
6.886:
Algorithm Engineering

© 2021 Julian Shun 1

LECTURE 1
Introduction

Julian Shun
February 16, 2021

© 2021 Julian Shun 2

What is Algorithm Engineering?

• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory Practice

O(n log n)
O(n)

O(log n)

© 2021 Julian Shun 3

O(n log n)
O(n)

O(log n)

• Good empirical performance
• Confidence that algorithms will perform well in many
different settings

• Ability to predict performance (e.g., in real-time
applications)

• Important to develop theoretical models to capture
properties of technologies

Use theory to inform practice and
practice to inform theory.

Bridging Theory and Practice

© 2021 Julian Shun 4

Brief History
• In early days, implementing algorithms designed was

standard practice
• 1970s-1980s: Algorithm theory is a subdiscipline in

CS mostly devoted to ”paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps

between theory and practice
• 1997: First Workshop on Algorithm Engineering

(WAE) by P. Italiano (now part of ESA)
• 1998: Meeting on Algorithm Engineering &

Experiments (ALENEX)
• 2003: annual Workshop on Experimental Algorithms

(WEA), now Symposium on Experimental Algorithms
(SEA)

• Nowadays many conferences have papers on
algorithm engineering

© 2021 Julian Shun 5

What is Algorithm Engineering?

Source: “Algorithm Engineering – An Attempt at a Definition”, Peter Sanders

© 2021 Julian Shun 6

Models of Computation
• Random-Access Machine (RAM)
∙ Infinite memory
∙ Arithmetic operations, logical operations, and

memory accesses take O(1) time
∙ Most sequential algorithms are designed using this

model (6.006/6.046)
• Nowadays computers are much more

complex
∙ Deep cache hierarchies
∙ Instruction level parallelism
∙ Multiple cores
∙ Disk if input doesn’t fit in memory
∙ Asymmetric read-write costs in non-volatile

memory

© 2021 Julian Shun 7

Algorithm Design & Analysis

• Constant factors matter!
• Avoid unnecessary computations
• Simplicity improves applicability and can

lead to better performance
• Think about locality and parallelism
• Think both about worst-case and real-

world inputs
• Use theory as a guide to find practical

algorithms
• Time vs. space tradeoffs
• Work vs. parallelism tradeoffs

Algorithm 1
N log2 N

Algorithm 2
1000 NComplexity

© 2021 Julian Shun 8

Implementation

• Write clean, modular code
∙ Easier to experiment with different methods, and

can save a lot of development time
• Write correctness checkers
∙ Especially important in numerical and geometric

applications due to floating-point arithmetic,
possibly leading to different results

• Save previous versions of your code!
∙ Version control helps with this

© 2021 Julian Shun 9

Experimentation

• Instrument code with timers and use
performance profilers (e.g., perf, gprof,
valgrind)

• Use large variety of inputs (both real-world
and synthetic)
∙ Use different sizes
∙ Use worst-case inputs to identify correctness or

performance issues
• Reproducibility
∙ Document environmental setup
∙ Fix random seeds if needed

• Run multiple timings to deal with variance

© 2021 Julian Shun 10

Experimentation II
• For parallel code, test on varying number of

processors to study scalability
• Compare with best serial code for problem
• For reproducibility, write deterministic

parallel code if possible
∙ Or make it easy to turn off non-determinism

• Use numactl to control NUMA effects on
multi-socket machines

• Useful tools: Cilkscale, Cilksan

© 2021 Julian Shun 11

Libraries and Frameworks

• Use efficient building blocks from existing
library/frameworks when appropriate

• Develop your own to help others and improve
applicability

© 2021 Julian Shun 12

COURSE INFORMATION

© 2021 Julian Shun 13

Course Information
• Graduate-level class
∙ Undergraduates who have taken 6.046 and

6.172 are welcome
• Lectures: Tuesday/Thursday 2:30-4pm ET
• Instructor: Julian Shun (jshun@mit.edu)
• Guest lecturer: Laxman Dhulipala

(laxman@mit.edu)
• Units: 3-0-9
• We will use Piazza for communication
• Office hours by appointment
• This course will cover various ideas in

algorithm engineering, with an emphasis
on parallelism and graph problems

mailto:jshun@mit.edu
mailto:laxman@mit.edu

© 2021 Julian Shun 14

Course Website
https://people.csail.mit.edu/jshun/6886-s21/

https://people.csail.mit.edu/jshun/6886-s19/

© 2021 Julian Shun 15

Grading

Grading Breakdown

Paper Reviews 15%

Problem Set 10%

Paper Presentations 20%

Research Project 45%

Class Participation 10%

You must complete all assignments to pass the class.

