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What are Natural Graphs?

Social Media Science Advertising

. NETL)

Graphs that are derived from natural phenomena

Such as relationships between:
* People
* Product
* Interests
* l|deas




Power-Law Degree Distribution
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Most of natural graphs have skewed power-law degree distribution

Most vertices have relatively few neighbors, while a few have many neighbors



Problem: Hard to Partition

!

Edges spanning multiple processors

“Start-like” Motif

* Power-law graphs do not have low-cost balanced cuts

 Existing distributed graph computation systems perform poorly
on power law graphs



High-Level PowerGrpah Abstraction

Program
For This

Run on This

Machine 1 Machine 2

R

* Split High-Degree Vertices
* New abstraction for programming graph computations




How do we program a graph computation?

* A user-defined Vertex-Program runs on each vertex

* Graph constrains intersctions along edges

* Using messages (Pregel[PODC09])
e Using shared state (GraphLab[VLDB12])
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How do we program a graph computation?

* A user-defined Vertex-Program runs on each vertex

* Graph constrains intersctions along edges
* Using messages (Pregel[PODC09])
e Using shared state (GraphLab[VLDB12])

e Parallelism: run multiple vertex programs simultaneously
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Example Computation: Social Network
Popularity
popularity their followers
Depends on popularity |
j of her followers /

What's the popularity

of this user?
W
1 Popular?

A



PageRank Algorithm

Rli{] =015+ Y  wjR[j]
Rank of
user |

e Update ranks in parallel

Weighted sum of
neighbors’ ranks

* [terate until convergence



The Pregel [pobcog) Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :
( // Receive all the messages
total = ©
foreach( msg in messages) :
total = total + msg

" // Update the rank of this vertex
R[i] = ©.15 + total

// Send new messages to neighbors
foreach(j in out neighbors[i]) :
Send msg(R[i] * w;;) to vertex j




The GraphlLab [vLbs12] Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (i)
( // Compute sum over neighbors
total = ©
foreach( j in in _neighbors(i)):
total = total + R[J] * wy;

( // Update the PageRank
R[i] = ©0.15 + total

 // Trigger neighbors to run again
if R[i] not converged then
foreach( j in out neighbors(i)):
signal vertex-program on j




Challenges of High-Degree Vertices
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Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine
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Asynchronous Execution Synchronous Execution
requires heavy locking (GraphLab) prone to stragglers (Pregel)

Communication Overhead for High-Degree
Vertices is the Most Prominent



Pregel Reduces Fan-In Traffic

Machine 1 Machine 2

Sending vertex info from neighbors



Pregel Reduces Fan-in Traffic

Machine 1 Machine 2

User-defined commutative associative (+) message operation
allows preprocessing on the local machine with combiners and
reduces the amount of messages transmitted



Pregel Struggles with Fan-Out

Machine 1 Machine 2




Fan-In and Fan-Out Performance

e PageRank on synthetic Power-law Graphs
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GraphlLab Reduces Traffic by Creating
Ghost Vertices

Machine 1 Machine 2

Create “Ghost Nodes” for the neighbors not on the same machine



GraphlLab Reduces Broadcast Traffic by
Creating Ghost Vertices
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Updates to vertices under evaluation will be sent to another machine via
1 message, and the other machine internally performs transfers



GraphlLab Suffers from Neighbors” Changes

Machine 1 Machine 2



Fan-In and Fan-Out Performance

e PageRank on synthetic Power-law Graphs
e GraphlLab is undirected
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Pregel and GraphLab are not well suited for natural graphs

* Challenges to reduce both the fan-in and fan-out traffic
for high-degree vertices

* Low quality graph partitioning cuts a significant number
of edges in the graph (contributing to the significant
traffic between different machines)




PowerGraph — GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.

GraphLab_PageRank(1)
// Compute sum over neighbors

total = © Gather Information

foreach( j in in_neighbors(i)): .
total = total + R[j] * ™ About NEIgthFhOOd

// Update the PageRank
R[i] = 0.1 + total Update Vertex

// Trigger neighbors to run again
if R[i] not converged then Signal Neighbors &

foreach( j in out_neighbors(i)) Modify Edge Data
signal vertex-program on j



PowerGraph — GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined:
» Gather(Q—@) 2 >
» 2, ©) 2, > 2,
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PowerGraph — GAS Decomposition

Ve

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(Q—@) 2 >

r: @35, D3, i
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Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@), 2) > B

~
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Scatter

Update adjacent edges
and vertices.




