Graph Processing in NVRAM and Streaming Settings

Laxman Dhulipala

MIT (Postdoc)
https://Idhulipala.github.io/

Based on joint work with
Guy Blelloch and Julian Shun (PLDI’|9)

Charles McGuffey, Hong Kang,Yan Gu, Guy Blelloch, Phil Gibbons, and Julian Shun (VLDB’20)

https://ldhulipala.github.io/
https://ldhulipala.github.io/

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

e

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph

oo (o] ©
o°°° oooo o

o

P e o S =
0.}

@ 9o ©
o
o 000 ©

o
(o]
o

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Graph Processing

Algorithms

Graph

Connectivity Clustering

Distance Dense
Computations Subgraphs

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Graph Processing Output

Algorithms + Understanding
+ Visualizations

Connectivity CIGTPh + Graph-based features
HSTENNg + System-optimization
Distance Dense

Computations Subgraphs

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Graph Processing Output

el

° o : ° %";;16 oto‘}”‘{&—:\“o‘;—-o

+ Static Algorithms + Understanding

+ Dynamic Granh + Visualizations
Connectivity Cl "apt + Graph-based features

ustering + System-optimization
Distance Dense

Computations Subgraphs

Large-Scale Graph Processing

1015 human brain graph (expected)
. Graph Type n=10"" m= 10
WebDataCommons hyperlink graph o3 | Web + Biology
% Social ¢ Other
.) . . m Collaboration P ° "
+ 3.5 billion vertices and |28 billion 10 ST T
- X X S
® ® x X . x X
ciges N T I
g ® o3 »
+ ~|TB of memory to store L) I ot X x>
10 34 2
. . (] X > 4 %
+ Largest publicly available graph - X x
® <
>
+
10°

“...[the 2012 graph is the] largest
. 5 . 1
hyperlink graph that is available to the 1905 2000 2005 2010 2015 2020
public outside companies such as Number of Vertices + Edges

Google,Yahoo, and Microsoft.” , ,
Year of sourcing vs total number of vertices and edges

for real-world graphs from the SNAP and LAWYV datasets

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/ 3

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/
https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/

Shared-Memory Parallelism

Shared-Memory Machines

i})
{'
1}
R

. . e

* Cost for a | TB memory machine with 72 -~ FEE

-
.

processors is about $20,000.

» Can rent a similar machine (96 processors and

|.5TB memory) for $| |/hour on Google Cloud 24
= Avai_la':::now&w
WebDataCommons Graph .
- 3.5 billion vertices and |28 billion edges i
% 12

A single shared-memory machine can already -

store the largest publicly available graph o . l
=L L L L

High Memory
Instances

datasets, with plenty of room to spare

What about graphs that are
larger-than-DRAM?

NVRAM Graph Processing

Non-Volatile Memory (NVRAM)

Intel Optane DC Memory
(intel) OPTANE DC O»

PERSISTENT MEMORY

+ Cheaper than DRAM on a per-byte basis

+ Order of magnitude more capacity

S S T —— T

+ Memory is persistent and byte-addressable

Can we design algorithms that effectively use NVRAM as a
higher-capacity memory while achieving DRAM-competitive
berformance?

NVRAM Characteristics

Our Machine

48 cores with 2-way (24 cores) (24 cores)
hyper-threading

375GB DRAM and
3.024TB of NVRAM

Socket | Socket 2

DRAM: 6x32 GB
per socket

NVRAM: 6x256GB
per socket

+ 8x more NVRAM than DRAM
* NVRAM read throughput ~3x lower than DRAM read
+ NVRAM write throughput further 4x lower

Recent work on Asymmetry

Benchmarking

+ Two recent studies by lzraelevitz et al. [0] and van Renen et al.
[I] perform careful benchmarking of Optane memory, and
report similar asymmetries

Algorithms and Systems for Asymmetric Settings

+ Recent work explores how to minimize the number of NVRAM
writes, e.g., [2 — 4], including many other papers

+ Also significant work from systems, architecture, and database
communities, e.g., [5 — 7], amongst many other papers

(intel) OPTANE'DC O»

PERSISTENT MEMORY

https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf
https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf

Semi-Asymmetric Parallel Graph Algorithms for
NVRAMs [DMKGBGS’20]

Can we design practical and theoretically-
sound techniques to overcome read/write
asymmetry for graph problems on NVRAMs!?

