Engineering a Cache-Oblivious Sorting Algorithm

Gerth Stølting Brodal, Rolf Fagerberg, Kristoffer Vinther

Presented by William Qian

2020 March 5

6.886 Spring 2020

William Qian

Engineering a C/O Sorting Algorithm

2020 March 5 1 / 31

→ Ξ →

Overview

Lazy d-Funnelsort

Recipe

- Ingredients
- Step 1: k-merger structures
- Step 2: Tuning basic mergers
- Step 3: Degree of basic mergers
- Step 4: Caching for basic mergers
- Step 5: Base sorting algorithm
- Step 6: Parameters α and d

3 Evaluation

- 4 ∃ ▶

Food for thought...

- In what ways did the results of one experiment critically determine the parameters for a later one?
- What hypotheses did the authors have? Which of these seem sensible but are not supported by the experiments?
- How do the authors ensure that their experiments are robust, reliable, and reproducible? What do you find unusual?
- How could some of these results have been discovered with the help of tuning tools like OpenTuner?

Lazy d-Funnelsort

Recipe

- Ingredients
- Step 1: k-merger structures
- Step 2: Tuning basic mergers
- Step 3: Degree of basic mergers
- Step 4: Caching for basic mergers
- Step 5: Base sorting algorithm
- Step 6: Parameters α and d

3 Evaluation

4 Discussion

< (日) × < 三 × <

k-merger

- Central to (lazy) funnelsort
- Recursively built of \sqrt{k} -mergers
- Outputs of mergers on one level are inputs to parents
- When buffers are empty, recursively invoke the filling algorithm

Funnelsort on *n* elements incurs $O(1 + \frac{n}{B}(1 + \log_M n))$

Image: A Image: A

From prior work by Brodal and Fagerberg [1]:

Fill(v)

while v's output buffer isn't full
 if left input buffer empty
 Fill(left child of v)
 if right input buffer empty
 Fill(right child of v)
 perform one merge step

Input buffers

< (日) × (日) × (1)

Lemma 1. Let $d \ge 2$. The size of a k-merger (excluding its output buffer) is bounded by $c \cdot k^{\frac{d+1}{2}}$ for a constant $c \ge 1$. Assuming $B^{\frac{d+1}{d-1}} \le \frac{M}{2c}$, a k-merger performs $O\left(\frac{k^d}{B}\log_M(k^d) + k\right)$ I/Os during an invocation.

< (日) × (日) × (4)

Space bound:

$$egin{aligned} \mathcal{S}(k) &= k^{rac{1}{2}} \cdot k^{rac{d}{2}} + (k^{rac{1}{2}} + 1) \cdot \mathcal{S}(k^{rac{1}{2}}) \ &\leq c \cdot k^{rac{d+1}{2}} \end{aligned}$$

- k^{1/2} buffers with k^{d/2} size
 Recurse on k^{1/2}-size problems
 - 1 recursion "up"
 k^{1/2} recursions "down"

→ Ξ →

I/O bound:

- Largest subtree with \bar{k} leaves • Space: $\bar{k} \frac{d+1}{2} \leq \frac{M}{2c}$
- **2** Parent has \bar{k}^2 leaves
 - Space: $(\bar{k}^2)^{\frac{d+1}{2}} > \frac{M}{2c}$
 - Input: "large buffers"
- 8 Remove large buffer edges
 - Connected base trees

• • = • •

2020 March 5 9 / 31

- 1 block $\times \bar{k}$ buffers: $\bar{k}B \leq \left(\frac{M}{2c}\right)^{\frac{2}{d+1}} \cdot \left(\frac{M}{2c}\right)^{\frac{d-1}{d+1}} \leq \frac{M}{2c}$
- ${ig 0}$ Base tree $+\;1$ block $imes\;ar{k}$ buffers $\leq rac{M}{c}$ space

• If k-merger is a base tree, output k^d items in $O\left(\frac{k^d}{B}+k\right)$ I/Os

• Otherwise, for Fill(v = root node of a base tree)

