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Motivation

• Many graph algorithm frameworks do not focus on improving cache 

utilization

• As a result, graph algorithms frequently hit memory wall, resulting 

in low performance

• Graphs with power-law degree distribution introduces even lower 

cache locality, further hurting performance
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This paper

• Proposes CSR segmenting methodology to constrain most of the 

random accesses in last level cache (LLC) by segmenting a big graph 

into several subgraphs with shared working set

• Extends on existing programming interface to allow CSR segmenting 

implementation

• Proposes frequency clustering optimization on memory data layout 

to further reduce memory traffic

• Shows up to 11x speedup comparing to exsiting distributed graph 

processing framework for popular graph processing applications
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Sparse Graphs Represented in CSR Format
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Graph Representation

V vertices

E edges

0 2 4 4 5 6offset array

srcdest

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

Implicit dest id

edges array

starting index of the list 

of src for each dest

Compressed Graph in

Compressed Sparse Row (CSR) Representation
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Distributed Graph Algorithms Have Poor Locality

procedure PageRank(Graph G)
parallel for v: G.offsetArray() 
for u: G.edgeArray[v]
newRank[v] += G.rank[u]/G.degree[u]

if G.rank[:] == newRank[:] return
else
G.rank[:] = newRank[:]
PageRank(G)

Power-Law Degree Distribution

Low degree vertices -> high % of random accesses
High degree vertices -> too much data in working set 

to fit in cache
Bad Cache Performance

60%-80% of the CPU cycles are stalled

Example Distributed PageRank Algorithm

Access Patterns

1. offset array: random

2. edge array: globally random, locally sequential

3. new rank array: random

4. rank array: random

5. degree: random

app specific

working set 
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CSR Segmenting

• Goal: divide the large graph into subgraph that fits in cache, perform 

distributed processing on each subgraph

• Benefits:

– Improved cache unitization

• One time DRAM loading, and then all reads and writes are in cache

– Great scalability

• Ample parallelism allowed within each subgraph

– Low overhead

• Subgraph merging only needs a small amount of extra sequential accesses

– Widely applicable

• Provide a clean API for implementing algorithms that needs subgraph aggregations
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Step1: Preprocessing (graphical)

• Divide vertices into segments, such that data for each segment fit into cache

0 1 2 3 4 5

segment 0 segment 1

• Divide the graph into subgraph, so that the source vertices in each graph only 

belong to one segment
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Original graph

0
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Subgraph 0 Subgraph 1

Included because it is a 

necessary destination vertex
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Step1: Preprocessing (CSR specific)

• Realization with the CSR graph representation

– Construct CSR representations for subgraphs using the original graph CSR arrays

0 2 4 4 5 6offset array

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

global dest id

edges array

Original CSR Representation

Subgraph0

CSR 

Subgraph1

CSR 
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Step1: Preprocessing (CSR specific)

• Realization with the CSR graph representation

– Construct CSR representations for subgraphs using the original graph CSR arrays

0 2 4 4 5 6offset array

0 1 2 3 4 5

2 5 0 2 5 3 1 2 4

global dest id

edges array

N = 3

Source id: 2, 5, …

Subgroup id:  ⌊2/3⌋ = 0 , ⌊5/3⌋ = 1, …

Original CSR Representation

0 1 0 0 1 1 0 0 1Subgroup id Subgraph0

CSR 

Subgraph1

CSR 

0 1 3

2 0 2 1 2

0 1 2 3

5 5 3 4

local dest id 0 1 2 0 1 2 3

0 1 5local->global 0 3 4 5

offset array

edges array

(number of vertex in each segment)
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Step2: Processing Subgraphs

time

LLC cache
working set arrays for 

vertices 0, 1, 2
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Subgraph 0

LLC cache

save intermediate 

rank values of each 

destination in the 

subgraph
0

3

4

5

Subgraph 1

save intermediate 

rank values of each 

destination in the 

subgraph
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Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache
working set arrays for 

vertices 0, 1, 2

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

• all of the destination vertices share the same set of 

source vertices (thus same working set)

• partitioning via source vertices allows ample 

parallelism inside each subgraph

• each thread works on a distinct (set of) destination 

vertices, so no synchronization needed
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Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

save intermediate 

rank values of 

each destination 

in the subgraph

subgraph 0 
interm. results
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Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

