
Engineering a Cache-Oblivious Sorting

Algorithm

Gerth Stølting Brodal, Rolf Fagerberg, Kristoffer Vinther

Presented by William Qian

2020 March 5
6.886 Spring 2020

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 1 / 31



Overview

1 Lazy d-Funnelsort

2 Recipe
Ingredients
Step 1: k-merger structures
Step 2: Tuning basic mergers
Step 3: Degree of basic mergers
Step 4: Caching for basic mergers
Step 5: Base sorting algorithm
Step 6: Parameters α and d

3 Evaluation

4 Discussion

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 2 / 31



Food for thought...

1 In what ways did the results of one experiment critically
determine the parameters for a later one?

2 What hypotheses did the authors have? Which of these seem
sensible but are not supported by the experiments?

3 How do the authors ensure that their experiments are robust,
reliable, and reproducible? What do you find unusual?

4 How could some of these results have been discovered with the
help of tuning tools like OpenTuner?

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 3 / 31



Lazy d-Funnelsort

1 Lazy d-Funnelsort

2 Recipe
Ingredients
Step 1: k-merger structures
Step 2: Tuning basic mergers
Step 3: Degree of basic mergers
Step 4: Caching for basic mergers
Step 5: Base sorting algorithm
Step 6: Parameters α and d

3 Evaluation

4 Discussion

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 4 / 31



Lazy d-Funnelsort

k-merger

Central to (lazy) funnelsort

Recursively built of√
k-mergers

Outputs of mergers on one
level are inputs to parents

When buffers are empty,
recursively invoke the filling
algorithm

Funnelsort on n elements incurs O(1 + n
B

(1 + logM n))

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 5 / 31



Lazy d-Funnelsort

Modified k-merger

From prior work by Brodal and Fagerberg [1]:

Fill(v)

1 while v ’s output buffer isn’t full
2 if left input buffer empty
3 Fill(left child of v)
4 if right input buffer empty
5 Fill(right child of v)
6 perform one merge step

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 6 / 31



Lazy d-Funnelsort

Modified k-merger

Lemma 1. Let d ≥ 2. The size of

a k-merger (excluding its output

buffer) is bounded by c · k
d+1

2 for a

constant c ≥ 1. Assuming

B
d+1
d−1 ≤ M

2c , a k-merger performs

O
(
kd

B logM(kd) + k
)

I/Os during

an invocation.

D0 =
⌈

lg k
2

⌉
top tree

bottom trees

size kd

size
⌈
k

d
2

⌉

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 7 / 31



Lazy d-Funnelsort

Modified k-merger

Space bound:

S(k) = k
1
2 · k

d
2 + (k

1
2 + 1) · S(k

1
2 )

≤ c · k
d+1

2

k
1
2 buffers with k

d
2 size

Recurse on k
1
2 -size problems

1 recursion “up”

k
1
2 recursions “down”

D0 =
⌈

lg k
2

⌉
top tree

bottom trees

size kd

size
⌈
k

d
2

⌉

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 8 / 31



Lazy d-Funnelsort

Modified k-merger

I/O bound:
1 Largest subtree with k̄ leaves

Space: k̄
d+1

2 ≤ M
2c

2 Parent has k̄2 leaves

Space: (k̄2)
d+1

2 > M
2c

Input: “large buffers”

3 Remove large buffer edges

Connected base trees

D0 =
⌈

lg k
2

⌉
top tree

bottom trees

size kd

size
⌈
k

d
2

⌉

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 9 / 31



Lazy d-Funnelsort

Modified k-merger

4 1 block × k̄ buffers: k̄B ≤
(
M
2c

) 2
d+1 ·

(
M
2c

) d−1
d+1 ≤ M

2c

5 Base tree + 1 block × k̄ buffers ≤ M
c

space

6 If k-merger is a base tree, output kd items in O
(

kd

B
+ k
)

