PowerGraph:
Distributed Graph-Parallel Computation
on Natural Graphs

Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, Carlos Guestrin

CMU, UW

*some figures in the slide deck are borrowed from the official OSDI slides

What are Natural Graphs?

Social Media Science Advertising

. NETL)

Graphs that are derived from natural phenomena

Such as relationships between:
* People
* Product
* Interests
* l|deas

Power-Law Degree Distribution

10

10
More than 108 vertices
)/ have one neighbor.
) 108C— .. &
Q
8 10° _ High-Degree
S Vertices
a 4
2 10
-
-
Z 107
AltaVista WebGraph
o | 1.4B Vertices, 6.6B Edges
10 (0] I 2 8
10 10 10

Degree

Most of natural graphs have skewed power-law degree distribution

Most vertices have relatively few neighbors, while a few have many neighbors

Problem: Hard to Partition

!

Edges spanning multiple processors

“Start-like” Motif

* Power-law graphs do not have low-cost balanced cuts

 Existing distributed graph computation systems perform poorly
on power law graphs

High-Level PowerGrpah Abstraction

Program
For This

Run on This

Machine 1 Machine 2

R

* Split High-Degree Vertices
* New abstraction for programming graph computations

How do we program a graph computation?

* A user-defined Vertex-Program runs on each vertex

* Graph constrains intersctions along edges

* Using messages (Pregel[PODC09])
e Using shared state (GraphLab[VLDB12])

@%
O

How do we program a graph computation?

* A user-defined Vertex-Program runs on each vertex

* Graph constrains intersctions along edges
* Using messages (Pregel[PODC09])
e Using shared state (GraphLab[VLDB12])

e Parallelism: run multiple vertex programs simultaneously

0 >

1%
O

Example Computation: Social Network
Popularity
popularity their followers
Depends on popularity |
j of her followers /

What's the popularity

of this user?
W
1 Popular?

A

PageRank Algorithm

Rli{] =015+ Y wjR[j]
Rank of
user |

e Update ranks in parallel

Weighted sum of
neighbors’ ranks

* [terate until convergence

The Pregel [pobcog) Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :
(// Receive all the messages
total = ©
foreach(msg in messages) :
total = total + msg

" // Update the rank of this vertex
R[i] = ©.15 + total

// Send new messages to neighbors
foreach(j in out neighbors[i]) :
Send msg(R[i] * w;;) to vertex j

The GraphlLab [vLbs12] Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (i)
(// Compute sum over neighbors
total = ©
foreach(j in in _neighbors(i)):
total = total + R[J] * wy;

(// Update the PageRank
R[i] = ©0.15 + total

 // Trigger neighbors to run again
if R[i] not converged then
foreach(j in out neighbors(i)):
signal vertex-program on j

Challenges of High-Degree Vertices

ok %

Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine

oy *—e | —@ =—p 1

L L —e —> | o—0 —> !

*—e =—> I o—8 =—> 1

,916, , l,%, y

_— —] 1

— 1 1

Asynchronous Execution Synchronous Execution
requires heavy locking (GraphLab) prone to stragglers (Pregel)

Communication Overhead for High-Degree
Vertices is the Most Prominent

Pregel Reduces Fan-In Traffic

Machine 1 Machine 2

Sending vertex info from neighbors

Pregel Reduces Fan-in Traffic

Machine 1 Machine 2

User-defined commutative associative (+) message operation
allows preprocessing on the local machine with combiners and
reduces the amount of messages transmitted

Pregel Struggles with Fan-Out

Machine 1 Machine 2

Fan-In and Fan-Out Performance

e PageRank on synthetic Power-law Graphs

Total Comm. (GB)

combifpers help to reduce farlr-in traffic
1.8 1.9 2 2.1

Power-Law Constant a

<« More high-degree vertices

GraphlLab Reduces Traffic by Creating
Ghost Vertices

Machine 1 Machine 2

Create “Ghost Nodes” for the neighbors not on the same machine

GraphlLab Reduces Broadcast Traffic by
Creating Ghost Vertices

/"‘
A

a0 a5
B n " D

=
C

o

Machine 1 Machine 2

Updates to vertices under evaluation will be sent to another machine via
1 message, and the other machine internally performs transfers