Subgraph 1

0

3

4

E: 5->0

E: 5->3

E: 3->4

thread 0

thread 1

thread 2

working set arrays for 

vertices 3, 4, 5

5 E: 4->5thread 3
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Step2: Processing Subgraphs

Subgraph 0
time

0

1

5

LLC cache

E: 2->0

E: 0->1 E: 2->1

E: 1->5 E: 2->5

thread 0

thread 1

thread 2

Subgraph 1

0

3

4

E: 5->0

E: 5->3

E: 3->4

thread 0

thread 1

thread 2

5 E: 4->5thread 3

subgraph 1 
interm. results
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Step3: Cache-aware Merge

• The previously constructed global-to-local ID mapping allows each 

intermediate result to sync with the global indexing of the destination 

vertices

local dest id 0 1 2 0 1 2 3

0 1 5local->global 0 3 4 5

subgraph 0 subgraph 1

Rank(0)

Rank(1)

Rank(5)

Rank(0)

Rank(3)

Rank(4)

Rank(5)
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Step3: Cache-aware Merge

• Merge the intermediate results generated by each subgraph processing step

Rank(0)

Rank(1)
Rank(0)

Merger 0

Rank(0)

Rank(1)

Rank(2)

• Each merge only works on a set of vertex IDs that fit in L1 cache

• Multiple mergers work in parallel for different set of vertex IDs

Rank(5)

Rank(1)

Rank(3)

Rank(4)

Rank(5)

Merger 1

Rank(3)

Rank(4)

Rank(5)
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Step3: Cache-aware Merge

• Merge the intermediate results generated by each subgraph processing step

Rank(0)

Rank(1)
Rank(0)

Merger 0

Rank(0)

Rank(1)

Rank(2)

• Each merge only works on a set of vertex IDs that fit in L1 cache

• Multiple mergers work in parallel for different set of vertex IDs

Rank(5)

Rank(1)

Rank(3)

Rank(4)

Rank(5)

Merger 1

Rank(3)

Rank(4)

Rank(5)

merging only incur a small overhead comparing to segmenting
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Programming Abstraction

• Cagra: extends on EdgeMap and VetexMap API from Ligra

User-defined merge 

function that allows 

subgraphs to merge 

correctly in the 

framework
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Optimization: Frequency Based Clustering

64byte cache line 

random reads usually 

only utilize a small 

portion of the fetched 

cache line -> 

low locality

8byte useful data

Observations

High-degree vertices 

are more likely to be 

accessed than others

0

1

2 3

4

5

Natural ordering of the 

graph have indications 

of the relationships 

between the vertices

1 2 3
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Optimization: Frequency Based Clustering

Group together the vertices that are frequently referenced 

while preserving the natural order as much as possible

bundle of 
clustered 
vertices

bundle of 
regular in-order

vertices

v.degree > avg

foreach v in Graph G

NoYes
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Evaluation Setup

• Machine: Intel Xeon CPUs: 24 cores, 48 hyper threads

• Data Sets: social network data sets (power-law degree distribution)

• Applications: example applications from machine learning, graph 

traversals and graph analytics

– PageRank, Label Propagation, Collaborative Filtering, Betweeness

Centrality
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Overall Runtime Compared to Existing Frameworks

PageRank Performance

Label Propagation Performance

Live journal dataset is small enough to fit in LLC

(Cagra becomes slower than due to extra preprocessing overhead)
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Preprocessing Cost

Pro:

• Small overheads introduced compared to overall runtime improvements

Con:

• Other framework’s overhead not fully analyzed

• GridGraph has more significant preprocessing overhead

• 130ns for Twitter

• CSR segmenting’s overhead does increase significantly when graph becomes larger

1.5x increase in number of edges

3.7x increase in preprocessing time
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Contributions of Different Optimizations

Runtime Speedups of Optimizations 

on Page Rank, Label Propagation, and Collaborative Filtering

increasing graph size increasing graph size increasing graph size

CSR Segmenting alone allow speedup of more than 2x 

on all 3 applications
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Contributions of Different Optimizations

Memory Access Time Related Results

increasing graph size

• By constraining each subgraph inside LLC, CSR segmenting helps to keep the 

memory access relatively constant even if dataset size increases

• Clustering optimization is orthogonal to segmenting optimization

increasing graph size
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Summary

• Strength

– Clear presentation of methodology

– Evaluations show contributions of each optimization on various 

applications and datasets

• Weakness

– More detailed implementation description would be helpful

– Preprocessing cost not studied extensively


