
1

Making Caches Work for Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis,

Saman Amarashinghe, Matei Zaharia

MIT, Stanford

BIGDATA 2017

2

Motivation

• Many graph algorithm frameworks do not focus on improving cache

utilization

• As a result, graph algorithms frequently hit memory wall, resulting

in low performance

• Graphs with power-law degree distribution introduces even lower

cache locality, further hurting performance

3

This paper

• Proposes CSR segmenting methodology to constrain most of the

random accesses in last level cache (LLC) by segmenting a big graph

into several subgraphs with shared working set

• Extends on existing programming interface to allow CSR segmenting

implementation

• Proposes frequency clustering optimization on memory data layout

to further reduce memory traffic

• Shows up to 11x speedup comparing to exsiting distributed graph

processing framework for popular graph processing applications

4

Sparse Graphs Represented in CSR Format

0

1

2 3

4

5

Graph Representation

V vertices

E edges

0 2 4 4 5 6offset array

srcdest

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

Implicit dest id

edges array

starting index of the list

of src for each dest

Compressed Graph in

Compressed Sparse Row (CSR) Representation

5

Distributed Graph Algorithms Have Poor Locality

procedure PageRank(Graph G)
parallel for v: G.offsetArray()
for u: G.edgeArray[v]
newRank[v] += G.rank[u]/G.degree[u]

if G.rank[:] == newRank[:] return
else
G.rank[:] = newRank[:]
PageRank(G)

Power-Law Degree Distribution

Low degree vertices -> high % of random accesses
High degree vertices -> too much data in working set

to fit in cache
Bad Cache Performance

60%-80% of the CPU cycles are stalled

Example Distributed PageRank Algorithm

Access Patterns

1. offset array: random

2. edge array: globally random, locally sequential

3. new rank array: random

4. rank array: random

5. degree: random

app specific

working set

6

CSR Segmenting

• Goal: divide the large graph into subgraph that fits in cache, perform

distributed processing on each subgraph

• Benefits:

– Improved cache unitization

• One time DRAM loading, and then all reads and writes are in cache

– Great scalability

• Ample parallelism allowed within each subgraph

– Low overhead

• Subgraph merging only needs a small amount of extra sequential accesses

– Widely applicable

• Provide a clean API for implementing algorithms that needs subgraph aggregations

7

Step1: Preprocessing (graphical)

• Divide vertices into segments, such that data for each segment fit into cache

0 1 2 3 4 5

segment 0 segment 1

• Divide the graph into subgraph, so that the source vertices in each graph only

belong to one segment

0

1

2 3

4

5

Original graph

0

1

2

5 0

3

4

5

Subgraph 0 Subgraph 1

Included because it is a

necessary destination vertex

8

Step1: Preprocessing (CSR specific)

• Realization with the CSR graph representation

– Construct CSR representations for subgraphs using the original graph CSR arrays

0 2 4 4 5 6offset array

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

global dest id

edges array

Original CSR Representation

Subgraph0

CSR

Subgraph1

CSR

9

Step1: Preprocessing (CSR specific)

• Realization with the CSR graph representation

– Construct CSR representations for subgraphs using the original graph CSR arrays

0 2 4 4 5 6offset array

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

global dest id

edges array

N = 3

Source id: 2, 5, …

Subgroup id: ⌊2/3⌋ = 0 , ⌊5/3⌋ = 1, …

Original CSR Representation

0 1 0 0 1 1 0 0 1Subgroup id Subgraph0

CSR

Subgraph1

CSR

0 1 3

2 0 2 1 2

0 1 2 3

5 5 3 4

local dest id 0 1 2 0 1 2 3

0 1 5local->global 0 3 4 5

offset array

edges array

(number of vertex in each segment)

10

Step2: Processing Subgraphs

time

LLC cache
working set arrays for

vertices 0, 1, 2

0

1

2

5

Subgraph 0

LLC cache

save intermediate

rank values of each

destination in the

subgraph
0

3

4

5

Subgraph 1

save intermediate

rank values of each

destination in the

subgraph

11

Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache
working set arrays for

vertices 0, 1, 2

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

• all of the destination vertices share the same set of

source vertices (thus same working set)