• Loads $\Omega(\bar{k}^d)$ elements to output buffer

- **O** Base tree + 1 block/buffer $= O\left(rac{1}{B}ar{k}^{rac{d+1}{2}} + ar{k}
 ight)$
- $\bar{k}^{d+1} > \frac{M}{2c} \implies \bar{k}^{d-1} > \left(\frac{M}{2c}\right)^{\frac{d-1}{d+1}} \ge B \therefore \frac{1}{B}\bar{k}^d \ge \bar{k}$
- Casework: recursive calls may cause base tree reloads
- Scharge $O\left(\frac{1}{B}\right) I/O$ per large buffer insert
- $\geq \left(\frac{M}{2c}\right)^{\frac{1}{d+1}}$ leaves means $O(\log_M k^d)$ large buffer inserts/item

・ロト ・ 同ト ・ ヨト ・ ヨト

- Per invocation:
 - k-merger is base tree: $O\left(\frac{k^d}{B}+k\right)$ I/Os
 - k-merge is not: $O(\frac{k^d}{B} \log_M k^d)$ large buffer I/Os
 - Overall I/O cost bounded by $O(\frac{k^d}{B} \log_M k^d + k)$
- Proof based on buffer size, any memory layout works!
- This paper: D_0/D_0+1 buffers have size $\alpha \lceil d^{\frac{3}{2}} \rceil$, $\alpha > 0$

Lazy d-Funnelsort

Recipe

- Ingredients
- Step 1: *k*-merger structures
- Step 2: Tuning basic mergers
- Step 3: Degree of basic mergers
- Step 4: Caching for basic mergers
- Step 5: Base sorting algorithm
- Step 6: Parameters α and d

Evaluation

4 Discussion

Ingredients

Cache-oblivious sorting implementation

- 1 baseline cache-oblivious sorting algorithm, theoretically efficient
- 1 state-of-the-art sorting algorithm, not necessarily cache-oblivious
- 1 or more workloads, aiming to cover useful sorting applications
- 1 or more data distributions, to simulate different workload types
- 1 consistent method for accurately measuring time
- Several machines and architectures, optional but recommended
- Many hypotheses that can translate into experiments

Step 1: *k*-merger structures

Allocator

- Custom
- Standard*

Invocation pattern

- Recursive
- Iterative

Navigation

- Pointers
- Implicit

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Layout

- BFS
- DFS
- vEB

Merger nodes

- stored with
 - output buffer
- stored separately

2020 March 5 14 / 31

Step 1: *k*-merger structures

Experiments

- Cartesian product of factors
- 28 experiments on 3 machines
- Workload
 - k streams of k^2 items
 - *k*-merger: (α, *d*)=(1, 2)
 - Basic merger degree(z): 2
 - *k* ∈ [15, 270]
 - Measure $\lceil \frac{20000000}{k^3} \rceil$ merges

Step 1: *k*-merger structures

Allocator	Invocation pattern		Navigation
Custom	✓ Rec	ursive	✓ Pointers
√ Standard*	 Iterative 		 Implicit
Layout		Merger nodes	
BFS		stored with	
DFS		output buffer	
√ vEB		\checkmark stored separately	

≥ ১ ব ≣ ১ আ আ ২০০০ 2020 March 5 16/31

A D N A B N A B N A B N

Step 2: Tuning basic mergers

Idea: improve on the merge step of the basic mergers

- Basic merger
- Coarse bound-checking
- Hybrid bound-checking
- Hwang-Lin merging algorithm [2]
- Hybrid Hwang-Lin

Experiments:

• Same as step 1, but with three additional (α, d) pairs:

Step 2: Tuning basic mergers

Results:

- Hwang-Lin has a large overhead
- Bound-checking is ineffective
- Hybrids work better
- ✓ Straightforward works best

CPU branch prediction is really good, hand-coding is just extra overhead

Step 3: Degree of basic mergers

Idea: multiway mergers: less data movement, more complex

- Basic mergers
- Various multiway mergers
- Looser trees [3]

Experiments:

- (k, a, d)=(120, 16, 2)
- 8 mergings of 1728000 elements
- *z* ∈ [2,9]

Step 3: Degree of basic mergers

Results:

