Graph Processing in NVRAM and Streaming Settings

Laxman Dhulipala MIT (Postdoc) https://ldhulipala.github.io/

Based on joint work with

Guy Blelloch and Julian Shun (PLDI'19)

Charles McGuffey, Hong Kang, Yan Gu, Guy Blelloch, Phil Gibbons, and Julian Shun (VLDB'20)

Graph Processing: algorithms and systems that enable us to analyze and understand graphs

Input Graph

Graph Processing: algorithms and systems that enable us to analyze and understand graphs

Input Graph

Connectivity

Distance Computations

Graph Processing: algorithms and systems that enable us to analyze and understand graphs

Graph Processing

Algorithms

Graph Processing: algorithms and systems that enable us to analyze and understand graphs

Input Graph

Connectivity

Distance Computations

Graph Processing

Output

Algorithms

- Understanding
- Visualizations
- Graph-based features
- System-optimization

Graph Processing: algorithms and systems that enable us to analyze and understand graphs

Input Graph

StaticDynamic

Connectivity

Distance Computations

Graph Processing

Output

Algorithms

- Understanding
- Visualizations
- Graph-based features
- System-optimization

Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store
- Largest publicly available graph

"...[the 2012 graph is the] largest hyperlink graph that is available to the public outside companies such as Google, Yahoo, and Microsoft."

for real-world graphs from the SNAP and LAW datasets

Shared-Memory Parallelism

Shared-Memory Machines

- Cost for a ITB memory machine with 72 processors is about \$20,000.
- Can rent a similar machine (96 processors and I.5TB memory) for \$11/hour on Google Cloud

WebDataCommons Graph

• 3.5 billion vertices and 128 billion edges

A single shared-memory machine can already store the largest publicly available graph datasets, with plenty of room to spare

- Can rent a similar machine (What about graphs that are

larger-than-DRAM?

NVRAM Graph Processing

Non-Volatile Memory (NVRAM)

Intel Optane DC Memory

- * Cheaper than DRAM on a per-byte basis
- * Order of magnitude more capacity
- * Memory is persistent and byte-addressable

Can we design algorithms that effectively use NVRAM as a higher-capacity memory while achieving DRAM-competitive performance?

NVRAM Characteristics

Our Machine

48 cores with 2-way hyper-threading 375GB DRAM and 3.024TB of NVRAM

> DRAM: 6x32 GB per socket

NVRAM: 6x256GB per socket

- * 8x more NVRAM than DRAM
- NVRAM read throughput ~3x lower than DRAM read
- NVRAM write throughput further 4x lower

Recent work on Asymmetry

Benchmarking

* Two recent studies by Izraelevitz et al. [0] and van Renen et al. [1] perform careful benchmarking of Optane memory, and report similar asymmetries

Algorithms and Systems for Asymmetric Settings

- * Recent work explores how to minimize the number of NVRAM writes, e.g., [2 - 4], including many other papers
- * Also significant work from systems, architecture, and database communities, e.g., [5 - 7], amongst many other papers

Sources:

- [0] Izraelevitz et al. <u>Basic performance measurements of the Intel Optane DC persistent memory module.</u> (2019)
- [1] van Renen et al. Persistent Memory I/O Primitives (2019)
- [2] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)
- [3] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
- [4] Carson et al. Write-avoiding algorithms (2016)
- [5] Peng et al. System Evaluation of the Intel Optane byte-addressable NVM (2019)
- [6] Ni et al. <u>SSP: Eliminating Redundant Writes in Failure-Atomic NVRAMs via Shadow Sub-Paging</u> (2019)
- [7] Yang et al. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory (2020)

Semi-Asymmetric Parallel Graph Algorithms for NVRAMs [DMKGBGS'20]

Can we design practical and theoreticallysound techniques to overcome read/write asymmetry for graph problems on NVRAMs?

Real World Graphs are not Ultra-Sparse

Sources: https://snap.stanford.edu/data/ http://law.di.unimi.it/datasets.php Over 90% of graphs with > IM vertices from SNAP and LAW datasets have $m/n \ge 10$

We expect that ratio of NVRAM/DRAM in future systems will be similar (our ratio is 8x)

Our Approach

Semi-Asymmetric Approach

- * Graph stored in NVRAM and accessed in a read-only mode
- * Amount of DRAM is proportional to the number of vertices

Our Approach

Semi-Asymmetric Approach

- * Graph stored in NVRAM and accessed in a read-only mode
- * Amount of DRAM is proportional to the number of vertices

