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Data size:
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Traditional graph systems mainly use
the iteration-based model

Partition the graph into subgraphs

Store each subgraph as a block on a disk

In each iteration, blocks are sequentially loaded
into memory

Turn random 1/Os into serial I/Os

Synchronize over all blocks in each iteration



Random Walks

Random walks have been proven to be efficient to analyze large graphs

Let G be a graph or digraph with the additional assumption that if G is a digraph, then deg™ (v) > 0 for
every vertex v. Now consider an object placed at vertex v;. At each stage the object must move to an adjacent

vertex. The probability that it moves to the vertex v; is degl(,v_) or degj(,vl) if (v;,v;) is an edge on G and G is a
J J

graph or digraph, respectively. Otherwise the probability is 0. Therefore if we define

deg

1
deg™ (v,

0 otherwise

ﬁ if (v;,v;) is an edge in the graph G

g if (vj,v;) is an edge in the digraph G

M?® which represents corresponds to random walks of length 5 along this graph:
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Iteration-based model

Current graph systems with the iteration-based model cannot efficiently support random walks. The
major limitations are three folds.
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(a) Example graph (b) Data organization in shards (c) Graph loading with parallel sliding window

Figure 1: Storage and I/O model in GraphChi
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GraphWalker

To address the 1/0 efficiency problem so as to efficiently support fast and scalable random walks, we develop
GraphWalker, which is an I/O-efficient and resource friendly graph system.
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Figure 5: Overall design of GraphWalker



Design idea

Unlike the iteration-based model which blindly loads graph blocks sequentially, the state-aware model chooses to load
the graph block containing the largest number of walks, and makes each walk move as many steps as possible until it

reaches the boundary of the loaded subgraph.
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Suppose that we have to run three random walks which
start at node 0 and have to move four steps.

1) in the first 1/0, graph block b0 is loaded into memory.
With the loaded graph block b0, walk wO and w1l move

two steps, and w2 moves only one step

2) As two walks fall into block b2, in the second I/O, block
b2 is loaded into memory, and walk wO finishes and w1l
can move one step.

3) both the remaining two walks are in block b1, so we
load b1 into memory, and all walks can be finished.

Note only 3 1/Os are required v.s. 12 1/Os in iteration-based
model



State aware graph loading

Data organization  Ablock file to record the vertices in ascending order

0 1 2 block1 - vertices:3,4,5

block file “edges: 32,3 56,4 -5, * Anindex file to record the beginning position of each

(offset in index file)) 0 | 3 | 6 |10 . .
4-56,5-6,5-8. vertex in the csr file.

index file \\\

(offsetincsrfile) | 0|3 |47 |9 |11|13|15|16|18|19 )
s file \ RN e A Compressed Sparse Row (CS_R) format, WhI.Ch
(out-neighbors) |1(3[4|2[0(6|7|2|6|5|6(6/8]4|7[9]6|7(8 sequentially stores the out neighbors of vertices
Graph loading with block caching
T T e T ' .
block 0 block 3 * Select a candidate block based on the state-aware model,

1. kick out the

|
|
i R |
g‘ block with 1 % : cache two _ o .
£ fewest walks 1 | £ P % || blocks * To load this block, check whether it is cached in memory or
2 |

e ———— , not. If it is already in memory, then we directly access
2. load in the block with most walks memory to perform analysis.

R
= Cﬁ ? @%}; %55 @ * Otherwise, load it from disk, and also evict out the block in
A X R R memory containing the fewest walks if the cache is full.

block 0 block 1 block 2 block 3




Asynchronous walk updating

™ * Each walk to keep updating until it reaches the
QAO O boundary of the loaded graph block.
O ................ N * After finishing a walk, we choose another walk to
process until all walks in the current graph block are
processed.

* Then we load another graph block based on the state-

Asynchronous walk updating in parallel aware model

Global Straggler problem

Some walks may move very fast and make a large progress as the graph data they needed can always be satisfied, while
some other walks may move very slowly as they may be trapped in some cold blocks which are not loaded into memory

for a long time.

Solution: every time when we choose a graph block to load, we assign a probability p to choose the block containing
walks with the slowest progress



Block-centric walk management

block array

fixed-length  walk pool
in disk file

walk buffer

block 0| O
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Figure 9: Block-centric walk management
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For each graph block, we use a walk pool to record the walks
which are currently in the block. We implement each walk pool
as a fixed-length buffer, which stores at most 1024 walks by
default, so as to avoid dynamic memory allocation cost. When
there are more than 1024 walks in a block, we flush them to
disk and store them as a file called walk pool file.

When we load a graph block into memory, we also load its walk pool file into memory and merge the walks

with those stored in the in-memory walk pool.

Then we perform random walks and update walks in current walk pool. During the update process, when a
walk pool is full, we flush all walks in the walk pool to disk by appending them to the corresponding walk
pool file and clear the buffer.

When finish computing with the loaded graph block, we clear the current walk pool and sum up the walks in
both walk buffer and walk pool file of each block so as to update the walk states.