© 2021 Julian Shun 16

Paper Presentations
• This is a research-oriented course
• Cover content from 2-3 research papers each lecture
• 25-30 minute student presentation per paper
∙ Discuss motivation for the problem solved
∙ Key technical ideas
∙ Theoretical/experimental results
∙ Related work
∙ Strengths/weaknesses
∙ Directions for future work
∙ Include several questions for discussion
∙ Presentation should cover necessary background to

understand paper (you may have to read related papers)
∙ Make slides but may use the whiteboard for theory

• Sign up for presentations today in Google doc
• Would be helpful to sign up even if listening

© 2021 Julian Shun 17

Paper Reviews

• Submit one paper review for each lecture
∙ Starting next week
∙ Cover motivation, key ideas, results, novelty,

strengths/weaknesses, your ideas for improving
the techniques or evaluation, any open
problems or directions for further work

∙ Submit on Canvas by 12pm ET on the day of
each lecture (before we cover the papers)

© 2021 Julian Shun 18

Problem Set

• Complete a problem set on parallel
algorithms
∙ To be released in a few weeks and due on 4/2

© 2021 Julian Shun 19

Research Project

• Open-ended research project to be done in
groups of 1-3 people

• Some ideas
∙ Implementation of non-trivial algorithms
∙ Analyzing/optimizing performance of existing algorithms
∙ Designing new theoretically and/or practically efficient

algorithms
∙ Applying algorithms in the context of larger applications
∙ Improving or designing new algorithm frameworks or

libraries
∙ Any topic may involve parallelism, cache-efficiency, I/O-

efficiency, and memory-efficiency
• Must contain an implementation component
• Can be related to research that you are doing

© 2021 Julian Shun 20

Project Timeline
Assignment Due Date

Pre-proposal meeting 3/18

Proposal 3/25

Weekly progress reports 4/2, 4/9, 4/16, 4/23, 4/30, 5/7, 5/14

Mid-term report 4/27

Project presentations 5/20

Final report 5/20

• Pre-proposal meeting
∙ 15-minute meeting to run ideas by instructor

• Computing resources for the project
∙ Sign up for AWS Educate for free cloud computing credits
∙ Talk to instructor if you need additional credits

© 2021 Julian Shun 21

PARALLELISM

© 2021 Julian Shun 22

Parallelism

Parallel machines are everywhere!

Data is becoming very large!

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.3 GB)

Can rent machines on AWS with 72 cores
(144 hyper-threads) and 4TB of RAM

© 2021 Julian Shun 23

Parallelism Models
• Work = number of vertices in graph

(number of operations)
• Depth (Span) = longest directed

path in graph (dependence length)
• Running time ≤ (Work/#processors)

+ O(Depth)
• A work-efficient parallel algorithm

has work that asymptotically
matches that of the best sequential
algorithm for the problem

Computation graph

Goal 1: work-efficient and low
(polylogarithmic) depth algorithms

Goal 2: simple, practical,
and cache-friendly

© 2021 Julian Shun 24

GRAPHS

© 2021 Julian Shun 25

What is a graph?

• Vertices model objects
• Edges model relationships between objects

EdgeVertex Vertex

Alice Bob

Carol David

Eve

Fred Greg

Hannah
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Net
work_for_TMEM8A.png

Julian

© 2021 Julian Shun 26

Graph Representations

• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists,

“0” otherwise)

0 1 2 3 4

0

1

3

2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• O(n2) space for adjacency matrix
• O(m) space for edge list

© 2021 Julian Shun 27

Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• Space requirement is O(n+m)
• Can substitute linked lists with arrays for

better cache performance
∙ Tradeoff: more expensive to update graph

© 2021 Julian Shun 28

Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s

edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

Vertex IDs 0 1 2 3

• How do we know the degree of a vertex?
• Space usage is O(n+m)
• Can also store values on the edges with an

additional array or interleaved with Edges

© 2021 Julian Shun 29

Tradeoffs in Graph Representations
• What is the cost of different operations?

Adjacency
matrix

Edge list Adjacency list
(linked list)

Compressed
sparse row

Storage cost /
scanning

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1) O(m+n)
Delete edge

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all
neighbors of a

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

Finding if w is
a neighbor of v

O(1) O(m) O(deg(v)) O(deg(v))

• There are variants/combinations of
these representations

© 2021 Julian Shun 30

BREADTH-FIRST SEARCH

© 2021 Julian Shun 31

Breadth-First Search (BFS)
• Given a source vertex s, visit the

vertices in order of distance from s
• Possible outputs:
∙ Vertices in the order they were visited