Benefits

- Algorithms avoid costly NVRAM writes, and algorithm design is independent of this cost
- Algorithms do not contribute to NVRAM wear-out

||

Our Approach

Semi-Asymmetric Approach

- * Graph stored in NVRAM and accessed in a read-only mode
- * Amount of DRAM is proportional to the number of vertices

Benefits

- Algorithms avoid costly NVRAM writes, and algorithm design is independent of this cost
- Algorithms do not contribute to NVRAM wear-out

Our contribution: This (restrictive) semi-asymmetric approach is effective for designing fast parallel graph algorithms

CPUs

NVRAM

CPUs

Unbounded Size

Overview of Semi-Asymmetric Algorithms

- Start with work-efficient shared-memory algorithms from the Graph Based Benchmark Suite (GBBS)
- Implement interface primitives used by GBBS algorithms (edgeMap and filtering) efficiently in the PSAM

GBBS Interface

VertexSubset	Bucketing	Vertex	Graph		
represent subsets of vertices	dynamic mapping from IDs to set of ordered buckets	primitives on incident edges, e.g., map, reduce, filter, intersect,	graph parallel operators, e.g., edgeMap, graph contraction,		
Graph Formats low-level access to CSR graph formats (uncompressed and compressed graph representations)					
Parallel Primitives and Runtime					

Overview of Semi-Asymmetric Algorithms

- Start with work-efficient shared-memory algorithms from the Graph Based Benchmark Suite (GBBS)
- Implement interface primitives used by GBBS algorithms (edgeMap and filtering) efficiently in the PSAM

edge	Map
------	-----

	Problem	GBBS Work	Sage Work	Sage Depth
	Breadth-First Search	$O(\omega m)$	O(m)	$O(d_G \log n)$
-	Weighted BFS	$O(\omega m)^*$	$O(m)^*$	$O(d_G \log n)^{\ddagger}$
ED	Bellman-Ford	$O(\omega d_G m)$	$O(d_G m)$	$O(d_G \log n)$
NK	Single-Source Widest Path	$O(\omega d_G m)$	$O(d_G m)$	$O(d_G \log n)$
5	Single-Source Betweenness	$O(\omega m)$	O(m)	$O(d_G \log n)$
5	O(k)-Spanner	$O(\omega m)^*$	$O(m)^*$	$O(k\log n)^{\ddagger}$
[AP	LDD	$O(\omega m)^*$	$O(m)^*$	$O(\log^2 n)^{\ddagger}$
EM	Connectivity	$O(\omega m)^*$	$O(m)^*$	$O(\log^3 n)^\ddagger$
Ð	Spanning Forest	$O(\omega m)^*$	$O(m)^*$	$O(\log^3 n)^{\ddagger}$
EI	Graph Coloring	$ O(\omega m)^* $	$ O(m)^*$	$O(\log n +$
				$L\log \Delta)^*$
	Maxmial Independent Set	$O(\omega m)^*$	$ O(m)^* $	$O(\log^2 n)^{\ddagger}$

GBBS work indicates the work of naively converting exisitng sharedmemory algorithms from GBBS to NVRAM algorithms

GBBS Interface

VertexSubset	Bucketing	Vertex	Graph	
represent subsets of vertices	dynamic mapping from IDs to set of ordered buckets	primitives on incident edges, e.g., map, reduce, filter, intersect,	graph parallel operators, e.g., edgeMap, graph contraction,	
Graph Formats low-level access to CSR graph formats (uncompressed and compressed graph representations)				
Parallel Primitives and Runtime				

Filtering (relaxed model)

	Problem	GBBS Work	Sage Work	Sage Depth
Ч	Biconnectivity¶	$O(\omega m)^*$	$ O(m)^*$	$O(d_G \log n)$
ğ				$+\log^3 n)^{\ddagger}$
"	Apx. Set Cover [†]	$O(\omega m)^*$	$ O(m)^* $	$O(\log^3 n)^{\ddagger}$
er	Triangle Counting [†]	$O(\omega(m+n)+$	$O(m^{3/2})$	$O(\log n)$
ļį,		$m^{3/2}$)		
Ľ	Maximal Matching [†]	$O(\omega m)^*$	$ O(m)^*$	$ O(\log^3 m)^{\ddagger} $

Other Techniques

PageRank Iteration	$ O(m + \omega n) $	O(m)	$ O(\log n) $
PageRank	$O(P_{it}(m+\omega n))$	$O(P_{it}m)$	$O(P_{it}\log n)$
k-core	$O(\omega m)^*$	$O(m)^*$	$O(\rho \log n)^{\ddagger}$
Apx. Densest Subgraph	$O(\omega m)$	O(m)	$O(\log^2 n)$

