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Background

Traditional graph systems mainly use 
the iteration-based model

• Partition the graph into subgraphs

• Store each subgraph as a block on a disk

• In each iteration, blocks are sequentially loaded 

into memory

• Turn random I/Os into serial I/Os

• Synchronize over all blocks in each iteration



Random Walks
Random walks have been proven to be efficient to analyze large graphs



Iteration-based model
Current graph systems with the iteration-based model cannot efficiently support random walks. The 
major limitations are three folds.

• Low I/O utilization : Unaware of the unevenly scattered 
walk states,  just sequentially loads all needed subgraphs 
into memory

• Low walk updating rate: Ensuring a synchronized analysis,
all walks move exactly one step in each iteration

• High memory cost: Existing graph systems usually use
massive dynamic arrays to record the walks. However, this
indexing design requires large memory space



To address the I/O efficiency problem so as to efficiently support fast and scalable random walks, we develop 
GraphWalker,  which is an I/O-efficient and resource friendly graph system. 

GraphWalker

• state-aware I/O model

• asynchronous walk updating scheme

• lightweight block-centric indexing scheme



Design idea
Unlike the iteration-based model which blindly loads graph blocks sequentially, the state-aware model chooses to load
the graph block containing the largest number of walks, and makes each walk move as many steps as possible until it
reaches the boundary of the loaded subgraph.

Suppose that we have to run three random walks which 
start at node 0 and have to move four steps. 

1) in the first I/O, graph block b0 is loaded into memory. 
With the loaded graph block b0, walk w0 and w1 move 
two steps, and w2 moves only one step

2) As two walks fall into block b2, in the second I/O, block 
b2 is loaded into memory, and walk w0 finishes and w1 
can move one step.

3) both the remaining two walks are in block b1, so we 
load b1 into memory, and all walks can be finished. 

Note only 3 I/Os are required v.s. 12 I/Os in iteration-based 
model



State aware graph loading
• A block file to record the vertices in ascending order 

• An index file to record the beginning position of each 
vertex in the csr file. 

• A Compressed Sparse Row (CSR) format, which 
sequentially stores the out neighbors of vertices

Data organization

Graph loading with block caching

• Select a candidate block based on the state-aware model,

• To load this block, check whether it is cached in memory or 
not. If it is already in memory, then we directly access 
memory to perform analysis.

• Otherwise, load it from disk, and also evict out the block in 
memory containing the fewest walks if the cache is full.



Asynchronous walk updating

• Each walk to keep updating until it reaches the 
boundary of the loaded graph block. 

• After finishing a walk, we choose another walk to 
process until all walks in the current graph block are 
processed. 

• Then we load another graph block based on the state-
aware model

Global Straggler problem
Some walks may move very fast and make a large progress as the graph data they needed can always be satisfied, while 
some other walks may move very slowly as they may be trapped in some cold blocks which are not loaded into memory 
for a long time.

Solution: every time when we choose a graph block to load, we assign a probability p to choose the block containing 
walks with the slowest progress



Block-centric walk management

For each graph block, we use a walk pool to record the walks 
which are currently in the block. We implement each walk pool 
as a fixed-length buffer, which stores at most 1024 walks by 
default, so as to avoid dynamic memory allocation cost. When 
there are more than 1024 walks in a block, we flush them to 
disk and store them as a file called walk pool file. 

When we load a graph block into memory, we also load its walk pool file into memory and merge the walks 
with those stored in the in-memory walk pool.

Then we perform random walks and update walks in current walk pool. During the update process, when a 
walk pool is full, we flush all walks in the walk pool to disk by appending them to the corresponding walk 
pool file and clear the buffer. 

When finish computing with the loaded graph block, we clear the current walk pool and sum up the walks in 
both walk buffer and walk pool file of each block so as to update the walk states.



We validate the efficiency of GraphWalker by comparing it with 
DrunkardMob, the state-of-the-art single-machine system that 
is specially optimized for random walk. 

Performance valuation
Datasets



Performance in entire design space
We first show the results by fixing the walk length to 10, but varying the number of walks from 103 to 1010, as depicted 

in Figure 10. In general, GraphWalker achieves 16 x to 70 x speedup under all settings. 

One attractive feature of GraphWalker we like to highlight is its scalability. We point out that even for running tens of 

billions of random walks on large graphs, GraphWalker can still finish within a reasonable time. However, DrunkardMob

even fails to run 1010 walks on large graphs, due to the out-of memory error



Performance in entire design space
We also evaluate the performance by varying the walk length. Here we fix the number of walks as 105 and vary the length 
of each walk from 22 to 210. The results are shown in Figure 11. First, we can see that GraphWalker is always much faster 
than DrunkardMob, and it achieves even more than three orders of magnitude in the best case



Performance in random walk based algorithms
We now evaluate the performance of the four common random walk based algorithms. From Figure 12, we can see that 
GraphWalker achieves 9 x to 48 x speedup upon DrunkardMob.



Micro-benchmark drilling down
I/O utilization: defined as the edge usage amount
for updating walks divided by the total number of
edges loaded by one I/O.

GraphWalker develops an asynchronous walk 
updating method to fully utilize the loaded graph 
data in memory

(1) graph loading,  loads graph blocks into memory with disk I/Os
(2) walk updating, updates the walk states maintained in memory
(3) walk persisting, includes to read walk states from disk into 
memory and write back updated states to disk for persistency. 
of executing each operation.



Comparison with state-of-the-art systems

First, GraphWalker consistently outperforms Graphene. 
It achieves up to 19 x speedup.

Second, compared with GraFSoft, when the number of 
walks is small, the improvement of GraphWalker is limited. 
However, the improvement of GraphWalker increases as 
the number of random walks gets larger

GraphWalker mainly targets for the I/O efficiency problem, 
and also adapts the walk updating process accordingly 
based on its I/O model, so it can realize very fast random 
walks over disk-resident graphs.

KnightKing, as the cluster size increases, the computing 
time, i.e., the time for updating walks, gets reduced greatly, 
but it still costs a lot of time for processing I/Os



Impact of system configuration 

Since HDDs have much lower random I/O performance 
than SSDs, the time cost of both DrunkardMob and 
GraphWalker is increased. When comparing GraphWalker
with DrunkardMob, we observe similar results as in the 
case of SSDs studied before. Precisely, GraphWalker
achieves 3 x to 135 x speedup under different settings

The insight is that small blocks may be beneficial to lightweight 
tasks which require only a small number of random walks, as 
the I/O utilization can get improved under this setting. In 
contrast, large blocks may be beneficial to heavyweight tasks 
which require a large number of random walks, as large block 
setting increases the walk updating rate. 



GraphWalker is an I/O-efficient and resource friendly graph system. 

Summary

• A novel state-aware I/O model, which leverages the state of each random walk to preferentially load the 
graph block with the most walks from disk into memory, so as to improve the I/O utilization. 

• An asynchronous walk updating scheme based on the re-entry method, which allows each walk to move as 
many steps as possible so as to fully utilize the loaded subgraph and greatly accelerate the progress of 
random walks. 

• A lightweight block-centric indexing scheme to manage walk states and adopt a fixed-length walk buffering 
strategy to reduce the memory cost for recording walk states. 