■ D, B, C, E, A
∙ The distance from each vertex to s

∙ A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

A

B

C

D

E

2 1 1 0 1
A B C D E

A

B

C

D

E

BFS tree

source = D

Applications

Betweenness
centrality

Eccentricity
estimation

Maximum flow

Web crawlers

Network
broadcasting

Cycle detection

…

© 2021 Julian Shun 32

Sequential BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search

• BFS requires O(n+m) work on n vertices
and m edges

© 2021 Julian Shun 33

Sequential BFS Algorithm
• Assume graph is given in compressed

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent =
(int*) malloc(sizeof(int)*n);

int* queue =
(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(parent[ngh] == -1) {

parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}
• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

Total of m
random accesses

© 2021 Julian Shun 34

Analyzing the program

• What if we can fit a bitvector of size n in cache?
∙ Might reduce the number of cache misses
∙ More computation to do bit manipulation

int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(parent[ngh] == -1) {

parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}
Check bitvector first before

accessing parent array
n cache misses
instead of m

© 2021 Julian Shun 35

BFS with bitvector
int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited =
(int*) malloc(sizeof(int)*nv);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

for(int i=0; i<nv; i++) {
visited[i] = 0;

}

queue[0] = source;
parent[source] = source;
visited[source/32]

= (1 << (source % 32));

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(!((1 << ngh%32) & visited[ngh/32])){

visited[ngh/32] |= (1 << (ngh%32));
parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}

• Bitvector version is
faster for large enough
values of m

© 2021 Julian Shun 36

DEPTH-FIRST SEARCH

© 2021 Julian Shun 37

Depth-First Search (DFS)
• Explores edges out of the most

recently discovered vertex
• Possible outputs:
∙ Depth-first forest
∙ Vertices in the order they were first

visited (preordering)
∙ Vertices in the order they were last

visited (postordering)
∙ Reverse postordering

source = D

Applications

Topological sort

Solving mazes

Biconnected
components

Strongly connected
components

Cycle detection

…

1

2

3
4 8 Preorder: D, B, A, C, E

Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, C

A

B

C

D

E

/10

/7

/6
/5 /9

DFS requires O(n+m) work on n
vertices and m edges

© 2021 Julian Shun 38

TOPOLOGICAL SORT

© 2021 Julian Shun 39

Topological Sort

• Given a directed acyclic graph, output the
vertices in an order such that all
predecessors of a vertex appear before it
∙ Application: scheduling tasks with dependencies

(e.g., parallel computing, Makefile)
• Solution: output vertices in reverse

postorder in DFS

A

B

C

D

E

source = D

1/10

2/7

3/6
4/5 8/9

Reverse postorder: D, E, B, A, C

© 2021 Julian Shun 40

SHORTEST PATHS

© 2021 Julian Shun 41

Single-Source Shortest Paths
• Given a weighted graph and a source vertex,

output the distance from the source vertex to
every vertex

• Non-negative weights
∙ Dijkstra’s algorithm
∙ O(m + n log n) work using Fibonnaci heap

• General weights
∙ Bellman-Ford algorithm
∙ O(mn) work

© 2021 Julian Shun 42

Dijkstra’s Algorithm

• O((m+n)log n) work using normal heap
• O(m + n log n) work using Fibonacci heap
∙ Extract-min takes O(log n) work but decreasing

priority only takes O(1) work (amortized)

© 2021 Julian Shun 43

Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

• At most O(n) rounds, each doing O(n+m)
work

• Total work = O(mn)

© 2021 Julian Shun 44

More Graph Algorithms
• We will study algorithms for particular

problems
∙ Parallelism, cache-efficiency, I/O-efficiency,

dynamic updates
Breadth-first search Betweenness centrality

PageRank Union-find

Low-diameter decomposition SSSP

Connected components Maximal independent set

K-core decomposition Multi-BFS

Minimum spanning forest Spanning forest

Maximal matching Graph coloring

Subgraph matching Dense subgraph discovery

© 2021 Julian Shun 45

GRAPH PROCESSING
FRAMEWORKS

© 2021 Julian Shun 46

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat,
Ringo, TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA,
GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP,
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa,
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale,
Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk,
Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl,
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado,
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon,
TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe,
GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO,
Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-
3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral,
GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3,
CellIQ, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others…

• Provides high-level primitives for graph algorithms
• Reduce programming effort of writing efficient

parallel graph programs

© 2021 Julian Shun 47

Graph Based Benchmark Suite (GBBS)
• Benchmark suite containing fast multicore

implementations for over 20 graph problems
∙ Fast in both theory and practice
∙ Scalable to the largest publicly-available graphs

• High-level graph
processing interface

• Compressed graph
representations

• Python wrapper

© 2021 Julian Shun 48

DYNAMIC GRAPHS

© 2021 Julian Shun 49

Dynamic Graphs

• Many graphs are changing over time
∙ Adding/deleting connections on social networks
∙ Traffic conditions changing
∙ Communication networks (email, IMs)
∙ World Wide Web
∙ Content sharing (Youtube, Flickr, Pinterest)