Performance valuation

Datasets
Dataset \4 |E| | CSR Size | Text Size
Twitter (TT) 61.6M | 1.5B 6.2GB 26.2GB
Friendster (FS) 68.3M | 2.6B 10.7GB 47.3GB
YahooWeb (YW) 1.4B 6.6B 37.6GB 108.5GB
Kron30 (K30) 1B 32B 136GB 638GB
Kron31 (K31) 2B 64B 272GB 1.4TB
CrawlWeb (CW) 3.5B 128B 540GB 2.6TB

Table 1: Statistics of Datasets

We validate the efficiency of GraphWalker by comparing it with
DrunkardMob, the state-of-the-art single-machine system that

is specially optimized for random walk.

Graph algorithms. Besides directly evaluating the perfor-
mance of running random walks, we also consider the fol-
lowing four common random walk based algorithms.

Random Walk Domination (RWD) [27]. We start one
walk of length six from each vertex in the graph to find
a vertex set which has the maximum influence diffusion.

Graphlet Concentration (Graphlet) [34,35]. We use a
special graphlet, triangle, as a study case. We randomly
start 100 thousand random walks of length four to esti-
mate the ratio of triangles in the graph.

Personalized PageRank (PPR) [12]. We simulate 2000
random walks of length 10 starting at each query source
vertex to approximate the PPR, which was shown to be
sufficient to ensure the accuracy.

SimRank (SR) [19]. We start 2000 random walks of

length 11 respectively from the query pair vertices to
compute the expected meeting time,



Performance in entire design space

We first show the results by fixing the walk length to 10, but varying the number of walks from 103 to 1019, as depicted
in Figure 10. In general, GraphWalker achieves 16 x to 70 x speedup under all settings.
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Figure 10: Performance of random walks with different number of walks by fixing walk length as 10.

One attractive feature of GraphWalker we like to highlight is its scalability. We point out that even for running tens of
billions of random walks on large graphs, GraphWalker can still finish within a reasonable time. However, DrunkardMob
even fails to run 101° walks on large graphs, due to the out-of memory error



Performance in entire design space

We also evaluate the performance by varying the walk length. Here we fix the number of walks as 10° and vary the length
of each walk from 22 to 210, The results are shown in Figure 11. First, we can see that GraphWalker is always much faster
than DrunkardMob, and it achieves even more than three orders of magnitude in the best case
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Figure 11: Performance of random walks with different walk lengths by fixing the number of walks as 10°.



Performance in random walk based algorithms

We now evaluate the performance of the four common random walk based algorithms. From Figure 12, we can see that
GraphWalker achieves 9 x to 48 x speedup upon DrunkardMob.
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Figure 12: Performance of random walk based algorithms.
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Micro-benchmark drilling down

|/O utilization: defined as the edge usage amount
for updating walks divided by the total number of

edges loaded by one 1/0O.

GraphWalker develops an asynchronous walk
updating method to fully utilize the loaded graph

data in memory
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(1) graph loading, loads graph blocks into memory with disk 1/Os
(2) walk updating, updates the walk states maintained in memory

(3) walk persisting, includes to read walk states from disk into
memory and write back updated states to disk for persistency.
of executing each operation.

Time cost (s) DrunkardMob | GraphWalker | Speedup
Graph Loading 1005 47 21 x
Walk Updating 3029 214 14 x
Walk Persisting 1056 16 66 x

Total Runtime 5110 278 18

Table 2: Time cost breakdown

Figure 13: I/O utilization and walk updating rate (Drunkard-

Mob needs 150 I/0s and GraphWalker only needs 46 1/Os)




Comparison with state-of-the-art systems

Single-machine graph systems. Distributed random walk system.
First, GraphWalker consistently outperforms Graphene. KnightKing, as the cluster size increases, the computing
It achieves up to 19 x speedup. time, i.e., the time for updating walks, gets reduced greatly,

but it still costs a lot of time for processing I/O0s

Second, compared with GraFSoft, when the number of
walks is small, the improvement of GraphWalker is limited.
However, the improvement of GraphWalker increases as
the number of random walks gets larger

walks over disk-resident graphs.
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Figure 14: Comparison with Graphene and GraFSoft

GraphWalker mainly targets for the 1/0 efficiency problem,
and also adapts the walk updating process accordingly
based on its I/O model, so it can realize very fast random
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Figure 15: Comparison with KnightKing



Impact of system configuration

Performance on HDDs.

Since HDDs have much lower random I/O performance
than SSDs, the time cost of both DrunkardMob and
GraphWalker is increased. When comparing GraphWalker
with DrunkardMob, we observe similar results as in the
case of SSDs studied before. Precisely, GraphWalker
achieves 3 x to 135 x speedup under different settings
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Figure 16: Performance on HDDs

Impact of block size.

The insight is that small blocks may be beneficial to lightweight
tasks which require only a small number of random walks, as
the 1/0 utilization can get improved under this setting. In
contrast, large blocks may be beneficial to heavyweight tasks
which require a large number of random walks, as large block
setting increases the walk updating rate.
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Figure 17: Impact of block size



Summary

GraphWalker is an |/O-efficient and resource friendly graph system.

* A novel state-aware I/0 model, which leverages the state of each random walk to preferentially load the
graph block with the most walks from disk into memory, so as to improve the 1/0 utilization.

e An asynchronous walk updating scheme based on the re-entry method, which allows each walk to move as
many steps as possible so as to fully utilize the loaded subgraph and greatly accelerate the progress of
random walks.

* A lightweight block-centric indexing scheme to manage walk states and adopt a fixed-length walk buffering
strategy to reduce the memory cost for recording walk states.