Real World Graphs are not Ultra-Sparse

100

0 @
O &0
+ O
(D]
> o
= 0 Graph Type ° ®
2 social
e ® web
(0p]
&0 citation ®
g 40 O
E. @ @
S o O
= @ s ©
20 @
@ @
______ O — — — @ e e e
o
0
10 107 108 10° 1010

Number of vertices (logscale)

Over 90% of graphs with > |M vertices from
SNAP and LAWYV datasets have m/n > 10

We expect that ratio of NVRAM/DRAM in future
systems will be similar (our ratio is 8x)

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

Our Approach

Semi-Asymmetric Approach

+ Graph stored in NVRAM and accessed in a
read-only mode

+ Amount of DRAM is proportional to the
number of vertices

Algorithm

DRAM

read/write

NVRAM

read-only

Our Approach

Semi-Asymmetric Approach

+ Graph stored in NVRAM and accessed in a
read-only mode

+ Amount of DRAM is proportional to the
number of vertices

Benefits

+ Algorithms avoid costly NVRAM writes,
and algorithm design is independent of this

cost

+ Algorithms do not contribute to NVRAM
wear-out

Algorithm

DRAM

read/write

NVRAM

read-only

Our Approach

Semi-Asymmetric Approach

+ Graph stored in NVRAM and accessed in a
read-only mode

+ Amount of DRAM is proportional to the
number of vertices

Benefits

+ Algorithms avoid costly NVRAM writes,
and algorithm design is independent of this

cost

+ Algorithms do not contribute to NVRAM
wear-out

DRAM NVRAM

Algorithm

read/write read-only

Our contribution:
This (restrictive) semi-asymmetric
approach is effective for designing
fast parallel graph algorithms

Parallel Semi-Asymmetric Model (PSAM)

DRAM
NVRAM

12

Parallel Semi-Asymmetric Model (PSAM)

I Read/Write: Unit
Cost
v

DRAM

NVRAM

12

Parallel Semi-Asymmetric Model (PSAM)

I Read/Write: Unit
Cost
v

Read:
Unit Cost
DRAM

12

Parallel Semi-Asymmetric Model (PSAM)

Read/Write: Unit
Cost

\ 4
Read:

Unit Cost

Write:

DRAM

v

NVRAM

Unbounded Size

12

Parallel Semi-Asymmetric Model (PSAM)

Read/Write: Unit
Cost

\ 4
Read:

Unit Cost

Write:

DRAM
Regular model:

On) NVRAM
Relaxed model:

O(n + m/logn) Unbounded Size

v

12

Overview of Semi-Asymmetric Algorithms

+ Start with work-efficient shared-memory
algorithms from the Graph Based
Benchmark Suite (GBBS)

+ Implement interface primitives used by

GBBS algorithms (edgeMap and filtering)
efficiently in the PSAM

GBBS Interface

VertexSubset Bucketing Vertex Graph
represent subsets dynamic mapping primitives on graph parallel
of vertices from IDs to set of incident edges, operators, e.g.,
ordered buckets e.d., map, reduce, edgeMap, graph
filter, intersect, ... contraction, ...

