PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin

CMU, UW

**some figures in the slide deck are borrowed from the official OSDI slides*

What are Natural Graphs?

Graphs that are derived from natural phenomena

Such as relationships between:

- People
- Product
- Interests
- Ideas

Power-Law Degree Distribution

Most of natural graphs have **skewed power-law degree distribution**

Most vertices have relatively few neighbors, while a few have many neighbors

Problem: Hard to Partition

Edges spanning multiple processors

"Start-like" Motif

- Power-law graphs do not have low-cost balanced cuts
- Existing distributed graph computation systems perform poorly on power law graphs

High-Level PowerGrpah Abstraction

- **Split High-Degree Vertices**
- **New abstraction for programming graph computations**

How do we program a graph computation?

- A user-defined Vertex-Program runs on each vertex
- Graph constrains intersctions along edges
	- Using messages (Pregel[PODC09])
	- Using shared state (GraphLab[VLDB12])

How do we program a graph computation?

- A user-defined Vertex-Program runs on each vertex
- Graph constrains intersctions along edges
	- Using messages (Pregel[PODC09])
	- Using shared state (GraphLab[VLDB12])
- Parallelism: run multiple vertex programs simultaneously

Example Computation: Social Network Popularity

PageRank Algorithm

- Update ranks in parallel
- Iterate until convergence

The Pregel [PODC09] Abstraction

Vertex-Programs interact by sending messages.

The GraphLab [VLDB12] Abstraction

Vertex-Programs directly read the neighbors state

```
GraphLab_PageRank(i)
```
// Compute sum over neighbors $total = 0$ foreach(j in in neighbors (i)): total = total + $R[j]$ * w_{ji}

// Update the PageRank $R[i] = 0.15 + total$

// Trigger neighbors to run again $if R[i]$ not converged then foreach(j in out neighbors(i)): signal vertex-program on j

Challenges of High-Degree Vertices

requires heavy locking (GraphLab)

prone to stragglers (Pregel)

Communication Overhead for High-Degree Vertices is the Most Prominent

Pregel Reduces Fan-In Traffic

Sending vertex info from neighbors

Pregel Reduces Fan-in Traffic

User-defined commutative associative (+) message operation allows preprocessing on the local machine with combiners and reduces the amount of messages transmitted

Pregel Struggles with Fan-Out

Fan-In and Fan-Out Performance

• PageRank on synthetic Power-law Graphs

GraphLab Reduces Traffic by Creating Ghost Vertices

Create "Ghost Nodes" for the neighbors not on the same machine

GraphLab Reduces Broadcast Traffic by Creating Ghost Vertices

Updates to vertices under evaluation will be sent to another machine via 1 message, and the other machine internally performs transfers

GraphLab Suffers from Neighbors' Changes

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-law Graphs
- GraphLab is undirected

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-law Graphs
- GraphLab is undirected

Pregel and GraphLab are not well suited for natural graphs

- **Challenges to reduce both the fan-in and fan-out traffic for high-degree vertices**
- **Low quality graph partitioning cuts a significant number of edges in the graph (contributing to the significant traffic between different machines)**

PowerGraph – GAS Decomposition

Gather (Reduce) Accumulate information about neighborhood

Apply

Apply the accumulated value to center vertex

Scatter

Update adjacent edges and vertices.

GraphLab PageRank(i)

```
// Compute sum over neighbors
total = 0foreach( j in in neighbors(i)):
  total = total + R[j] * w_{ii}
```
Gather Information About Neighborhood

// Update the PageRank $R[i] = 0.1 + total$

Update Vertex

```
// Trigger neighbors to run again
if R[i] not converged then
  foreach( j in out neighbors(i))
    signal vertex-program on j
```
Signal Neighbors & Modify Edge Data

PowerGraph – GAS Decomposition

Gather (Reduce) Accumulate information about neighborhood **User Defined:**

Apply

Apply the accumulated value to center vertex

Scatter

Update adjacent edges and vertices.

