
Graph Processing in NVRAM and Streaming Settings

1

Laxman Dhulipala
MIT (Postdoc) 
https://ldhulipala.github.io/

Based on joint work with 

Guy Blelloch and Julian Shun (PLDI’19)

Charles McGuffey, Hong Kang, Yan Gu, Guy Blelloch, Phil Gibbons, and Julian Shun (VLDB’20)

https://ldhulipala.github.io/
https://ldhulipala.github.io/


2

Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs



2

Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs

Input Graph



2

Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs

Input Graph Graph Processing

Graph 
Clustering

Dense 
Subgraphs

…

Connectivity

Distance 
Computations

Algorithms



2

Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph 
Clustering

Dense 
Subgraphs

…

Connectivity

Distance 
Computations

Algorithms



2

Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization
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✤ Dynamic



“…[the 2012 graph is the] largest 
hyperlink graph that is available to the 

public outside companies such as 
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion 
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/
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Year of sourcing vs total number of vertices and edges 
for real-world graphs from the SNAP and LAW datasets
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Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72 
processors is about $20,000.

• Can rent a similar machine (96 processors and 
1.5TB memory) for $11/hour on Google Cloud 

A single shared-memory machine can already 
store the largest publicly available graph 
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges
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Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72 
processors is about $20,000.

• Can rent a similar machine (96 processors and 
1.5TB memory) for $11/hour on Google Cloud 

A single shared-memory machine can already 
store the largest publicly available graph 
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

What about graphs that are 
larger-than-DRAM?
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NVRAM Graph Processing



❖ Cheaper than DRAM on a per-byte basis

❖ Order of magnitude more capacity

❖ Memory is persistent and byte-addressable

Intel Optane DC Memory

Can we design algorithms that effectively use NVRAM as a 
higher-capacity memory while achieving DRAM-competitive 

performance?
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Non-Volatile Memory (NVRAM)



Socket 1
(24 cores)

Socket 2 
(24 cores)

12 DIMM slots 12 DIMM slots

DRAM: 6x32 GB 
per socket

NVRAM: 6x256GB 
per socket

48 cores with 2-way 
hyper-threading

375GB DRAM and 
3.024TB of NVRAM

❖ 8x more NVRAM than DRAM

❖ NVRAM read throughput ~3x lower than DRAM read

❖ NVRAM write throughput further 4x lower

Our Machine

7

NVRAM Characteristics



Benchmarking

❖ Two recent studies by Izraelevitz et al. [0] and van Renen et al. 
[1] perform careful benchmarking of Optane memory, and 
report similar asymmetries

Sources: 
[0] Izraelevitz et al. Basic performance measurements of the Intel Optane DC persistent memory module. (2019)
[1] van Renen et al. Persistent Memory I/O Primitives (2019)
[2] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)
[3] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[4] Carson et al. Write-avoiding algorithms (2016)
[5] Peng et al. System Evaluation of the Intel Optane byte-addressable NVM (2019)
[6] Ni et al. SSP: Eliminating Redundant Writes in Failure-Atomic NVRAMs via Shadow Sub-Paging (2019)
[7] Yang et al.  An Empirical Guide to the Behavior and Use of Scalable Persistent Memory (2020)

Algorithms and Systems for Asymmetric Settings
❖ Recent work explores how to minimize the number of NVRAM 

writes, e.g., [2 – 4], including many other papers

❖ Also significant work from systems, architecture, and database 
communities, e.g.,  [5 – 7], amongst many other papers
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Recent work on Asymmetry

https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf
https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf


Can we design practical and theoretically-
sound techniques to overcome read/write 

asymmetry for graph problems on NVRAMs?
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Semi-Asymmetric Parallel Graph Algorithms for 
NVRAMs [DMKGBGS’20]



106 107 108 109 1010

Number of vertices (logscale)