• partitioning via source vertices allows ample

parallelism inside each subgraph

• each thread works on a distinct (set of) destination

vertices, so no synchronization needed

12

Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

save intermediate

rank values of

each destination

in the subgraph

subgraph 0
interm. results

13

Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

Subgraph 1

0

3

4

E: 5->0

E: 5->3

E: 3->4

thread 0

thread 1

thread 2

working set arrays for

vertices 3, 4, 5

5 E: 4->5thread 3

14

Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

Subgraph 1

0

3

4

E: 5->0

E: 5->3

E: 3->4

thread 0

thread 1

thread 2

5 E: 4->5thread 3

subgraph 1
interm. results

15

Step3: Cache-aware Merge

• The previously constructed global-to-local ID mapping allows each

intermediate result to sync with the global indexing of the destination

vertices

local dest id 0 1 2 0 1 2 3

0 1 5local->global 0 3 4 5

subgraph 0 subgraph 1

Rank(0)

Rank(1)

Rank(5)

Rank(0)

Rank(3)

Rank(4)

Rank(5)

16

Step3: Cache-aware Merge

• Merge the intermediate results generated by each subgraph processing step

Rank(0)

Rank(1)
Rank(0)

Merger 0

Rank(0)

Rank(1)

Rank(2)

• Each merge only works on a set of vertex IDs that fit in L1 cache

• Multiple mergers work in parallel for different set of vertex IDs

Rank(5)

Rank(1)

Rank(3)

Rank(4)

Rank(5)

Merger 1

Rank(3)

Rank(4)

Rank(5)

17

Step3: Cache-aware Merge

• Merge the intermediate results generated by each subgraph processing step

Rank(0)

Rank(1)
Rank(0)

Merger 0

Rank(0)

Rank(1)

Rank(2)

• Each merge only works on a set of vertex IDs that fit in L1 cache

• Multiple mergers work in parallel for different set of vertex IDs

Rank(5)

Rank(1)

Rank(3)

Rank(4)

Rank(5)

Merger 1

Rank(3)

Rank(4)

Rank(5)

merging only incur a small overhead comparing to segmenting

18

Programming Abstraction

• Cagra: extends on EdgeMap and VetexMap API from Ligra

User-defined merge

function that allows

subgraphs to merge

correctly in the

framework

19

Optimization: Frequency Based Clustering

64byte cache line

random reads usually

only utilize a small

portion of the fetched

cache line ->

low locality

8byte useful data

Observations

High-degree vertices

are more likely to be

accessed than others

0

1

2 3

4

5

Natural ordering of the

graph have indications

of the relationships

between the vertices

1 2 3

20

Optimization: Frequency Based Clustering

Group together the vertices that are frequently referenced

while preserving the natural order as much as possible

bundle of
clustered
vertices

bundle of
regular in-order

vertices

v.degree > avg

foreach v in Graph G

NoYes

21

Evaluation Setup

• Machine: Intel Xeon CPUs: 24 cores, 48 hyper threads

• Data Sets: social network data sets (power-law degree distribution)

• Applications: example applications from machine learning, graph

traversals and graph analytics

– PageRank, Label Propagation, Collaborative Filtering, Betweeness

Centrality

22

Overall Runtime Compared to Existing Frameworks

PageRank Performance

Label Propagation Performance

Live journal dataset is small enough to fit in LLC

(Cagra becomes slower than due to extra preprocessing overhead)

23

Preprocessing Cost

Pro:

• Small overheads introduced compared to overall runtime improvements

Con:

• Other framework’s overhead not fully analyzed

• GridGraph has more significant preprocessing overhead

• 130ns for Twitter

• CSR segmenting’s overhead does increase significantly when graph becomes larger

1.5x increase in number of edges

3.7x increase in preprocessing time

24

Contributions of Different Optimizations

Runtime Speedups of Optimizations

on Page Rank, Label Propagation, and Collaborative Filtering

increasing graph size increasing graph size increasing graph size

CSR Segmenting alone allow speedup of more than 2x

on all 3 applications

25

Contributions of Different Optimizations

Memory Access Time Related Results

increasing graph size

• By constraining each subgraph inside LLC, CSR segmenting helps to keep the

memory access relatively constant even if dataset size increases

• Clustering optimization is orthogonal to segmenting optimization

increasing graph size

26

Summary

• Strength

– Clear presentation of methodology

– Evaluations show contributions of each optimization on various

applications and datasets

• Weakness

– More detailed implementation description would be helpful

– Preprocessing cost not studied extensively

