
PowerGraph: 
Distributed Graph-Parallel Computation 

on Natural Graphs

Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny 
Bickson, Carlos Guestrin

CMU, UW

*some figures in the slide deck are borrowed from the official OSDI slides



What are Natural Graphs?

Graphs that are derived from natural phenomena

Such as relationships between:
• People
• Product
• Interests
• Ideas



Power-Law Degree Distribution

Most of natural graphs have skewed power-law degree distribution

Most vertices have relatively few neighbors, while a few have many neighbors



Problem: Hard to Partition

• Power-law graphs do not have low-cost balanced cuts

• Existing distributed graph computation systems perform poorly 
on power law graphs

Edges spanning multiple processors

“Start-like” Motif



High-Level PowerGrpah Abstraction 

• Split High-Degree Vertices
• New abstraction for programming graph computations



How do we program a graph computation?

• A user-defined Vertex-Program runs on each vertex

• Graph constrains intersctions along edges
• Using messages (Pregel[PODC09])

• Using shared state (GraphLab[VLDB12])



How do we program a graph computation?

• A user-defined Vertex-Program runs on each vertex

• Graph constrains intersctions along edges
• Using messages (Pregel[PODC09])

• Using shared state (GraphLab[VLDB12])

• Parallelism: run multiple vertex programs simultaneously

p0

p1



Example Computation: Social Network 
Popularity



PageRank Algorithm

• Update ranks in parallel

• Iterate until convergence



The Pregel [PODC09] Abstraction



The GraphLab [VLDB12] Abstraction



Challenges of High-Degree Vertices

Communication Overhead for High-Degree 
Vertices is the Most Prominent



Machine 2Machine 1

Pregel Reduces Fan-In Traffic 

A

B

C

D

Sending vertex info from neighbors



Pregel Reduces Fan-in Traffic

Machine 2Machine 1

A

B

C

sum
+ D

User-defined commutative associative (+) message operation 
allows preprocessing on the local machine with combiners and 

reduces the amount of messages transmitted



Pregel Struggles with Fan-Out

Machine 2Machine 1

A

B

C

D’



Fan-In and Fan-Out Performance

• PageRank on synthetic Power-law Graphs

combiners help to reduce fan-in traffic



GraphLab Reduces Traffic by Creating 
Ghost Vertices

Machine 2Machine 1

A

B

C

DD

A

B

C

Create “Ghost Nodes” for the neighbors not on the same machine

Ghost



GraphLab Reduces Broadcast Traffic by 
Creating Ghost Vertices

Machine 2Machine 1

A

B

C

DD

A

B

C

Updates to vertices under evaluation will be sent to another machine via 
1 message, and the other machine internally performs transfers



GraphLab Suffers from Neighbors’ Changes

Machine 2Machine 1

A

B

C

DD

A

B

C



Fan-In and Fan-Out Performance

• PageRank on synthetic Power-law Graphs

• GraphLab is undirected



Fan-In and Fan-Out Performance

• PageRank on synthetic Power-law Graphs

• GraphLab is undirected

Pregel and GraphLab are not well suited for natural graphs

• Challenges to reduce both the fan-in and fan-out traffic 
for high-degree vertices

• Low quality graph partitioning cuts a significant number 
of edges in the graph (contributing to the significant 
traffic between different machines)



PowerGraph – GAS Decomposition



PowerGraph – GAS Decomposition



PowerGraph – GAS Decomposition



PowerGraph – GAS Decomposition



PageRank in PowerGraph



Distributed Execution of a PowerGrpah
Vertex-Program

Cutting graphs from vertices instead of cutting from edges

Y

Machine 4Machine 3

Machine 2Machine 1



Machine 3

Machine 1

Distributed Execution of a PowerGrpah
Vertex-Program
• Assign each portion of edges to a different machine

• Select a master machine

• Create shadow vertices on auxiliary machines

Y

Y

master

Machine 4

Machine 2

Y

Y



Machine 3

Machine 1

Distributed Execution of a PowerGrpah
Vertex-Program
• Gather: 

• Each vertices shadow gathers on local machine (parallel)

• Send the sum to the master machine

Y

Y

∑1

∑3

Machine 4

Machine 2

Y

Y

∑2

∑4



Machine 3

Machine 1

Distributed Execution of a PowerGrpah
Vertex-Program
• Apply:

• Apply the aggregated sum in a user defined way

• Send the updated value to all machines

Y’

Y’

Machine 4

Machine 2

Y’

Y’



Machine 3

Machine 1

Distributed Execution of a PowerGrpah
Vertex-Program
• Scatter:

• Scatter locally (parallel)

Y’

Y’

Machine 4

Machine 2

Y’

Y’



Machine 3

Machine 1

Distributed Execution of a PowerGrpah
Vertex-Program
• Scatter:

• Scatter locally (parallel)

Y’

Y’

Machine 4

Machine 2

Y’

Y’

• Communication is linear in the number of machines each 
vertex spans

• Percolation theory suggests that power law graphs have 
good vertex cuts

• Theorem: For any edge-cut we can directly construct a 
vertex-cut which requires less communication and 
storage



How to perform vertex cuts?

• Random partitioning
• Pick the lightest loaded machine when edges come in

• No coordination overhead

Random vertex cut communication improvements



How to perform vertex cuts?

• Random partitioning
• Pick the lightest loaded machine when edges come in

• No coordination overhead

• Greedy partitioning
• Globally tracks which vertex is placed to which machine and try to 

place the edges for the same vertex on the same machine in a 
workload-balanced way

• High coordination overhead

• Oblivious partitioning
• Locally tracks the per-vertex info, and place the edges in a 

workload-balanced way

• Medium coordinate overhead



Comparing Vertex Cut Algorithms



Delta-Caching Optimization

• Most of time, only a few of the neighboring vertices change 
their values

• Oppututnities to reduces the necessary gathering

• Keep a local copy of the gathered neighboring value from 
the last iteration

• Calculate delta during scatter to update the local cached 
value as well



Results – Algorithm Implementations



Results – Compare to GraphLab & Pregel

• Running PageRank on Synthetic Power-Law Graphs

High-Degree Vertices High-Degree Vertices



Results – Scaling

• Running PageRank on Twitter graph



Results – Delta Cache Improvements

• Running PageRank on Twitter graph



Strengths

+ Paper is well-motivated by the concern of efficiently 
processing power-law natural graphs

+ Paper clearly presents the challenges of the problems and 
the issues of the existing work

+ Paper shows a comprehensive study of the performance of 
the proposed abstraction

• application algorithms

• communication overhead

• scaling



Weakness

- Paper does not show how well the abstraction performs if 
the application workload is not as power-law in nature. A 
good abstraction should still have reasonable performance 
even if the workload is not the target workload

- Paper did not show results with fewer than 8 machines and 
do not compare against sequential algorithm



Discussions

• Is the GAS abstraction general enough to represent all 
commonly know algorithms?

• Can we apply the vertex cut ideas to other framework for 
performance improvements?

• How will PowerGraph perform if the application workloads 
are not natural graphs?


