i ≤ N



2. Fast Fourier Transform (FFT)

➔ Setup: N is a power of 2, everything else same as sorting
● x[i] = nil for 1 ≤ i ≤ M, x[M+i] = Ri for 1 ≤ i ≤ N

➔ Goal: N output nodes from FFT directed graph (aka digraph) are 

pebbled and memory configuration stays the same



2. Fast Fourier Transform (FFT)

➔ Setup: N is a power of 2, everything else same as sorting
● x[i] = nil for 1 ≤ i ≤ M, x[M+i] = Ri for 1 ≤ i ≤ N

➔ Goal: N output nodes from FFT directed graph (aka digraph) are 

pebbled and memory configuration stays the same



The FFT Digraph

➔ N rows
➔ (log N) + 1 columns
➔ Designate node at row i, column j as ni,j (0-indexed) 
➔ Each ni,j is connected to ni,j-1 and ni XOR (1<<j-1),j-1

➔ Can only pebble ni,j if predecessors are pebbled and their records 
are in internal memory



The FFT Digraph

➔ N rows
➔ (log N) + 1 columns
➔ Designate node at row i, column j as ni,j (0-indexed) 
➔ Each ni,j is connected to ni,j-1 and ni XOR (1<<j-1),j-1

➔ Can only pebble ni,j if predecessors are pebbled and their records 
are in internal memory

➔ Way to delegate flow of records in/out of internal memory and disk



3. Permutation Network

➔ Similar setup/description to FFT, but different graph shape
● N rows, J+1 columns for some J ≥ log N

● Allows for creation of permutations/different calculations

➔ Keeping same notation of ni,j, ni,j is connected to ni,j-1 and possibly 

ni',j-1

● If this is the case, then ni',j is also connected to ni,j-1



3. Permutation Network

➔ Similar setup/description to FFT, but different graph shape
● N rows, J+1 columns for some J ≥ log N

● Allows for creation of permutations/different calculations

➔ Keeping same notation of ni,j, ni,j is connected to ni,j-1 and possibly 

ni',j-1

● If this is the case, then ni',j is also connected to ni,j-1

● This represents a switch between ni,j and ni',j from the preceding column:
Row i

Row i'



The Permutation Digraph

➔ The prior constraints on the digraph are not sufficient to determine 

a permutation network
● For each of the N! permutations on {1...N}, we must be able to set the switches 

so that each ni,0 is mapped to some output node np_i,j

● This mapping represents the permutation

➔ Nodes can only be pebbled if predecessors have been pebbled 

and the corresponding records are in internal memory (as before)



4. Permuting

➔ Same setup as sorting, but the keys of the N records must form a 

permutation of {1...N}

➔ Not the same as permutation networks!



Permuting vs. Permutation Network

➔ A permutation network is generated by a sequence of I/Os to 
represent ways to generate N! permutations

➔ A permutation is a set of specific I/Os to end up with that 
permutation of records



Permuting vs. Permutation Network

➔ A permutation network is generated by a sequence of I/Os to 
represent ways to generate N! permutations

➔ A permutation is a set of specific I/Os to end up with that 
permutation of records

➔ In short:
● Network = Same I/Os let you generate N! permutations
● Permutation = I/Os depend on the specific permutation



5. Matrix Transposition

➔ Setup: A pxq matrix (pq = N) of records is stored in row-major order 

on disk starting from x[M+1], internal storage empty

➔ Goal: Replace with column-major order on disk starting from 

x[M+1], with internal storage empty

3 5 8

1 0 2

9 8 2

3 5 8 1 0 2 9 8 2

A



5. Matrix Transposition

➔ Setup: A pxq matrix (pq = N) of records is stored in row-major order 

on disk starting from x[M+1], internal storage empty

➔ Goal: Replace with column-major order on disk starting from 

x[M+1], with internal storage empty

3 5 8

1 0 2

9 8 2

3 1 9 5 0 8 8 2 2

AT



Definitions/Setup

➔ An I/O operation is simple if each record transfer involves being 
removed from disk (I)/internal memory (O) and placed into an 
empty spot in internal memory (I)/disk (O)
● Full movement of data



Definitions/Setup

➔ An I/O operation is simple if each record transfer involves being 
removed from disk (I)/internal memory (O) and placed into an 
empty spot in internal memory (I)/disk (O)
● Full movement of data

