
GraphChi: Large-Scale Graph
Computation on Just a PC
Authors: Aapo Kyrola, Guy Blelloch, Carlos Guestrin

Presenter: Terryn Brunelle

Motivation

Motivation

● Large graphs require distributed computing

○ Ex: Social networks, web graphs, protein interaction graphs

● Distributed graph algorithm development challenging to non-experts

Existing Work: Vertex-Centric

Problems

● Can scale to billions of edges by distributing computation…

● But to do so need to partition graph across cluster nodes

● Finding efficient graph cuts is difficult

Goal

Find graph cuts that

● Minimize communication between nodes

● Are balanced

GraphChi

Parallel Sliding Windows (PSW)

● Process very large graphs on disk

● Asynchronous model of computation

PSW Approach

1. Load subgraph from disk

2. Update vertices and edges

3. Write updated values to disk

1. Load Subgraph from Disk

2. Update Vertices and Edges

● Within each interval

○ Execute update-function for each vertex in parallel

● Enforce external determinism

○ Critical vertices updated in sequential order

○ Non-critical vertices updated in parallel

3. Write Updated Values to Disk

● Load edges from disk in large blocks cached in memory

● Write to blocks and load them back to disk to replace old data

○ Completely rewrite memory shard

○ Only rewrite active sliding windows of other shards

● P non-sequential disk writes per interval

PSW Example

I/O Complexity

GraphChi Data Pre-Processing
Compact Shard Format

● Adjacency shard -- edge array for each vertex

● Edge data shard -- flat array of edge values

Sharder

● Count vertex in-degrees

● Compute prefix sum over degree array

● Divide vertices into P intervals

● Write each edge to temporary scratch file of owning shard

● For each file, sort edges and write them in compact format

I/O Cost: 5|E|/B + |V|/B

GraphChi Implementation

● Calculate exact memory needed for execution interval

○ Use multithreading to access needed vertices

○ Degreefile stores in/out degrees for each vertex

● Divide execution into sub-intervals

● Evolving graphs

● Selective Scheduling

Main Execution

Programming Model

Standard Model

In-Memory Model

Applications

● SpMV Kernels

● Graph Mining

● Collaborative Filtering

● Probabilistic Graphical Models

Experimental Results

Experimental Results

●

Experimental Results

● Within constant factor of other systems

● Uses a fraction of the resources

● Can process 5-20 million edges/second on Mac Mini

Conclusion

Strengths/Weaknesses

Strengths

● Sparse graphs

● Efficient on consumer PC

● Makes large-scale graph

computation widely accessible

Weaknesses

● Difficult to benchmark results

● Dynamic ordering and graph

traversals

Directions for Future Work

● Evaluating more efficient shard formats

● Testing on additional infrastructures

Discussion Questions

● Even though there were no comparable models to benchmark

GraphChi against, do you find the experimental results compelling?

● How would GraphChi perform on dense graphs?

● Could GraphChi be adapted to support graph traversal problems?