- 4- and 5-way mergers work best
- Looser trees don't show inflection, but have high overhead

Step 4: Caching for basic mergers

Idea: construct one k-merger per level

- Each level uses the same size k-merger
- Reset and reuse the k-merger for merging in the same level

Experiments:

- $(\alpha, d, z) = (4, 2.5, 2)$
- Straightforward binary basic mergers
- Base case uses std::sort() for sizes $< \alpha z^d = 23$
- Workloads: between [5000000, 200000000] elements

Results: 3-5% speedup across the board

Step 5: Base sorting algorithm

Idea: choose a good base case for sorting a small number of elements Experiments:

- Insertion, selection, heap, shell, and std::sort() sorts
- Workload: input sizes from 10 to 100

Results: std::sort() is fastest

• • = • • = •

Step 6: Parameters α and d

Idea: choose good α and d parameters

Experiments:

- $\alpha \in [1, 40]$
- *d* ∈ [1.5, 3]
- Workloads: various sizes

Results:

- $\bullet~\alpha < 10$ produces a longer running time
- d does not have a large impact at reasonable sizes
- Small (α , d) correspond to small buffer sizes
 - Cost of navigation and invocation spread over fewer merge steps
- Optimal $(\alpha, d) \approx (16, 2.5)$

1 Lazy *d*-Funnelsort

2 Recipe

- Ingredients
- Step 1: k-merger structures
- Step 2: Tuning basic mergers
- Step 3: Degree of basic mergers
- Step 4: Caching for basic mergers
- Step 5: Base sorting algorithm
- Step 6: Parameters α and d

3 Evaluation

4 Discussion

Setup

Benchmarks:

- Funnelsort2 (binary basic mergers)
- Funnelsort4 (four-way basic mergers)
- Quicksort (GCC)
- Quicksort (Bentley & McIlroy)
- msort-c (cache-aware)
- msort-m (cache-aware)
- R-merge

Workloads (RAM):

- Inputs of sizes in RAM range
- Median of 21 trials
- Workloads (Disk):
 - Inputs on-disk
 - Single-trial

▲ 同 ▶ → 三 ▶

Data

Disk-based experiments omitted for brevity

Engineering a C/O Sorting Algorithm

2020 March 5 26 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Takeaways

- Arbitrary memory layouts can still hold asymptotic properties
 - But vEB structure still has practical benefits
- Iterative optimizations can lead to a competitive algorithm
- Occupie Cache-obliviousness overhead can be worth it!

References

Gerth Stølting Brodal and Rolf Fagerberg.

Cache oblivious distribution sweeping.

In International Colloquium on Automata, Languages, and Programming, pages 426-438. Springer, 2002.

Frank K. Hwang and Shen Lin.

A simple algorithm for merging two disjoint linearly ordered sets. *SIAM Journal on Computing*, 1(1):31–39, 1972.

Donald E Knuth.

The art of computer programming, volume 3: Searching and sorting. Addison-Westley Publishing Company: Reading, MA, 1973.

1 Lazy *d*-Funnelsort

2 Recipe

- Ingredients
- Step 1: k-merger structures
- Step 2: Tuning basic mergers
- Step 3: Degree of basic mergers
- Step 4: Caching for basic mergers
- Step 5: Base sorting algorithm
- Step 6: Parameters α and d

3 Evaluation

Discussion

→ < Ξ →</p>

"Constructive feedback"

- Graphs
 - Too dense and somewhat poorly organized
 - Legend labels are inconsistent between graphs
- "std::sort() is really good" isn't very novel
- Memory layout observation is exciting, but is eventually disappointing
- Methodology and experiment setups are fairly detailed and precise
- Engineering phase pattern is useful
 - Though visuals (e.g. graphs) would have been helpful

Image: A Image: A

Discussion

- In what ways did the results of one experiment critically determine the parameters for a later one?
- What hypotheses did the authors have? Which of these seem sensible but are not supported by the experiments?
- How do the authors ensure that their experiments are robust, reliable, and reproducible? What do you find unusual?
- How could some of these results have been discovered with the help of tuning tools like OpenTuner?