G h F t low-level access to CSR graph formats (uncompressed and
rap ormats compressed graph representations)

Parallel Primitives and Runtime

Overview of Semi-Asymmetric Algorithms

+ Start with work-efficient shared-memory
algorithms from the Graph Based

Benchmark Suite (GBBS)

+ Implement interface primitives used by

edgeMap

GBBS algorithms (edgeMap and filtering)
efficiently in the PSAM

Problem GBBS Work Sage Work |Sage Depth
Breadth-First Search O(wm) O(m) O(d¢ log n)
Weighted BFS O(wm)* O(m)* O(d¢ logn)?
2 |Bellman-Ford O(wdam) O(dgm) |O(dglogn)
2 |Single-Source Widest Path |O(wdgm) O(dgm) |O(d¢ logn)
= Single-Source Betweenness |O(wm) O(m) O(dg logn)
0|0 (k)-Spanner O(wm)* O(m)* O(klogn)?
Z|LDD O(wm)” O(m)”* O(log®n)*
E, Connectivity O(wm)* O(m)* O(log® n)*
Q|Spanning Forest O(wm)* O(m)* |O(log®n)?
@|Graph Coloring O(wm)” O(m)” O(log n+
Llog A)*
Maxmial Independent Set |O(wm)* O(m)* |O(log®n)*

GBBS Interface

VertexSubset

Bucketing

Vertex

represent subsets
of vertices

Graph Formats

dynamic mapping
from IDs to set of
ordered buckets

primitives on

Incident edges,
e.d., map, reduce,
filter, intersect, ...

Graph

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

Filtering (relaxed model)

Problem GBBS Work Sage Work [Sage Depth
~|Biconnectivity" O(wm)” O(m)* O(dg logn
g +log® n)*

Apx. Set Cover' O(wm)* O(m)* |O(log®n)*
| Triangle Counting' O(w(m +n)+ |0O(m?*?) |O(logn)

E m3/2)
"“|Maximal Matching' O(wm)* O(m)* O(log® m)*
Other Techniques

PageRank Iteration O(m + wn) O(m) O(logn)

PageRank O(Ps(m + wn))|O(Pym) |O(P:logn)

k-core O(wm)* O(m)* O(plogn)*

Apx. Densest Subgraph O(wm) O(m) O(log? n)

Semi-Asymmetric Filtering

Maximal Matching Parallel Approximate
Set Cover
- B ﬁ
Motivation ' g’p
E a Bl @
+ Some algorithms remove, or batch-delete L\
edges over the course of their Triangle Counting D_J
operation for work-efficiency r ~N
v O —
+ Modifying the graph directly requires T0Q000n
Wl‘ltlng to NVRAM Orient efiges ba:jsed on a
given order

\. J

Semi-Asymmetric Filtering sl Matching parallel Approximate

Set Cover

° 8 ﬁ
Motivation | g =
E L J o e
+ Some algorithms remove, or batch-delete Lp
edges over the course of their N / Triangle Counting . D_J
operation for work-efficiency s N
O OO DL
+ Modifying the graph directly requires 5‘@\\}‘//} ’
Wl’ltlng to NVRAM Orient edges based on a
- given order y

Semi-Asymmetric Filtering

[
Offsets|0 6 9 13 .. NVRAM\
* Work in the relaxed model [
\Edges V1V2: U3V4:U5V6 | VoU2: V3] ... y
0:0 - ° / \
Use one bit per edge and mirror the CSR o] DRAM

structure (in NVRAM) using a blocked Blocks |

approach in DRAM 11]0]0][0L][1][2][0L1]2]3].
N / _bits_id offset)

Semi-Asymmetric Filtering

------- logically deleted

——— present in graph

15

Semi-Asymmetric Filtering

High-level Approach

(i) Set a filter block size, and logically chunk the CSR
structure into chunks of this size

Offsets|0 6 9 13 ..| NVRAM
{

Edges [viva:i vgiosve|vovatis]...