I/Os

7 Otherwise, for Fill(v = root node of a base tree)
a Loads Ω(k̄d) elements to output buffer

b Base tree + 1 block/buffer = O
(

1
B k̄

d+1
2 + k̄

)
c k̄d+1 > M

2c =⇒ k̄d−1 >
(
M
2c

) d−1
d+1 ≥ B ∴ 1

B k̄
d ≥ k̄

d Casework: recursive calls may cause base tree reloads
e Charge O

(
1
B

)
I/O per large buffer insert

f ≥
(
M
2c

) 1
d+1 leaves means O(logM kd) large buffer inserts/item

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 10 / 31



Lazy d-Funnelsort

Modified k-merger

Per invocation:

k-merger is base tree: O
(
kd

B + k
)

I/Os

k-merge is not: O(k
d

B logM kd) large buffer I/Os

Overall I/O cost bounded by O(k
d

B logM kd + k)

Proof based on buffer size, any memory layout works!

This paper: D0/D0+1 buffers have size αdd 3
2 e, α > 0

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 11 / 31



Recipe

1 Lazy d-Funnelsort

2 Recipe
Ingredients
Step 1: k-merger structures
Step 2: Tuning basic mergers
Step 3: Degree of basic mergers
Step 4: Caching for basic mergers
Step 5: Base sorting algorithm
Step 6: Parameters α and d

3 Evaluation

4 Discussion

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 12 / 31



Recipe Ingredients

Ingredients

Cache-oblivious sorting implementation

1 baseline cache-oblivious sorting algorithm, theoretically efficient

1 state-of-the-art sorting algorithm, not necessarily cache-oblivious

1 or more workloads, aiming to cover useful sorting applications

1 or more data distributions, to simulate different workload types

1 consistent method for accurately measuring time

Several machines and architectures, optional but recommended

Many hypotheses that can translate into experiments

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 13 / 31



Recipe Step 1: k-merger structures

Step 1: k-merger structures

Allocator

Custom

Standard*

Invocation pattern

Recursive

Iterative

Navigation

Pointers

Implicit

Layout

BFS

DFS

vEB

Merger nodes

stored with
output buffer

stored separately

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 14 / 31



Recipe Step 1: k-merger structures

Step 1: k-merger structures

Experiments

Cartesian product of factors

28 experiments on 3 machines

Workload

k streams of k2 items
k-merger: (α, d)=(1, 2)
Basic merger degree(z): 2
k ∈ [15, 270]
Measure d20000000

k3 e merges

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 15 / 31



Recipe Step 1: k-merger structures

Step 1: k-merger structures

Allocator

Custom

X Standard*

Invocation pattern

X Recursive

Iterative

Navigation

X Pointers

Implicit

Layout

BFS

DFS

X vEB

Merger nodes

stored with
output buffer

X stored separately

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 16 / 31



Recipe Step 2: Tuning basic mergers

Step 2: Tuning basic mergers

Idea: improve on the merge step of the basic mergers

Basic merger

Coarse bound-checking

Hybrid bound-checking

Hwang-Lin merging algorithm [2]

Hybrid Hwang-Lin

Experiments:

Same as step 1, but with three additional (α, d) pairs:

(1, 3) (4, 2.5) (16, 1.5)

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 17 / 31



Recipe Step 2: Tuning basic mergers

Step 2: Tuning basic mergers

Results:

Hwang-Lin has a large overhead

Bound-checking is ineffective

Hybrids work better

X Straightforward works best

CPU branch prediction is really good, hand-coding is just extra
overhead

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 18 / 31



Recipe Step 3: Degree of basic mergers

Step 3: Degree of basic mergers

Idea: multiway mergers: less data movement, more complex

Basic mergers

Various multiway mergers

Looser trees [3]

Experiments:

(k , α, d)=(120, 16, 2)

8 mergings of 1728000 elements

z ∈ [2, 9]

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 19 / 31



Recipe Step 3: Degree of basic mergers

Step 3: Degree of basic mergers

Results:

4- and 5-way mergers work best

Looser trees don’t show inflection, but have high overhead

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 20 / 31



Recipe Step 4: Caching for basic mergers

Step 4: Caching for basic mergers

Idea: construct one k-merger per level

Each level uses the same size k-merger

Reset and reuse the k-merger for merging in the same level

Experiments:

(α, d , z)=(4, 2.5, 2)

Straightforward binary basic mergers

Base case uses std::sort() for sizes < αzd = 23

Workloads: between [5000000, 200000000] elements

Results: 3-5% speedup across the board

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 21 / 31



Recipe Step 5: Base sorting algorithm

Step 5: Base sorting algorithm

Idea: choose a good base case for sorting a small number of elements
Experiments:

Insertion, selection, heap, shell, and std::sort() sorts

Workload: input sizes from 10 to 100

Results: std::sort() is fastest

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 22 / 31



Recipe Step 6: Parameters α and d

Step 6: Parameters α and d

Idea: choose good α and d parameters

Experiments:

α ∈ [1, 40]

d ∈ [1.5, 3]

Workloads: various sizes

Results:

α < 10 produces a longer running time

d does not have a large impact at reasonable sizes

Small (α, d) correspond to small buffer sizes

Cost of navigation and invocation spread over fewer merge steps

Optimal (α, d) ≈ (16, 2.5)

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 23 / 31



Evaluation

1 Lazy d-Funnelsort

2 Recipe
Ingredients
Step 1: k-merger structures
Step 2: Tuning basic mergers
Step 3: Degree of basic mergers
Step 4: Caching for basic mergers
Step 5: Base sorting algorithm
Step 6: Parameters α and d

3 Evaluation

4 Discussion

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 24 / 31



Evaluation

Setup

Benchmarks:

Funnelsort2 (binary basic mergers)

Funnelsort4 (four-way basic mergers)

Quicksort (GCC)

Quicksort (Bentley & McIlroy)

msort-c (cache-aware)

msort-m (cache-aware)

R-merge

Workloads (RAM):

Inputs of sizes
in RAM range

Median of 21
trials

Workloads (Disk):

Inputs on-disk

Single-trial

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 25 / 31



Evaluation

Data

Disk-based experiments omitted for brevity

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 26 / 31



Evaluation

Takeaways

1 Arbitrary memory layouts can still hold asymptotic properties

But vEB structure still has practical benefits

2 Iterative optimizations can lead to a competitive algorithm

3 Cache-obliviousness overhead can be worth it!

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 27 / 31



Evaluation

References

Gerth Stølting Brodal and Rolf Fagerberg.

Cache oblivious distribution sweeping.
In International Colloquium on Automata, Languages, and Programming, pages 426–438. Springer, 2002.

Frank K. Hwang and Shen Lin.

A simple algorithm for merging two disjoint linearly ordered sets.
SIAM Journal on Computing, 1(1):31–39, 1972.

Donald E Knuth.

The art of computer programming, volume 3: Searching and sorting.
Addison-Westley Publishing Company: Reading, MA, 1973.

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 28 / 31



Discussion

1 Lazy d-Funnelsort

2 Recipe
Ingredients
Step 1: k-merger structures
Step 2: Tuning basic mergers
Step 3: Degree of basic mergers
Step 4: Caching for basic mergers
Step 5: Base sorting algorithm
Step 6: Parameters α and d

3 Evaluation

4 Discussion

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 29 / 31



Discussion

“Constructive feedback”

Graphs

Too dense and somewhat poorly organized
Legend labels are inconsistent between graphs

“std::sort() is really good” isn’t very novel

Memory layout observation is exciting, but is eventually
disappointing

Methodology and experiment setups are fairly detailed and
precise

Engineering phase pattern is useful

Though visuals (e.g. graphs) would have been helpful

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 30 / 31



Discussion

Discussion

1 In what ways did the results of one experiment critically
determine the parameters for a later one?

2 What hypotheses did the authors have? Which of these seem
sensible but are not supported by the experiments?

3 How do the authors ensure that their experiments are robust,
reliable, and reproducible? What do you find unusual?

4 How could some of these results have been discovered with the
help of tuning tools like OpenTuner?

William Qian Engineering a C/O Sorting Algorithm 2020 March 5 31 / 31


	Lazy d-Funnelsort
	Recipe
	Evaluation
	Discussion