PowerGraph — GAS Decomposition

Ve

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(Q—@) 2 >

r: @35, D3,
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Apply the accumulated
value to center vertex

User Defined:
> Apply(@), 2) > B
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Scatter

Update adjacent edges
and vertices.

User Defined:
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Update Edge Data &
Activate Neighbors
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PageRank in PowerGraph

Rli{] =015+ »  wjR[j

jENDbrs(7)

PowerGraph_PageRank(i)

Gather(j = 1) :return w; * R[j]

sum(a, b) : returna + b;

Apply(i,S) : R[] =0.15 + 3

Scatter(1i—=2j):
if R/1] changed then trigger j to be recomputed



Distributed Execution of a PowerGrpah
Vertex-Program

Cutting graphs from vertices instead of cutting from edges

Machine 1 Machine 2

Machine 3 Machine 4




Distributed Execution of a PowerGrpah
Vertex-Program

* Assign each portion of edges to a different machine
e Select a master machine
e Create shadow vertices on auxiliary machines
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Distributed Execution of a PowerGrpah

Vertex-Progra

e Gather:

m

* Each vertices shadow gathers on local machine (parallel)
* Send the sum to the master machine
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Distributed Execution of a PowerGrpah
Vertex-Program

* Apply:
* Apply the aggregated sum in a user defined way
e Send the updated value to all machines
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Distributed Execution of a PowerGrpah
Vertex-Program

e Scatter:

* Scatter locally (parallel)
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Communication is linear in the number of machines each
vertex spans

Percolation theory suggests that power law graphs have
good vertex cuts

Theorem: For any edge-cut we can directly construct a
vertex-cut which requires less communication and
storage




How to perform vertex cuts?

 Random partitioning
* Pick the lightest loaded machine when edges come in
* No coordination overhead

Random vertex cut communication improvements
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How to perform vertex cuts?

 Random partitioning
* Pick the lightest loaded machine when edges come in
* No coordination overhead

* Greedy partitioning

* Globally tracks which vertex is placed to which machine and try to
place the edges for the same vertex on the same machine in a
workload-balanced way

* High coordination overhead

* Oblivious partitioning

* Locally tracks the per-vertex info, and place the edges in a
workload-balanced way

e Medium coordinate overhead



Comparing Vertex Cut Algorithms

Twitter Graph: 41M vertices, 1.4B edges
Cost

achines Spanned

Avg # of
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Oblivious balances cost and partitioning time.



Delta-Caching Optimization

Most of time, only a few of the neighboring vertices change
their values

Oppututnities to reduces the necessary gathering

Keep a local copy of the gathered neighboring value from
the last iteration

Calculate delta during scatter to update the local cached
value as well



Results — Algorithm Implementations

* Collaborative Filtering ¢ Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
* Statistical Inference « Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling
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Results — Compare to GraphLab & Pregel

* Running PageRank on Synthetic Power-Law Graphs
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Results — Scaling

* Running PageRank on Twitter graph

35, . . 35— ' '
0 Synchronous(Random) M Synchronous(Random)-.
%30- .~ Synchronous(Oblivious) | <30 y ( )
E, Synchronous(Coord.) | 255
S =
o 207 8 207 ;;
S 15t S 15/ Synchronous(Oblivious)
© = Synchronous(Coord.)
10 3 10 L f
~ =
5l * o 5
° 0 | | S 0 | |
8 16 32 48 64 8 16 32 48 64

Number of Machines Number of Machines



Results — Delta Cache Improvements

* Running PageRank on Twitter graph

No Caching

/ Delta Caching
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Strengths

+ Paper is well-motivated by the concern of efficiently
processing power-law natural graphs

+ Paper clearly presents the challenges of the problems and
the issues of the existing work

+ Paper shows a comprehensive study of the performance of
the proposed abstraction

* application algorithms

e communication overhead

* scaling



Weakness

- Paper does not show how well the abstraction performs if
the application workload is not as power-law in nature. A
good abstraction should still have reasonable performance
even if the workload is not the target workload

- Paper did not show results with fewer than 8 machines and
do not compare against sequential algorithm



Discussions

* |s the GAS abstraction general enough to represent all
commonly know algorithms?

* Can we apply the vertex cut ideas to other framework for
performance improvements?

* How will PowerGraph perform if the application workloads
are not natural graphs?



