
A Functional Approach to
External Graph Algorithms
J. ABELLO, A. L. BUCHSBAUM, AND J. R. WESTBROOK

Motivation
Large data that exceeds main memory storage limits

Algorithms that require data locality need to be adapted when
implementing their external versions, e.g. graph problems

Current approaches do not completely address I/O
implications

Key Contributions
Divide-and-conquer approach for designing external graph
algorithms

No need for sophisticated data structures

Produce purely functional algorithms without “side effects”
Lack of “side effects” allows for standard check-pointing
Functional approach amenable to general programming

language transformations that can reduce runtime

Other Previous Approaches
PRAM (Parallel Random Access Machine) Simulation

Simulate CRCW (concurrent read concurrent write)
PRAM using processor and external disk
Weakness: no algorithm has been implemented with this

Buffering Data Structures
External variants of classic data structures
Weakness: Requires other structures to perform queries
on-line, increasing I/O and implementation complexity

Definitions

Main
Memory

External Memory

Block

N: Number of items in
external memory

M: Number of items that
can fit in main memory

B: Number of items per
disk block

Block

Functional I/O Model
Parameterized the same way as I/O model

Write-once property => enable easier recovery

Operations restricted to only make functional transformations
to data => enables checkpointing

When intermediate results are no longer needed, space is
reclaimed (e.g. garbage collect)

Problem Definitions
Connected components: edge set induced by maximal set of vertices such that
each pair of vertices is connected by a path

Minimum spanning forest: edge set of minimal total weight that connects all
vertices

Bottleneck minimum spanning forest: edge set of minimal maximum weight that
connects all vertices

Maximal matching: maximal set of edges such that no two edges share a vertex

Maximal independent set: maximal set of vertices such that no two vertices
share an edge

Overview of Results
sort(N) = Θ((N/B) logM/B(N/B))

The Problems with Graph Problems
Need for data locality

On-line nature makes it difficult to utilize full disk block of
edges once read

Difficult to divide a problem into independent sub-problems

Functional Graph Transformations
Contraction

Functional Graph Transformations

Functional Graph Transformations
Relabeling

Functional Graph Transformations
Connected Components

Connected Components Algorithm

fP(G): solution to the graph problem P on input
graph G = (V,E)

G1 = S(G) ⊆ E

T1: transformation that combines G and the
solution fP(G1) to form subgraph G2

T2: transformation the maps fP(G1) and fP(G2) to
fP(G)

Generalization of Method as Functional
Approach to External Graph Algorithms

Functional Implementations of Basic
Methods
Selection

Relabeling

Contraction

Deletion

Functional Implementations of
Selection

Select the kth largest element and it’s multiplicity in I

Functional Implementations of
Relabeling

Functional Implementations of
Contraction

Functional Implementations of
Deletion

Given edge lists I and D:
1. sort I and D
2. process in tandem to delete

Given edge list I and vertex list U:
1. sort U
2. sort I by 1st component and process in tandem to delete
3. sort I by 2nd component and process in tandem to delete

Deterministic Algorithms

Functional
Implementations of

Selection, Relabeling,
Contraction, Deletion

Functional Forms of
Deterministic

CC, MSF, BMSF, MM

Functional Connected Components

Functional Connected Components

• Suffices to compute forest F of rooted stars
• Sort E by 1st vertex, sort F by source vertex, process in tandem, assign component labels to edges
• If E < V, we are done by Lemma 4.1 (prev slide)
• Otherwise,

• Partition E into ceil(E/V) lists
• Compute forest of rooted stars for each sublist
• Iteratively merge pairs of forests (replace pairs of forests with their union)
• Runtime is same as Lemma 4.1

Functional Minimum Spanning Forest
Note: MSF
is a BMSF!

Functional Maximal Matching

Randomized Algorithms

Functional
Implementations of

Selection, Relabeling,
Contraction, Deletion,

Boruvka Step

Functional Forms of
Randomized

CC, MSF, BMSF, MM

Randomized Algorithms: Boruvka Step
Boruvka step: selects and contracts the edge of minimum weight incident on
each vertex.
=> Halves number of vertices in graph
=> Preserves MSF of contracted graph

Let G be a graph, let F be subgraph of G after a Boruvka step, let G’ be resulting
graph
=> MSF of G is the MSF of G’ plus edges in F

Randomized Algorithms: Boruvka Step

Relies on results from Chiang et al. [13]
Note: Arge [4] + Kumar and Schwabe [26] produce similar but not functional results

Sort by 1st and 2nd components of each edge and scan to select minimum weight edge
incident on each vertex

O(sort(E)) I/Os
Let F be the set of chosen edges => F is a forest

Find connected components in O(sort(V)) I/Os [13]

Label each edge in F by connected component to rearrange edges into list of delineated
components in O(sort(E)) I/Os

Contract E by F in O(sort(E)) I/Os by Lemma 3.5

Randomized Linear MSF Algorithm
Karger et al [26]

Randomized Connected Components

Randomized BMSF

Randomized MM
Luby [28]

When V <= M but E > M

CC: Can compute forest of rooted stars in one scan

MSF: Sort edge list by weight, then maintain forest internally.
◦ Can also use dynamic trees to maintain internal forest. For each edge, delete maximum weight

edge on any cycle created. => O(E log V) internal computation

BMSF: Same applies for BMSF

MM: Maintain internal matching and can compute in one scan of edge-list

Concerns: 1) Sorting, 2) Grouping by Key

Semi-External Algorithms

Partition items into M/B buckets, each with distinct range. Each block in memory holds a single bucket

Assign items to appropriate block. If block is full, write to disk

Sort buckets recursively

Chain disk blocks into a linked list without affecting the asymptotic space usage

After reading input:
◦ Non-empty memory blocks with non-null pointers are emptied
◦ Remaining memory blocks partitioned into contiguous ranges of keys

Final output produced by scanning through the chains on disk, in order, to produce bucketed list that only
requires N/B disk blocks.

External Sorting

Given N records have K distinct keys, use the previous scheme to group them

During each recursive phase, pick hash function, h, independently and uniformly at random from
a family of universal hash function that map the K keys to the range [1, floor(M/B)]

Use h to assign keys to buckets

When bucket contains M/B distinct keys, group records in one additional scan

External Grouping

Strengths:

- comprehensive theoretical analysis about complexity

- builds off of a lot of previous work in the topic

- justification about the benefits of a functional approach

Weaknesses:

- no experiments, only theory

- unable to address other fundamental graph algorithms like BFS, DFS, topological sorting, single
source shortest paths, transitive closure

My Thoughts

How feasible do you think it is to implement the proposed functional
approaches?

What are your thoughts on the novelty of the authors’ functionalization of other
algorithms, e.g. Karger et al’s randomized linear MSF and Luby’s randomized
MM algorithms?

How do you think FIO compares to other approaches? (PRAM simulation and
buffering data structures)

Discussion