Motivation

- * Some algorithms *remove*, or *batch-delete* edges over the course of their operation for work-efficiency
- Modifying the graph directly requires writing to NVRAM

Motivation

- * Some algorithms *remove*, or *batch-delete* edges over the course of their operation for work-efficiency
- Modifying the graph directly requires writing to NVRAM

Semi-Asymmetric Filtering

- * Work in the relaxed model
- Use one bit per edge and mirror the CSR structure (in NVRAM) using a blocked approach in DRAM

Graph	Offsets 0 6 9 13 NVRAM
<u>vo</u> v ₅	Edges $v_1v_2 v_3v_4 v_5v_6 v_0v_2 v_3 \dots$
01	Offsets 0 3 5 7 DRAM
	BIOCKS ↓ 110001120123

15

High-level Approach

Set a filter block size, and logically chunk the CSR (i) structure into chunks of this size

Graph in CSR format, stored in NVRAM ($\mathcal{F}_B = 2$)

High-level Approach

(ii) Create a "mirrored" filter structure in DRAM, storing I bit per edge in NVRAM

GraphFilter in CSR format, stored in DRAM ($\mathcal{F}_B = 2$)

Structure Overview

Note: Blocks with no "I" bits remaining are deleted

Relationship to Other Models

Semi-External Memory (SE) Model

- * SE model performs block-transfers, with a focus on I/O cost [0, 1]
- * Both PSAM and SE models provide the same amount of DRAM, but SE does not account for DRAM reads and writes

Sources:

[0] Abello et al. <u>A Functional Approach to External Graph Algorithms</u> (2002)

[1] Zheng et al. <u>FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs</u> (2015) [2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)

[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)

Relationship to Other Models

Semi-External Memory (SE) Model

- * SE model performs block-transfers, with a focus on I/O cost [0, 1]
- * Both PSAM and SE models provide the same amount of DRAM, but SE does not account for DRAM reads and writes

Asymmetric RAM and Asymmetric Nested Parallel Models

- * Both ARAM [2] and ANP [3] models capture asymmetry of writing to NVRAM
- * Unlike ARAM/ANP models, the PSAM includes a fast memory, and is specialized for graph problems

Sources:

[0] Abello et al. <u>A Functional Approach to External Graph Algorithms</u> (2002)

[1] Zheng et al. <u>FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs</u> (2015) [2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)

[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)

Semi-Asymmetric Graph Engine (Sage) Approach

AppDirect Mode enables a direct implementation of PSAM algorithms

NUMA Optimization in Sage

neighbors of the vertex

Three experiments based on (threads, storage)

Consider an algorithm that maps over all vertices, and for each vertex performs a reduction over the

Socket 0 Socket I

NUMA Optimization in Sage

7 s

> 4x slower first run ~7s subsequently

Cross-socket NVM reads should be avoided

Socket 0 Socket I

Memory	- Memory	- Memory	Memory	Memory	Memory
_	_	_		_	_
Core	Core	Core	Core	Core	Core
Core	Core	Core	Core	Core	Core
Core	Core	Core	Core	Core	Core
Core	Core	Core	Core	Core	Core

26 s

NUMA Optimization in Sage

Socket 0

4.3 s for microbenchmark

Both graphs stored in compressed CSR format

Existing Approaches: DRAM as a Cache

Memory Mode

Volatile

- * Applications do not distinguish between DRAM and NVRAM
- * Existing shared-memory software does not require modification
- * Workloads that are larger than DRAM can involve costly NVRAM writes

Existing Approaches: DRAM as a Cache

Memory Mode

Volatile

- * Applications do not distinguish between DRAM and NVRAM
- * Existing shared-memory software does not require modification
- Workloads that are larger than DRAM can involve costly NVRAM writes

Galois (Gill et al.)

- * Gill et al. study the performance of the Galois engine using MemMode
- * They show promising results for scaling to larger than DRAM sizes

Existing Approaches: DRAM as a Cache

Memory Mode

Volatile

- * Applications do not distinguish between **DRAM** and **NVRAM**
- * Existing shared-memory software does not require modification
- * Workloads that are larger than DRAM can involve costly NVRAM writes

Galois (Gill et al.)

- * Gill et al. study the performance of the Galois engine using MemMode
- * They show promising results for scaling to larger than DRAM sizes

How does our approach compare?