0

20

40

60

80

100

N
um

.
E
dg

es
/

N
um

.
V
er

ti
ce

s

Graph Type

social

web

citation

Over 90% of graphs with > 1M vertices from 
SNAP and LAW datasets have  m/n ≥ 10

We expect that ratio of NVRAM/DRAM in future 
systems will be similar (our ratio is 8x)Sources: 

https://snap.stanford.edu/data/ 
http://law.di.unimi.it/datasets.php 10

Real World Graphs are not Ultra-Sparse

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php


❖ Graph stored in NVRAM and accessed in a 
read-only mode

❖ Amount of DRAM is proportional to the 
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only
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❖ Graph stored in NVRAM and accessed in a 
read-only mode

❖ Amount of DRAM is proportional to the 
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

❖ Algorithms avoid costly NVRAM writes, 
and algorithm design is independent of this 
cost

❖ Algorithms do not contribute to NVRAM 
wear-out

Benefits

Our contribution:
This (restrictive) semi-asymmetric 
approach is effective for designing 

fast parallel graph algorithms

11

Our Approach
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NVRAM

DRAM

CPUs

Unbounded Size

Read/Write: Unit 
Cost

Read:
Unit Cost

Write:
Cost ω > 1

Regular model:
O(n)

Relaxed model:
O(n + m/log n)

12

Parallel Semi-Asymmetric Model (PSAM)



❖ Start with work-efficient shared-memory 
algorithms from the Graph Based 
Benchmark Suite (GBBS)

❖ Implement interface primitives used by 
GBBS algorithms (edgeMap and filtering) 
efficiently in the PSAM

BucketingVertexSubset GraphVertex
represent subsets
of vertices

primitives on 
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping 
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

GBBS Interface

13

Overview of Semi-Asymmetric Algorithms



❖ Start with work-efficient shared-memory 
algorithms from the Graph Based 
Benchmark Suite (GBBS)

❖ Implement interface primitives used by 
GBBS algorithms (edgeMap and filtering) 
efficiently in the PSAM

BucketingVertexSubset GraphVertex
represent subsets
of vertices

primitives on 
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping 
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

GBBS Interface

edgeMap Filtering (relaxed model)

Other Techniques

GBBS work indicates the work of naively converting exisitng shared-
memory algorithms from GBBS to NVRAM algorithms

13

Overview of Semi-Asymmetric Algorithms



Motivation
❖ Some algorithms remove, or batch-delete 

edges over the course of their 
operation for work-efficiency

❖ Modifying the graph directly requires 
writing to NVRAM

Parallel Approximate
Set Cover

Triangle Counting

Orient edges based on a
given order

Maximal Matching

14

Semi-Asymmetric Filtering



Motivation
❖ Some algorithms remove, or batch-delete 

edges over the course of their 
operation for work-efficiency

❖ Modifying the graph directly requires 
writing to NVRAM

Parallel Approximate
Set Cover

Triangle Counting

Orient edges based on a
given order

Maximal Matching

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Semi-Asymmetric Filtering

❖ Work in the relaxed model

❖ Use one bit per edge and mirror the CSR 
structure (in NVRAM) using a blocked 
approach in DRAM

14

Semi-Asymmetric Filtering
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Semi-Asymmetric Filtering

Graph

logically deleted

present in graph
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Semi-Asymmetric Filtering

High-level Approach

0 6 9 13 ...Offsets

Edges

NVRAM

...

Graph in CSR format, stored in NVRAM (ℱB = 2)

(i) Set a filter block size, and logically chunk the CSR 
structure into chunks of this size
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Semi-Asymmetric Filtering

High-level Approach

GraphFilter in CSR format, stored in DRAM (ℱB = 2)

(ii) Create a “mirrored” filter structure in DRAM, 
storing 1 bit per edge in NVRAM

1 1

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

0 3 5 7 ...Offsets
Blocks
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Semi-Asymmetric Filtering

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Note: Blocks with no “1" bits remaining are deleted

Structure Overview



❖ SE model performs block-transfers, with a focus on I/O cost [0, 1]

❖ Both PSAM and SE models provide the same amount of DRAM, but 
SE does not account for DRAM reads and writes