PowerGraph - GAS Decomposition

Gather (Reduce) Accumulate information about neighborhood

User Defined:

Apply Apply the accumulated value to center vertex **User Defined:** \triangleright Apply(\circled{v}), Σ) \rightarrow \circled{v}

Scatter

Update adjacent edges and vertices.

PowerGraph – GAS Decomposition

Gather (Reduce) Accumulate information about neighborhood

User Defined:

PageRank in PowerGraph

$$
R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j]
$$

PowerGraph_PageRank(i)

Gather($j \rightarrow i$): return $w_{ji} * R[j]$ $sum(a, b)$: return $a + b$;

$$
Apply(i, \Sigma): R[i] = 0.15 + \Sigma
$$

Scatter $(i \rightarrow j)$: if $R[i]$ changed then trigger *j* to be **recomputed**

Cutting graphs from vertices instead of cutting from edges

- Assign each portion of edges to a different machine
	- Select a master machine
	- Create shadow vertices on auxiliary machines

- Gather:
	- Each vertices shadow gathers on local machine (parallel)
	- Send the sum to the master machine

- Apply:
	- Apply the aggregated sum in a user defined way
	- Send the updated value to all machines

- Scatter:
	- Scatter locally (parallel)

- Scatter:
	- Scatter locally (parallel)
	- **Communication is linear in the number of machines each vertex spans**
	- **Percolation theory suggests that power law graphs have good vertex cuts**
	- **Machine 1 Machine 2 vertex-cut which requires less communication and** $\overline{\mathbf{o}}$ **• Theorem: For any edge-cut we can directly construct a storage**

How to perform vertex cuts?

- Random partitioning
	- Pick the lightest loaded machine when edges come in
	- No coordination overhead

Random vertex cut communication improvements

How to perform vertex cuts?

- Random partitioning
	- Pick the lightest loaded machine when edges come in
	- No coordination overhead
- Greedy partitioning
	- Globally tracks which vertex is placed to which machine and try to place the edges for the same vertex on the same machine in a workload-balanced way
	- High coordination overhead
- Oblivious partitioning
	- Locally tracks the per-vertex info, and place the edges in a workload-balanced way
	- Medium coordinate overhead

Comparing Vertex Cut Algorithms

Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances cost and partitioning time.

Delta-Caching Optimization

- Most of time, only a few of the neighboring vertices change their values
- Oppututnities to reduces the necessary gathering
- Keep a local copy of the gathered neighboring value from the last iteration
- Calculate delta during scatter to update the local cached value as well

Results – Algorithm Implementations

- **Collaborative Filtering**
	- Alternating Least Squares
	- Stochastic Gradient Descent
	- $-$ SVD
	- Non-negative MF
- Statistical Inference
	- Loopy Belief Propagation
	- Max-Product Linear Programs
	- Gibbs Sampling

• Graph Analytics

- PageRank
- Triangle Counting
- Shortest Path
- Graph Coloring
- K-core Decomposition
- Computer Vision
	- Image stitching
- **Language Modeling**
	- $-LDA$

Results – Compare to GraphLab & Pregel

• Running PageRank on Synthetic Power-Law Graphs

High-Degree Vertices High-Degree Vertices

Results – Scaling

• Running PageRank on Twitter graph

Results – Delta Cache Improvements

• Running PageRank on Twitter graph

Strengths

+ Paper is well-motivated by the concern of efficiently processing power-law natural graphs

+ Paper clearly presents the challenges of the problems and the issues of the existing work

+ Paper shows a comprehensive study of the performance of the proposed abstraction

- application algorithms
- communication overhead
- scaling

Weakness

- Paper does not show how well the abstraction performs if the application workload is not as power-law in nature. A good abstraction should still have reasonable performance even if the workload is not the target workload
- Paper did not show results with fewer than 8 machines and do not compare against sequential algorithm

Discussions

- Is the GAS abstraction general enough to represent all commonly know algorithms?
- Can we apply the vertex cut ideas to other framework for performance improvements?
- How will PowerGraph perform if the application workloads are not natural graphs?