➔ Denote the kth (k ≥ 1) set of B continuous locations on disk as the kth

track (x[M+(k-1)B+1]...x[M+kB])
● Since B is the block size, we consider transfers of exactly B records (a 

complete track)
● Overflow is handled by simply filling the extra records with nil



Definitions/Setup

➔ For simplicity, we mostly consider P=1
● Represents conventional disks
● Can also shift bounds by a factor of P

➔ Assume WLOG that B, M, N are powers of 2 and B < M < N



Analysis (All)

➔ Observation: for FFT, permutation network, and matrix 
transposition, there is no input distribution
● Average-case and worst-case models are the same

➔ For sorting and permuting, assume all N! inputs are equally likely
● A bit more nuance must be used to separate the models



Analysis (All)

➔ Lemma 4.1: for each computation that implements a permutation of 
the N records R1, R2, …, RN (or that sorts or that transposes or that 
computes the FFT digraph or a permutation network), there is a 
corresponding computation strategy involving only simple I/Os 
such that the total number of I/Os is no greater
● Cancel transfer of a record if transfer is not needed for the final result
● Resulting I/O strategy is simple

➔ From now on, assume all I/Os are simple



Analysis (Permuting)

➔ Lemma 4.1 allows us to take the following approach:
● Bound number of possible permutations after t I/Os
● At each I/O, we create more possible permutations between records

➔ Consider time t
● At t = 0, we have 1 permutation (haven't done anything yet)
● At most N/B + t - 1 full tracks before the tth output
● Thus, we have at most N/B + t new places for a new full track to be

● Amount of space between tracks doesn't matter when considering permutation

➔ Thus, at each timestep t we multiply the number of permutations by 
at most N/B + t
● Can be bounded by N(1 + log N) for simplicity



Analysis (Permuting)

➔ Now, consider each block of B records from a given track
● Could have B! possible orders based on rearrangement of internal memory

● Implies an increase in number of possible permutations

➔ Apply mathematical computation and Stirling's approximation



Analysis (Permuting)

➔ Now, consider each block of B records from a given track
● Could have B! possible orders based on rearrangement of internal memory

● Implies an increase in number of possible permutations

➔ Apply mathematical computation and Stirling's approximation



Analysis (Permuting)

➔ It turns out that for small B and M, it's better to just do the naive 

solution of moving records once per block transfer



Analysis (FFT/Permutation Networks)

➔ Observation: by stacking three FFT digraphs, we can construct a 
permutation network
● The output nodes of one FFT digraph should be the input nodes of the next
● We need three FFT digraphs to capture all permutation possibilities

➔ This makes the two problems essentially equivalent in terms of I/O
● Lower bound for permutation networks matches upper bound for FFT



Analysis (FFT/Permutation Networks)

➔ Observation: by stacking three FFT digraphs, we can construct a 
permutation network
● The output nodes of one FFT digraph should be the input nodes of the next
● We need three FFT digraphs to capture all permutation possibilities

➔ This makes the two problems essentially equivalent in terms of I/O
● Lower bound for permutation networks matches upper bound for FFT
● Consider permutation networks



Analysis (Permutation Networks)

➔ Observation: I/O sequence is fixed for a permutation network
➔ Can still apply similar analysis to permuting

● Allows us to not have to deal with the fact that I/O depends on a desired 
permutation

● Records transferred during I/O and track accessed are fixed for each I/O
● Eliminates N/B + t term that we had to account for earlier

➔ In addition, each output can at most double the amount of 
generated permutations
● Due to the swapping formulation of permutation network nodes' 

predecessors



Analysis (Permutation Networks)

➔ Apply Stirling's 

approximation again



Analysis (Permutation Networks)

➔ Apply Stirling's 
approximation again

➔ The Ω-bound is tight: 
permutation networks 
exist with necessary 
I/Os equal to



Analysis (Sorting)

➔ Can immediately derive bounds based on permuting
● Sorting is just one special case of permuting

➔ But we can do better!
● Sorting is different since we know which permutation to generate based on 

what belongs where



Analysis (Sorting)

➔ Can immediately derive bounds based on permuting
● Sorting is just one special case of permuting

➔ But we can do better!
● Sorting is different since we know which permutation to generate based on 

what belongs where

➔ Adversarial argument for lower-bound:
● In the worst case, all our simple I/Os compare against all the records in 

internal memory
● At each step, when importing B new records, we will need to compare 

against at most M-B records



Analysis (Sorting)

➔ After similar mathematical computation to permutation networks, 

we can arrive at the following (familiar) bound for worst-case:



Analysis (Sorting)

➔ We wish to show this bound also holds in the average-case 

scenario

➔ Consider the comparison tree with N! leaves, representing all the 

N! orderings possible
● Each node represents an input operation



Analysis (Sorting)

➔ Each node has a degree of at most M choose B, except for nodes 

corresponding to track input
● These have degree at most B!(M choose B)

● There can be at most N/B of these

➔ Taking the sum of leaf depths divided by N! (averaging), 

minimizing over all possible computation trees, and normalizing P 

yields the same bounds as Theorem 3.1



Analysis (Matrix Transposition)

➔ Approach using a potential function POT(t) over time t
➔ WLOG, assume p and q (matrix dimensions) are powers of 2
➔ Let the ith target group (1 ≤ i ≤ N/B) be the set of records we want in 

the ith track in the end



Analysis (Matrix Transposition)

➔ Let f(x) be a continuous function:

➔ Define togetherness to the kth track at time t:
● xi,k records contained by kth track belonging to ith target group

➔ Also define togetherness of internal memory
● yi is number of records belonging to ith target group in memory



Analysis (Matrix Transposition)

➔ Define the potential function POT(t) to be the sum of togetherness 
ratings of internal memory and all tracks
● At the end of the algorithm, internal memory is empty and each track has all 

the records it should have



Analysis (Matrix Transposition)

➔ Define the potential function POT(t) to be the sum of togetherness 
ratings of internal memory and all tracks
● At the end of the algorithm, internal memory is empty and each track has all 

the records it should have
● Internal memory contributes 0 to potential, each block contributes Blog B

● Thus, at termination I/O number T, POT(T) = Nlog B



Analysis (Matrix Transposition)

➔ Define the potential function POT(t) to be the sum of togetherness 
ratings of internal memory and all tracks
● At the end of the algorithm, internal memory is empty and each track has all 

the records it should have
● Internal memory contributes 0 to potential, each block contributes Blog B

● Thus, at termination I/O number T, POT(T) = Nlog B

➔ Casework at t=0 based on size of B vs. p and q yields



Analysis (Matrix Transposition)

➔ Properties of the potential function
● Does not increase when a block is output from internal memory to disk
● Increases when a track is input from disk to internal memory

➔ Can show inputs cause potential function to increase by O(B log 
M/B)
● Monitoring how togetherness changes in independent components and 

applying a convexity argument



Analysis (Matrix Transposition)

➔ We can use the potential function to then prove:



Analysis (Conclusion)

➔ Of the theorems we've seen, all the non-trivial bounds include 
N/PB
● N/PB is the number of I/O operations necessary to scan N records once



Analysis (Conclusion)

➔ Of the theorems we've seen, all the non-trivial bounds include 
N/PB
● N/PB is the number of I/O operations necessary to scan N records once

➔ Coefficients of N/PB represent number of "passes" through file
● A "linear-time" algorithm in terms of passes would use O(N/PB) I/Os
● Thus, the terms below intuitively indicate degree of nonlinearity



Analysis (Optimal Algorithms)

➔ Some promising theoretical constraints are presented
● Unclear how exactly they constrain explicit algorithms

➔ Leads to discussion of "optimal algorithms" which are able to 
achieve bounds in Theorems 3.1-3.3

➔ WLOG, again assume B < M < N are all powers of 2
➔ Suffices to just consider worst-case complexity: average-case 

result follows immediately



Analysis (Optimal Algorithms: Sorting)

➔ Two sorting algorithms examined: merge and 
distribution



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

7 6 3 1 8 4



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

7 6 3 1 8 4



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

3 6 7 1 4 8



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

3 6 7 1 4 8

1



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

3 6 7 1 4 8

1 3



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

3 6 7 1 4 8

1 3 4 6 7 8



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
● Divide and conquer algorithm
● Given an array of unsorted records:

● Split them into two halves
● Sort each half independently (e.g. with mergesort)
● Combine them iteratively

1 3 4 6 7 8



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
➔ I/O Complexity

● In this formulation, we sort our tracks into runs and 
then combine them

● At each merging step, one block being merged 
resides in internal memory
● We don't know which block to fetch next



Analysis (Optimal Algorithms: Sorting)

➔ Merge Sort
➔ I/O Complexity

● In this formulation, we sort our tracks into runs and 
then combine them

● At each merging step, one block being merged 
resides in internal memory
● We don't know which block to fetch next