WebDataCommons Graph

- * Largest publicly available graph today
- 3.5B vertices connected by I28B edges (225B symmetrized)

WebDataCommons Graph

- * Largest publicly available graph today
- 3.5B vertices connected by I28B edges (225B symmetrized)

Experiment

- * Compare Sage results with
 - * GBBS using MemMode (existing shared-memory codes)
 - * Galois using MemMode (using numbers reported by authors on the same machine)

ed-memory codes)

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM and 3 TB of NVRAM

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM and 3 TB of NVRAM

1.94x speedup on average over Galois (state-of-the-art existing approach to NVRAM graph processing), and 1.87x speedup over simply running GBBS codes using MemMode

ClueWeb Graph

- Large web crawl with ~IB vertices connected by 42B edges (74B symmetrized)
- * Graph fits entirely in the main memory of our machine

ClueWeb Graph

- Large web crawl with ~IB vertices connected by 42B edges (74B symmetrized)
- * Graph fits entirely in the main memory of our machine

Experiment

- * Compare Sage (graph stored on NVRAM) with
 - Sage (graph stored in DRAM)
 - GBBS (graph stored in DRAM) *
 - GBBS with libvmmalloc (graph stored on NVRAM) *

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM and 3 TB of NVRAM

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM and 3 TB of NVRAM

Sage provides DRAM-competitive performance even when reading graph from NVRAM (only 5% slower on average)

Avoid Cross-Socket NVRAM Traffic

 NUMA optimization which reads from the copy of the read-only graph from the same socket achieves 6x speedup over cross-socket approach

Avoid Cross-Socket NVRAM Traffic

 NUMA optimization which reads from the copy of the read-only graph from the same socket achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode approaches

Avoid Cross-Socket NVRAM Traffic

 NUMA optimization which reads from the copy of the read-only graph from the same socket achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode approaches

Avoid NVRAM Writes

 PSAM implementations which only read from NVRAM are over 6x faster than our algorithms which write to NVRAM (using libvmmalloc)

Measuring the spread of infections

Measuring the spread of infections

Measuring the spread of infections

Preventing money laundering and fraud

Other Applications

- Recommendation Systems
- * Geospatial Systems

Measuring the spread of infections

Preventing money laundering and fraud

Other Applications

- Recommendation Systems
- * Geospatial Systems

Many important applications must maintain information about evolving graphs!

Update Stream

The Washington Post

Update the graph (in parallel); Execute arbitrary queries on snapshots.

Update the graph (in parallel); Execute arbitrary queries on snapshots.

Clustering

Triangle Counting **Connected Components**

Update the graph (in parallel); Execute arbitrary queries on snapshots.

Clustering

Triangle Counting **Connected Components**

Batch-Dynamic Graph Processing

Pre-determined queries; Process updates faster than recomputation.

Goal: low-latency for both updates and queries arriving concurrently to the system

Single-version
STINGER [EMRB'12]
cuSTINGER [GB'16]
Kickstarter [VGX'17]

Goal: low-latency for both updates and queries arriving concurrently to the system

Single-version
STINGER [EMRB'12]
cuSTINGER [GB'16]
Kickstarter [VGX'17]
Multi-version (snapshe

ot-based) Kineograph [CHKMW+'12] LLAMA [MMMS'15]

Goal: low-latency for both updates and queries arriving concurrently to the system

Low-Latency Graph Streaming using Compressed Purely-Functional Trees [DBS'19]

Can we design a system that can compactly represent and concurrently update and query the largest real-world graphs?

Aspen: A Low-Latency Graph Streaming System

Purely-Functional Graph Representation

Compressed Purely-Functional Trees

Aspen: A Low-Latency Graph Streaming System

Acquire

InsertBatch

Aspen: A Low-Latency Graph Streaming System

Graph Algorithm Interface Acquire Snapshots implement the GBBS interface, making it possible to run parallel graph algorithms from GBBS on snapshots in Aspen. **Breadth-First Search** Maximal Independent Set **InsertBatch** Parallel Connectivity And many others

Aspen: A Low-Latency Graph Streaming System

Graph Algorithm Interface

Query Acquire

Main contribution: designing a scalable, space-efficient, and efficiently-updatable graph representation using compressed purely-functional trees

Maximal Independent Set

Parallel Connectivity

And many others

InsertBatch

Update the graph with the changes in the sequence of edge insertions or deletions

/ Interface

Release

DeleteBatch

Purely-Functional Graph Representation

Compressed Purely-Functional Trees

Purely-Functional Trees

Purely-Functional Trees

Red-black, AVL, or weight-balanced trees

Vertex 0's Edge Tree

Vertex 0's Edge Tree

A snapshot is just a tree root

Algorithms generalize to handle batches of updates in low work/depth [BFS'16]