Semi-External Memory (SE) Model

Sources: 
[0] Abello et al.  A Functional Approach to External Graph Algorithms (2002)
[1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
[2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016) 19

Relationship to Other Models

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf


❖ SE model performs block-transfers, with a focus on I/O cost [0, 1]

❖ Both PSAM and SE models provide the same amount of DRAM, but 
SE does not account for DRAM reads and writes

Semi-External Memory (SE) Model

Asymmetric RAM and Asymmetric Nested Parallel Models
❖ Both ARAM [2] and ANP [3] models capture asymmetry of writing to 

NVRAM

❖ Unlike ARAM/ANP models, the PSAM includes a fast memory, and is 
specialized for graph problems

Sources: 
[0] Abello et al.  A Functional Approach to External Graph Algorithms (2002)
[1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
[2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016) 19

Relationship to Other Models

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf


NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

AppDirect Mode enables a direct implementation 
of PSAM algorithms

20

Semi-Asymmetric Graph Engine (Sage) Approach



Consider an algorithm that maps over all vertices, 
and for each vertex performs a reduction over the 
neighbors of the vertex

21

NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

Three experiments based on (threads, storage)
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NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

7 s
> 4x slower

first run
~7s subsequently

26 s

Cross-socket NVM reads should be avoided 
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NUMA Optimization in Sage

Socket 0 Socket 1

Both graphs stored in compressed CSR format
4.3 s for microbenchmark



❖ Applications do not distinguish between 
DRAM and NVRAM

❖ Existing shared-memory software does 
not require modification

❖ Workloads that are larger than DRAM 
can involve costly NVRAM writes

24

Existing Approaches: DRAM as a Cache
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❖ Applications do not distinguish between 
DRAM and NVRAM

❖ Existing shared-memory software does 
not require modification

❖ Workloads that are larger than DRAM 
can involve costly NVRAM writes

Galois (Gill et al.)

❖ Gill et al. study the performance of the 
Galois engine using MemMode

❖ They show promising results for scaling 
to larger than DRAM sizes

How does our approach compare?
24

Existing Approaches: DRAM as a Cache



❖ Largest publicly available graph today

❖ 3.5B vertices connected by 128B 
edges (225B symmetrized)

WebDataCommons Graph
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❖ Largest publicly available graph today

❖ 3.5B vertices connected by 128B 
edges (225B symmetrized)

WebDataCommons Graph

Experiment
❖ Compare Sage results with

❖ GBBS using MemMode (existing shared-memory codes)

❖ Galois using MemMode (using numbers reported by 
authors on the same machine)

25

Results for Larger-than-DRAM Graphs



Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM 
and 3 TB of NVRAM

26

Results for Larger-than-DRAM Graphs



1.94x speedup on average over Galois (state-of-the-art existing 
approach to NVRAM graph processing), and 1.87x speedup over 

simply running GBBS codes using MemMode

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM 
and 3 TB of NVRAM

26

Results for Larger-than-DRAM Graphs



❖ Large web crawl with ~1B vertices connected 
by 42B edges (74B symmetrized)

❖ Graph fits entirely in the main memory of our 
machine

ClueWeb Graph

libvmmalloc: see https://pmem.io/pmdk/libvmmalloc/ 27

Results for Graphs Stored in Main Memory

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/


❖ Large web crawl with ~1B vertices connected 
by 42B edges (74B symmetrized)

❖ Graph fits entirely in the main memory of our 
machine

ClueWeb Graph

Experiment
❖ Compare Sage (graph stored on NVRAM) with

❖ Sage (graph stored in DRAM)

❖ GBBS (graph stored in DRAM)

❖ GBBS with libvmmalloc (graph stored on NVRAM)

libvmmalloc: see https://pmem.io/pmdk/libvmmalloc/ 27

Results for Graphs Stored in Main Memory

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/
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Results for Graphs Stored in Main Memory

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM 
and 3 TB of NVRAM



Sage provides DRAM-competitive performance even when reading 
graph from NVRAM (only 5% slower on average)

28

Results for Graphs Stored in Main Memory

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM 
and 3 TB of NVRAM
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Lessons and Directions for Future Work



Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of 
the read-only graph from the same socket 
achieves 6x speedup over cross-socket approach
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Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of 
the read-only graph from the same socket 
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

❖ Nearly 2x improvement for App-Direct based 
PSAM algorithms over two fast Memory Mode 
approaches
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Avoid NVRAM Writes

❖ PSAM implementations which only read from 
NVRAM are over 6x faster than our algorithms 
which write to NVRAM (using libvmmalloc)

Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of 
the read-only graph from the same socket 
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

❖ Nearly 2x improvement for App-Direct based 
PSAM algorithms over two fast Memory Mode 
approaches

29

Lessons and Directions for Future Work
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Streaming Graph Processing
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31Source: Infection transmission in a dynamic network 

Dynamic Graph Processing
Measuring the spread of infections Preventing money laundering and fraud

❖ Recommendation Systems
❖ Geospatial Systems

Other Applications

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html


31Source: Infection transmission in a dynamic network 

Dynamic Graph Processing
Measuring the spread of infections

Many important applications must maintain 
information about evolving graphs!

Preventing money laundering and fraud

❖ Recommendation Systems
❖ Geospatial Systems

Other Applications

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html
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Query Stream
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Dynamic Graph Processing: Example

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Streaming Graph Processing

Update Stream

Query Stream

Fetch vertex u’s 
neighbors

Clustering 
Coefficients

Centrality 
Ranking

Fetch similar 
vertices

Clustering

Triangle Counting

Connected Components
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Dynamic Graph Processing: Example

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Streaming Graph Processing

Update Stream

Pre-determined queries;
Process updates faster than recomputation.

Batch-Dynamic Graph Processing

Query Stream

Fetch vertex u’s 
neighbors

Clustering 
Coefficients

Centrality 
Ranking

Fetch similar 
vertices

Clustering

Triangle Counting

Connected Components

32
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Streaming Graph Processing

Graph Updates

Graph Queries Responses

Graph-Streaming 
System

Edge queries
Local

algorithms
Global

algorithms
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Streaming Graph Processing

Goal: low-latency for both updates and queries arriving 
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming 
System

Edge queries
Local

algorithms
Global

algorithms
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Streaming Graph Processing
Single-version

STINGER [EMRB’12]

cuSTINGER [GB’16]

Kickstarter [VGX’17]

Goal: low-latency for both updates and queries arriving 
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming 
System

Edge queries
Local

algorithms
Global

algorithms
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Streaming Graph Processing
Single-version

STINGER [EMRB’12]

cuSTINGER [GB’16]

Kickstarter [VGX’17]

Multi-version (snapshot-based)

Kineograph [CHKMW+’12]

LLAMA [MMMS’15]

Goal: low-latency for both updates and queries arriving 
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming 
System

Edge queries
Local

algorithms
Global

algorithms



Can we design a system that can
compactly represent and

concurrently update and query
the largest real-world graphs?

34

Low-Latency Graph Streaming using Compressed 
Purely-Functional Trees [DBS’19]



Graph Algorithm 
Interface

Snapshots implement the GBBS 
interface, making it possible to 
run parallel graph algorithms 
from GBBS on snapshots in 

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional 
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the 
changes in the sequence of 
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot 
of the graph.
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Graph Algorithm 
Interface

Snapshots implement the GBBS 
interface, making it possible to 
run parallel graph algorithms 
from GBBS on snapshots in 

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional 
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the 
changes in the sequence of 
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot 
of the graph.Main contribution: designing a scalable, space-efficient, 

and efficiently-updatable graph representation using 
compressed purely-functional trees
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A snapshot is just a tree root
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Insert(12)
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Trees enable Simple Snapshots

Algorithms generalize to handle batches of 
updates in low work/depth [BFS’16]
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𝗏0 𝗏1

Queries are serialized once they 
acquire a tree root

Query

Purely-Functional Trees are Safe for Concurrency
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To overcome these challenges we designed 
C-trees: compressed purely-functional trees
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Further improve space usage for integer 