GraphlLab Suffers from Neighbors” Changes

Machine 1 Machine 2

Fan-In and Fan-Out Performance

e PageRank on synthetic Power-law Graphs
e GraphlLab is undirected

—~ 10
C i\/o"@
E 6 G Gr
O apPhLab Fan-in/A, ..
o - ' > —
= 9 — In
—o— —0- — —"
0 | | I]
1.8 1.9 2 2.1 2.2

Power-Law Constant alpha

<«— More high-degree vertices 27

Pregel and GraphLab are not well suited for natural graphs

* Challenges to reduce both the fan-in and fan-out traffic
for high-degree vertices

* Low quality graph partitioning cuts a significant number
of edges in the graph (contributing to the significant
traffic between different machines)

PowerGraph — GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.

GraphLab_PageRank(1)
// Compute sum over neighbors

total = © Gather Information

foreach(j in in_neighbors(i)): .
total = total + R[j] * ™ About NEIgthFhOOd

// Update the PageRank
R[i] = 0.1 + total Update Vertex

// Trigger neighbors to run again
if R[i] not converged then Signal Neighbors &

foreach(j in out_neighbors(i)) Modify Edge Data
signal vertex-program on j

PowerGraph — GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined:
» Gather(Q—@) 2 >
» 2, ©) 2, > 2,
® l

o
Par;'J';' I+I +.. 4 I%E

PowerGraph — GAS Decomposition

Ve

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(Q—@) 2 >

r: @35, D3, i

Parallel
Sum
_

1.1..-]-%

\

(

J

Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@), 2) > B

~

s

Scatter

Update adjacent edges
and vertices.

PowerGraph — GAS Decomposition

Ve

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(Q—@) 2 >

r: @35, D3,

Parallel
Sum

el

\

(

Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@), 2) > B

B

N (

Scatter

Update adjacent edges
and vertices.

User Defined:

Ko

Update Edge Data &
Activate Neighbors

\

> Scatter(@-@) > —

J

PageRank in PowerGraph

Rli{] =015+ » wjR[j

jENDbrs(7)

PowerGraph_PageRank(i)

Gather(j = 1) :return w; * R[j]

sum(a, b) : returna + b;

Apply(i,S) : R[] =0.15 + 3

Scatter(1i—=2j):
if R/1] changed then trigger j to be recomputed

Distributed Execution of a PowerGrpah
Vertex-Program

Cutting graphs from vertices instead of cutting from edges

Machine 1 Machine 2

Machine 3 Machine 4

Distributed Execution of a PowerGrpah
Vertex-Program

* Assign each portion of edges to a different machine
e Select a master machine
e Create shadow vertices on auxiliary machines

-
-
-
-
-
-
-
-
/’
Lo

Machine 1 Machine 2

Machine 3 Machine 4

Distributed Execution of a PowerGrpah

Vertex-Progra

e Gather:

m

* Each vertices shadow gathers on local machine (parallel)
* Send the sum to the master machine

P
.
.

_,-iVIachine 1

53

Machine 3

LT
.......
a,
"y
s
e
"
e
"
.
.
L]
-
.
L]
.
.
.
.
.
.

d
®
G
.

Machine 2

.
.

.

.

.