Queries are serialized once they acquire a tree root

Space Inefficiency

Space Inefficiency

- * Significant space overheads for tree nodes
- * Lose ability to compress adjacency lists

Space Inefficiency

- * Significant space overheads for tree nodes
- * Lose ability to compress adjacency lists

Space Inefficiency

- * Significant space overheads for tree nodes
- * Lose ability to compress adjacency lists

Aspen using naive approach requires 7 TB of memory for WDC2012 graph

Edge Tree

To overcome these challenges we designed C-trees: compressed purely-functional trees

Space Inefficiency

- Significant space overheads for tree nod
- * Lose ability to compress adjacency lists

es

Aspen using naive approach requires 7 TB of memory for WDC2012 graph

* Chunking parameter B. Fix a hash function, h * Select elements as heads with probability 1/B using h

* Chunking parameter B. Fix a hash function, h * Select elements as heads with probability 1/B using h

Chunking parameter B. Fix a hash function, h Select elements as heads with probability 1/B using h

* Chunking parameter B. Fix a hash function, h

* Select elements as heads with probability 1/B using h

* Chunking parameter B. Fix a hash function, h

- * Select elements as heads with probability 1/B using h

Further improve space usage for integer C-trees by difference encoding chunks

Space Improvement in Aspen using C-trees

Space Improvement in Aspen using C-trees

Space Improvement in Aspen using C-trees

Operations on C-trees

Map(Ctree C, f)

MultiInsert(Ctree C, Seq S) S C

Map(Ctree C, f)

MultiInsert(Ctree C, Seq S)

Map(Ctree C, f)

$C_S = \text{Build}(\text{Seq } S)$ Output = Union(C, C_S)

union (t_1, t_2)

union (t_1, t_2)

Similar algorithms for difference and intersection

The Join Function

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA'16)

join(L, k, R)

The Join Function

Join enables balance-agnostic expression of all other primitives[1]

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA'16)

join(L, k, R)

union (t_1, t_2) runs in

 $O\left(m \log\left(\frac{n}{m}+1\right)\right)$ work and $O\left(\log n \log m\right)$ depth

union (t_1, t_2) runs in

$$O\left(m \log\left(\frac{n}{m}+1\right)\right)$$
 wo

Proof idea from [1]:

Overall cost = work done over all **splits**

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA'16)

ork and $O(\log n \log m)$ depth

Splitting a tree costs $O(\log |T|)$ work and depth

Batch Updates on Trees union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Batch Updates on Trees union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Expose one of the trees

union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Split the other C-tree with k_2

union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Split the other *C*-tree with k₂ similarly with BP₂

Part of v_2 may belong in BT₂,

Batch Updates on C-trees union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Split v_2 based on BT_2 , BP₂ based on R₂

union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

Recursive union of two C-trees

Join done on the underlying purelyfunctional tree

union($C_1 = (T_1, P_1)$), $C_2 = (T_2, P_2)$)

union(C_1, C_2) runs in

$$O\left(B^2m\,\log\left(\frac{n}{m}+1\right)\right) e^{n}$$

 $O(B \log n \log m)$ depth whp

xpected work

Experiments

Our Machine

Dell PowerEdge R930

72-cores, 2-way hyper-threaded * ITB of main memory * Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Our Machine

Dell PowerEdge R930

72-cores, 2-way hyper-threaded * ITB of main memory * Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Sampled insertions + deletions from G

Stream of Parallel BFS queries from random vertices

Sampled insertions + deletions from G

Stream of Parallel BFS queries from random vertices

Sampled insertions + deletions from G

What's the impact on the concurrent execution on latency?

Edge insertions drawn from RMAT

Edge insertions drawn from RMAT

Represent G using Aspen and STINGER

Edge insertions drawn from RMAT

Represent G using Aspen and STINGER

How does the throughput scale as a function of batch size?

Batch Update Performance

Batch Update Performance

Batch Update Performance

Building on Aspen and C-trees

Batch-Dynamic Graph Processing

Updates

E.g.: Connected components, clustering coefficients, graph clusterings, etc

Dynamic Algorithm

Batch-Dynamic Algorithms

Forest Conn.

[TDB'18]

Interested in practical and memoryefficient dynamic graph algorithms

[AABD'19]

[DLSY'20]

Connectivity

Clique-counting

Thank you!

Aspen

Scalable graph data structures and interfaces for processing streaming graphs

- * has strong theoretical bounds
- * provides memory-efficient graph representations
- enables lightweight snapshots *
- * runs on commodity hardware
- * can process the largest publicly-available graphs

github.com/ldhulipala/aspen