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Motivation
Large data that exceeds main memory storage limits

Algorithms that require data locality need to be adapted when 
implementing their external versions, e.g. graph problems

Current approaches do not completely address I/O 
implications



Key Contributions
Divide-and-conquer approach for designing external graph 
algorithms

No need for sophisticated data structures 

Produce purely functional algorithms without “side effects”
Lack of “side effects” allows for standard check-pointing
Functional approach amenable to general programming 

language transformations that can reduce runtime 



Other Previous Approaches
PRAM (Parallel Random Access Machine) Simulation

Simulate CRCW (concurrent read concurrent write) 
PRAM using processor and external disk
Weakness: no algorithm has been implemented with this

Buffering Data Structures
External variants of classic data structures
Weakness: Requires other structures to perform queries
on-line, increasing I/O and implementation complexity



Definitions

Main 
Memory

External Memory

Block

N: Number of items in 
external memory

M: Number of items that 
can fit in main memory

B: Number of items per 
disk block

Block



Functional I/O Model
Parameterized the same way as I/O model 

Write-once property => enable easier recovery 

Operations restricted to only make functional transformations 
to data => enables checkpointing

When intermediate results are no longer needed, space is 
reclaimed (e.g. garbage collect)



Problem Definitions
Connected components: edge set induced by maximal set of vertices such that 
each pair of vertices is connected by a path 

Minimum spanning forest: edge set of minimal total weight that connects all 
vertices

Bottleneck minimum spanning forest: edge set of minimal maximum weight that 
connects all vertices

Maximal matching: maximal set of edges such that no two edges share a vertex

Maximal independent set: maximal set of vertices such that no two vertices 
share an edge



Overview of Results
sort(N) = Θ((N/B) logM/B(N/B))



The Problems with Graph Problems
Need for data locality 

On-line nature makes it difficult to utilize full disk block of 
edges once read

Difficult to divide a problem into independent sub-problems 



Functional Graph Transformations
Contraction 



Functional Graph Transformations



Functional Graph Transformations
Relabeling



Functional Graph Transformations
Connected Components



Connected Components Algorithm



fP(G): solution to the graph problem P on input 
graph G = (V,E)

G1 = S(G) ⊆ E 

T1: transformation that combines G and the 
solution fP(G1) to form subgraph G2

T2: transformation the maps fP(G1) and fP(G2) to 
fP(G)

Generalization of Method as Functional 
Approach to External Graph Algorithms



Functional Implementations of Basic 
Methods
Selection

Relabeling

Contraction

Deletion



Functional Implementations of 
Selection

Select the kth largest element and it’s multiplicity in I



Functional Implementations of 
Relabeling



Functional Implementations of 
Contraction



Functional Implementations of 
Deletion

Given edge lists I and D: 
1. sort I and D
2. process in tandem to delete

Given edge list I and vertex list U:
1. sort U
2. sort I by 1st component and process in tandem to delete
3. sort I by 2nd component and process in tandem to delete



Deterministic Algorithms

Functional 
Implementations of 

Selection, Relabeling, 
Contraction, Deletion 

Functional Forms of 
Deterministic

CC, MSF, BMSF, MM



Functional Connected Components



Functional Connected Components

• Suffices to compute forest F of rooted stars
• Sort E by 1st vertex, sort F by source vertex, process in tandem, assign component labels to edges
• If E < V, we are done by Lemma 4.1 (prev slide)
• Otherwise, 

• Partition E into ceil(E/V) lists 
• Compute forest of rooted stars for each sublist
• Iteratively merge pairs of forests (replace pairs of forests with their union)
• Runtime is same as Lemma 4.1



Functional Minimum Spanning Forest
Note: MSF 
is a BMSF!



Functional Maximal Matching



Randomized Algorithms

Functional 
Implementations of 

Selection, Relabeling, 
Contraction, Deletion, 

Boruvka Step 

Functional Forms of 
Randomized

CC, MSF, BMSF, MM



Randomized Algorithms: Boruvka Step
Boruvka step: selects and contracts the edge of minimum weight incident on 
each vertex.
=> Halves number of vertices in graph
=> Preserves MSF of contracted graph

Let G be a graph, let F be subgraph of G after a Boruvka step, let G’ be resulting 
graph
=> MSF of G is the MSF of G’ plus edges in F



Randomized Algorithms: Boruvka Step

Relies on results from Chiang et al. [13]
Note: Arge [4] + Kumar and Schwabe [26] produce similar but not functional results

Sort by 1st and 2nd components of each edge and scan to select minimum weight edge 
incident on each vertex 

O(sort(E)) I/Os 
Let F be the set of chosen edges => F is a forest

Find connected components in O(sort(V)) I/Os [13]

Label each edge in F by connected component to rearrange edges into list of delineated 
components in O(sort(E)) I/Os

Contract E by F in O(sort(E)) I/Os by Lemma 3.5



Randomized Linear MSF Algorithm 
Karger et al [26]



Randomized Connected Components



Randomized BMSF



Randomized MM
Luby [28]



When V <= M but E > M

CC: Can compute forest of rooted stars in one scan 

MSF: Sort edge list by weight, then maintain forest internally. 
◦ Can also use dynamic trees to maintain internal forest. For each edge, delete maximum weight 

edge on any cycle created. => O(E log V) internal computation 

BMSF: Same applies for BMSF 

MM: Maintain internal matching and can compute in one scan of edge-list

Concerns: 1) Sorting, 2) Grouping by Key

Semi-External Algorithms



Partition items into M/B buckets, each with distinct range. Each block in memory holds a single bucket

Assign items to appropriate block. If block is full, write to disk 

Sort buckets recursively  

Chain disk blocks into a linked list without affecting the asymptotic space usage

After reading input: 
◦ Non-empty memory blocks with non-null pointers are emptied 
◦ Remaining memory blocks partitioned into contiguous ranges of keys

Final output produced by scanning through the chains on disk, in order, to produce bucketed list that only 
requires N/B disk blocks.

External Sorting



Given N records have K distinct keys, use the previous scheme to group them

During each recursive phase, pick hash function, h, independently and uniformly at random from 
a family of universal hash function that map the K keys to the range [1, floor(M/B)]

Use h to assign keys to buckets

When bucket contains M/B distinct keys, group records in one additional scan

External Grouping



Strengths: 

- comprehensive theoretical analysis about complexity 

- builds off of a lot of previous work in the topic

- justification about the benefits of a functional approach

Weaknesses: 

- no experiments, only theory 

- unable to address other fundamental graph algorithms like BFS, DFS, topological sorting, single 
source shortest paths, transitive closure 

My Thoughts



How feasible do you think it is to implement the proposed functional 
approaches? 

What are your thoughts on the novelty of the authors’ functionalization of other 
algorithms, e.g. Karger et al’s randomized linear MSF and Luby’s randomized 
MM algorithms? 

How do you think FIO compares to other approaches? (PRAM simulation and 
buffering data structures)

Discussion