• Need graph data structures that allow for
efficient updates (in parallel)

• Need (parallel) algorithms that respond to
changes without re-computing from scratch

© 2021 Julian Shun 50

WRITE-EFFICIENT
GRAPH ALGORITHMS

© 2021 Julian Shun 51

Non-Volatile Memory

• Non-volatile memories projected to become
a dominant form of main memory

• Significant gap in cost for reads vs. writes
(energy and latency)

• Need to design models and algorithms (for
graphs) that take read-write asymmetry into
account

© 2021 Julian Shun 52

COMPRESSION

© 2021 Julian Shun 53

Large Graphs

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

• What if you cannot fit a graph on your machine?
• Cost of machines increases with memory size

R
u
n
n
in

g
 T

im
e

Memory Required

Available RAM

Graph Compression

41 million vertices
1.5 billion edges

(6.3 GB)

© 2021 Julian Shun 54

Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

Vertex IDs 0 1 2 3
Sort edges and encode

differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

• For each vertex v:
• First edge: difference is Edges[Offsets[v]]-v
• i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
• Want to use fewer than 32 or 64 bits per value
• Compression can improve running time

© 2021 Julian Shun 55

Fast Compression Schemes

• Study speed and space tradeoffs in
compression schemes for integer sequences

• Also useful in storing inverted lists for
information retrieval

© 2021 Julian Shun 56

• Reassign IDs to vertices to improve locality
∙ Goal: Make vertex IDs close to their neighbors’ IDs

and neighbors’ IDs close to each other

Graph Reordering

• Can improve compression rate due to smaller
“differences”

• Can improve performance due to higher cache
hit rate

• Various methods: BFS, DFS, METIS, degree, etc.

4 1

0 2

3 0 3

1 2

4

Sum of differences = 23 Sum of differences = 20

55

© 2021 Julian Shun 57

CLUSTERING

© 2021 Julian Shun 58

Clustering

• Group “similar” objects
together, and separate
“dissimilar” objects

• Can be applied to spatial data
and graph data

• Applications: Community
detection, bioinformatics,
parallel/distributed
processing, visualization,
image segmentation, anomaly
detection, document analysis,
machine learning, etc.

© 2021 Julian Shun 59

CACHING AND NON-
UNIFORM MEMORY ACCESS

© 2021 Julian Shun 60

Cache Hierarchies

Memory level Approx latency
L1 Cache 1-2ns
L2 Cache 3-5ns
L3 cache 12-40ns
DRAM 60-100ns

Design cache-
efficient and cache-
oblivious algorithms
to improve locality

© 2021 Julian Shun 61

Non-uniform Memory Access (NUMA)

• Accessing remote memory is more expensive
than accessing local memory of a socket
∙ Latency depends on the number of hops

Design NUMA-aware
algorithms to

improve locality

© 2021 Julian Shun 62

I/O EFFICIENCY

© 2021 Julian Shun 63

I/O Efficiency

• Need to read input from disk at least once
• Need to read many more times if input

doesn’t fit in memory
Memory Latency Throughput
DRAM 60-100 ns Tens of GB/s
SSD Tens of µs 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

© 2021 Julian Shun 65

SORTING ALGORITHMS

© 2021 Julian Shun 66

Sorting

• Lots of research on engineering sorting
algorithms

• Will study parallel comparison sorting and
radix sorting algorithms

• http://sortbenchmark.org/

http://sortbenchmark.org/

© 2021 Julian Shun 67

JOINS AND AGGREGATION

© 2021 Julian Shun 68

Joins and Aggregation

• JOIN and GROUPBY are two of the most
expensive operations in database systems

• We will study algorithms and optimizations
for these operations (in main-memory)

© 2021 Julian Shun 69

STRING ALGORITHMS

© 2021 Julian Shun 70

String Algorithms

• We will study algorithms for efficiently
constructing suffix arrays and suffix trees

• Many other interesting problems (edit
distance, Lempel-Ziv compression,
approximate string matching, alignment, etc.)

© 2021 Julian Shun 71

Relevant Topics Not Covered

• GPUs, other accelerators, and special-purpose
hardware

• Computer networking
• Linear and integer programming
• Optimizing NP-hard problems
• Succinct data structures
• Computational geometry
• Transactional memory
• Performance of different programming

languages
• Machine learning and deep learning

© 2021 Julian Shun 72

Summary

• Lots of exciting research going on in
algorithm engineering!

• Take this course to learn about latest results
and try out research in the area

O(n log n)
O(n)

O(log n)