* 1
"z

Machine 4

Distributed Execution of a PowerGrpah
Vertex-Program

* Apply:
* Apply the aggregated sum in a user defined way
e Send the updated value to all machines

~~~ ————————

Machine 1i Machine 2

o~
-~
~
~
~
-~
-~
-~
-~
~
-~
-~
~
~
-~
~
~
-~
~
~
~
~
S
1 -~
-~
H -~
] -~
~
-~
-~
~
N
~

Machine 3 Machine 4




Distributed Execution of a PowerGrpah
Vertex-Program

e Scatter:

* Scatter locally (parallel)

Machine 1i

Q&__
-~
~

Machine 2

o~
-~
-~
~
-~
-~
-~
-~
-~
~
-~
-~
~
-~
-~
-~
~
-~
-~
~
-~
-~
-~
-~
-~
~
-~
-~
~
-~
-~
-~
~
~u
~

Machine 3

~
‘s..‘ i :

Machine 4




Communication is linear in the number of machines each
vertex spans

Percolation theory suggests that power law graphs have
good vertex cuts

Theorem: For any edge-cut we can directly construct a
vertex-cut which requires less communication and
storage




How to perform vertex cuts?

 Random partitioning
* Pick the lightest loaded machine when edges come in
* No coordination overhead

Random vertex cut communication improvements

100
L
<Ts]
o
=R
S h
o
EE 10
S ©
© . .
2 E Order of Magnitude
S Improvement
1
0 50 100 150

Number of Machines



How to perform vertex cuts?

 Random partitioning
* Pick the lightest loaded machine when edges come in
* No coordination overhead

* Greedy partitioning

* Globally tracks which vertex is placed to which machine and try to
place the edges for the same vertex on the same machine in a
workload-balanced way

* High coordination overhead

* Oblivious partitioning

* Locally tracks the per-vertex info, and place the edges in a
workload-balanced way

e Medium coordinate overhead



Comparing Vertex Cut Algorithms

Twitter Graph: 41M vertices, 1.4B edges
Cost

achines Spanned

Avg # of

8

16 24 32 40 48 56 64
Number of Machines

Construction Time

1000

800

Partitioning Time (Seconds)

\

Ran

] I I
8 16 24 32 40 48 56 64
Number of Machines

do m

Oblivious balances cost and partitioning time.



Delta-Caching Optimization

Most of time, only a few of the neighboring vertices change
their values

Oppututnities to reduces the necessary gathering

Keep a local copy of the gathered neighboring value from
the last iteration

Calculate delta during scatter to update the local cached
value as well



Results — Algorithm Implementations

* Collaborative Filtering ¢ Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
* Statistical Inference « Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling



- =< MDD N W

Work Imbalance (stdev)

Results — Compare to GraphLab & Pregel

* Running PageRank on Synthetic Power-Law Graphs

o ~___—GraphLab Fan-in
5_
ok Pregel(Piccolo) Fan-in
5 PowerGraph Fan-in -
.0._

. . —
1.8 1.9 2 2.1

o

High-Degree Vertices

One iter Comms(GB)

—k
n

—k
o

aa

Graphlab

!
¥

/" Pregel (Piccolo)
/ PowerGraph

(o]
QRN

High-Degree Vertices



Results — Scaling

* Running PageRank on Twitter graph

35, . . 35— ' '
0 Synchronous(Random) M Synchronous(Random)-.
%30- .~ Synchronous(Oblivious) | <30 y ( )
E, Synchronous(Coord.) | 255
S =
o 207 8 207 ;;
S 15t S 15/ Synchronous(Oblivious)
© = Synchronous(Coord.)
10 3 10 L f
~ =
5l * o 5
° 0 | | S 0 | |
8 16 32 48 64 8 16 32 48 64

Number of Machines Number of Machines



Results — Delta Cache Improvements

* Running PageRank on Twitter graph

No Caching

/ Delta Caching

0 5 10 15 20
lteration



Strengths

+ Paper is well-motivated by the concern of efficiently
processing power-law natural graphs

+ Paper clearly presents the challenges of the problems and
the issues of the existing work

+ Paper shows a comprehensive study of the performance of
the proposed abstraction

* application algorithms

e communication overhead

* scaling



Weakness

- Paper does not show how well the abstraction performs if
the application workload is not as power-law in nature. A
good abstraction should still have reasonable performance
even if the workload is not the target workload

- Paper did not show results with fewer than 8 machines and
do not compare against sequential algorithm



Discussions

* |s the GAS abstraction general enough to represent all
commonly know algorithms?

* Can we apply the vertex cut ideas to other framework for
performance improvements?

* How will PowerGraph perform if the application workloads
are not natural graphs?