● In each track, we can place P-1 markers telling us the 
key values of the next P-1 tracks of the run
● Using this forecasting information, we can achieve the 

bounds in Theorem 3.1



Analysis (Optimal Algorithms: Sorting)

➔ Distribution Sort
● Assume M/B is a perfect square, and let S = √(M/B)
● With O(N/PB) I/Os we can find S partitioning 

elements to bucket the records
● Can repeatedly use a linear rank-finding algorithm via 

median of medians (e.g. 6.046)

● Recursively sort the buckets



Analysis (Optimal Algorithms: Sorting)

➔ Distribution Sort
➔ I/O Complexity

● Define T(n) to be I/Os needed to sort n records

➔ By solving this, we get the bounds in Theorem 3.1



Analysis (Optimal Algorithms: Permuting)

➔ Special case of the sorting algorithm
● Can just re-use it here to get the same bounds as sorting
● Additional naive case when B and M are small for the N/P min term

● If B log(M/B) = o(log N/B)

➔ Either of the two above prior sorting algorithms will work



Analysis (Optimal Algorithms: Matrix Transposition)

➔ WLOG, assume p and q are powers of 2
➔ In each track of B records, partition records 

into target sub-groups based on end location
● Merge these target subgroups over course of 

algorithm
● Records in same target subgroup should stay together

● If x is the initial size of target-subgroups, then:



Analysis (Optimal Algorithms: Matrix Transposition)

➔ I/O Complexity
● Each pass (O(N/PB) I/Os) multiplies size of target 

subgroup by M/B
● Calculating amount of passes (and thus number of 

I/Os) results in Theorem 3.3



Analysis (Optimal Algorithms: FFT/Permutation 
Network)➔ Again, three FFT digraphs form a permutation 

network



Analysis (Optimal Algorithms: FFT/Permutation 
Network)➔ Again, three FFT digraphs form a permutation 

network
● Only consider FFT



Analysis (Optimal Algorithms: FFT)

➔ For simplicity, assume log M divides log N
➔ Decompose FFT graph into (log N)/(log M) equal 

size stages by column



Analysis (Optimal Algorithms: FFT)

➔ For simplicity, assume log M divides log N
➔ Decompose FFT graph into (log N)/(log M) equal 

size stages by column
● Stage k (1 ≤ k ≤ (log N)/(log M)) corresponds to pebbling 

of columns (k-1)log M to klog M in the digraph
● To compute pebbling on these log M columns, we must 

take M columns as input via a transposition 
permutation



Analysis (Optimal Algorithms: FFT)

➔ For simplicity, assume log M divides log N
➔ Decompose FFT graph into (log N)/(log M) equal 

size stages by column
● Stage k (1 ≤ k ≤ (log N)/(log M)) corresponds to pebbling 

of columns (k-1)log M to klog M in the digraph
● To compute pebbling on these log M columns, we must 

take M columns as input via a transposition 
permutation

➔ By combining prior results and some 
mathematical reorganization, get Theorem 3.1



Reflection (Strengths)

➔ Introduction is solid with interesting premise
● Presents a common problem with a relatable issue

➔ Good amount of content in the paper
● Theoretical analysis of I/O
● Several similar useful problems presented
● Corresponding algorithms for each of the five problems shown



Reflection (Weaknesses)

➔ Organization style somewhat lackluster
● Lots of context switching between the five problems in each section

● Not consistent: theorems presented in different order than they are proved

● Somewhat hurts readability
● Intimidating theorems presented upright instead of leading into them

➔ Use of jargon is sometimes unexplained/excessive
● e.g. "pebbling" is not explained

➔ Math is quite involved, sometimes lacking explanation
● Some more diagrams could also be helpful as a visual break

● Problem formulation, algorithms, etc.



Reflection (Future Work)

➔ Assumption that records are indivisible simplifies much of the 

theoretical computation
● Being able to operate on individual bits could be useful, but hard to examine

● Would help gain insight on information transfer

➔ Analysis on other memory paradigms to represent different kinds 

of systems

➔ Implementing real memory checks to examine performance in 

practice



Discussion Questions

➔ Did you find the paper's relatively unique flow confusing? Or did it 
help to relate the problems together? When was it helpful/harmful?

➔ Why can we assume WLOG that B < M < N? Or that they are powers 
of 2?

➔ What are some applications for the graph formulation of FFT the 
authors provide?

➔ Do you think the paper has aged well in the past ~30 years with all 
the technological progress that has been made?