C-trees by difference encoding chunks

C-trees
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❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h
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Fully-dynamic representation of the WebDataCommons hyperlink 
graph using 700GB of memory



Operations on C-trees
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𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f )

f

f{ f {



𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f )

f

f{ f {
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C S



𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f )

f

f{ f {

CS = 𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S)
𝖮𝗎𝗍𝗉𝗎𝗍 = 𝖴𝗇𝗂𝗈𝗇(C, CS)

𝖬𝗎𝗅𝗍𝗂𝖨𝗇𝗌𝖾𝗋𝗍(𝖢𝗍𝗋𝖾𝖾 C, 𝖲𝖾𝗊 S)
C S
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union(t1, t2)

l1 r1

expose(t1)

k1

t2

split(t2,k1)

l2 r2 union(l1, l2) union(r1, r2)

L R

k1

join(L,k1,R)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)
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Similar algorithms for difference and 
intersection

union(t1, t2)

l1 r1

expose(t1)

k1

t2

split(t2,k1)

l2 r2 union(l1, l2) union(r1, r2)

L R

k1

join(L,k1,R)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)
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join(L, k, R)
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k
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[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

The Join Function
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R

k

Join enables balance-agnostic expression of 
all other primitives[1]

join(L, k, R)

L R

k

L
R

k

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

The Join Function
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spli

l r uni uni
union(t1, t2) runs in

expose split join

O (m log ( n
m

+ 1)) work and O (log n log m) depth

Proof idea from [1]:

Overall cost = work done over all splits

Splitting a tree costs O (log |T |) work and depth

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees
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union(C1=(T1, P1)), C2=(T2, P2)))

Expose one of the trees

Batch Updates on Trees
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Split the other C-tree with k2

< k2 > k2
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union(C1=(T1, P1)), C2=(T2, P2)))

Split the other C-tree with k2

Part of v2  may belong in BT2, 
similarly with BP2

< k2 > k2

𝖡𝟤 =

Batch Updates on Trees



Batch Updates on C-trees
union(C1=(T1, P1)), C2=(T2, P2)))

Split v2  based on BT2, 
BP2 based on R2

< k2
> k2

𝖡𝟤 =



union(C1=(T1, P1)), C2=(T2, P2)))

< k2
> k2

𝖡𝟤 =

Recursive union of two 
C-trees

Join done on the 
underlying purely-
functional tree

Batch Updates on Trees



union(C1=(T1, P1)), C2=(T2, P2)))

< k2
> k2

𝖡𝟤 =

O (B2m log ( n
m

+ 1)) expected work

O (B log n log m) depth whp

union(C1, C2) runs in

Batch Updates on Trees
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Streaming Experiment

Stream of Parallel 
BFS queries from 
random vertices

BFS trees

Sampled insertions 
+ deletions from G

What’s the impact on the 
concurrent execution on latency?
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Streaming Experiment

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Less than 3% impact 
on queries in the 

concurrent setting
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Batch Update Experiment

Edge insertions 
drawn from RMAT

Represent G using 
Aspen and STINGER

How does the throughput scale 
as a function of batch size?
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Building on Aspen and C-trees



Batch-Dynamic Graph Processing

Updates

Dynamic Algorithm

G𝖯𝗋𝖾𝗏 G𝖭𝖾𝗑𝗍

E.g.: Connected components, clustering 
coefficients, graph clusterings, etc

Aspen



Batch-Dynamic Algorithms

Interested in practical and memory-
efficient dynamic graph algorithms

[TDB’18]

Forest Conn.

[AABD’19]

Connectivity Clique-counting

[DLSY’20]



❖ has strong theoretical bounds
❖ provides memory-efficient graph representations
❖ enables lightweight snapshots
❖ runs on commodity hardware 
❖ can process the largest publicly-available graphs

Aspen
Scalable graph data structures and 
interfaces for processing streaming 
graphs

github.com/ldhulipala/aspen

Thank you!

https://github.com/ldhulipala/aspen
https://github.com/ldhulipala/aspen