Graph in CSR format, stored in NVRAM (&5 = 2)

Semi-Asymmetric Filtering

High-level Approach

(i) Create a “mirrored” filter structure in DRAM,
storing | bit per edge in NVRAM

Offsets|0 3 5 7 .. DRAM
Blocks l

g

bits IF o?set

GraphFilter in CSR format, stored in DRAM (F 5 = 2)

Semi-Asymmetric Filtering

Structure Overview

Offsets|0 6 9 13 ...| NVRAM
4
Edges [vi1v2:03v4: 0506 | VoV2: V5] ...

Offsets[0 3 5 7 .. DRAM
Blocks l

bits id offset

Note: Blocks with no “I" bits remaining are deleted

Relationship to Other Models

Semi-External Memory (SE) Model

+ SE model performs block-transfers, with a focus on I/O cost [0, 1]

+ Both PSAM and SE models provide the same amount of DRAM, but
SE does not account for DRAM reads and writes

Sources:

(0] Abello et al. A Functional Approach to External Graph Algorithms (2002)

1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)

3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf

Relationship to Other Models

Semi-External Memory (SE) Model

+ SE model performs block-transfers, with a focus on I/O cost [0, 1]

+ Both PSAM and SE models provide the same amount of DRAM, but
SE does not account for DRAM reads and writes

Asymmetric RAM and Asymmetric Nested Parallel Models

+ Both ARAM [2] and ANP [3] models capture asymmetry of writing to
NVRAM

+ Unlike ARAM/ANP models, the PSAM includes a fast memory, and is
specialized for graph problems

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf

Semi-Asymmetric Graph Engine (Sage) Approach

App Direct Mode

Algorithm

v

NVRAM

Persistent

Algorithm

v
T

Volatile

read/write

NVRAM

read-only

AppDirect Mode enables a direct implementation

of PSAM algorithms

20

NUMA Optimization in Sage

Consider an algorithm that maps over all vertices,
and for each vertex performs a reduction over the
neighbors of the vertex

Socket O

Socket O Socket |

&ﬂhll &ﬂf‘ll

Socket |

';nl“ll

r=

&nﬁuqt’
- " |

ray

- o’ qu - o’ 1"
Core [l Core | Core |l Core [l Core |l Core Core |l Core | Core [l Core [l Core | Core

et T
Core [l Core |l Core |l Core |l Core | Core

Three experiments based on (threads, storage)

NUMA Optimization in Sage

Socket 0

Socket | Socket O Socket |

wa

o d "4 &

&nl"wq
- "

- F t- - F -
Core |l Core @l Core |l Core [l Core | Core Core [l Core | Core |l Core [l Core | Core

AT
Core [l Core | Core |l Core [l Core |l Core

> 4x slower
first run
~/s subsequently

26 s

Cross-socket NVM reads should be avoided

NUMA Optimization in Sage

Socket O Socket |

4.3 s for microbenchmark

Both graphs stored in compressed CSR format

Existing Approaches: DRAM as a Cache

Memory Mode + Applications do not distinguish between
DRAM and NVRAM

Algorithm + Existing shared-memory software does
not require modification

+ Workloads that are larger than DRAM
can involve costly NVRAM writes

DRAM Cache

NVRAM

Volatile

24

Existing Approaches: DRAM as a Cache

Memory Mode

Algorithm

DRAM Cache

NVRAM

Volatile

+ Applications do not distinguish between
DRAM and NVRAM

+ Existing shared-memory software does
not require modification

+ Workloads that are larger than DRAM
can involve costly NVRAM writes

Galois (Gill et al.)

+ Gill et al. study the performance of the
Galois engine using MemMode

+ They show promising results for scaling
to larger than DRAM sizes

24

Existing Approaches: DRAM as a Cache

Memory Mode

Algorithm

DRAM Cache

NVRAM

Volatile

+ Applications do not distinguish between
DRAM and NVRAM

+ Existing shared-memory software does
not require modification

+ Workloads that are larger than DRAM
can involve costly NVRAM writes

Galois (Gill et al.)

+ Gill et al. study the performance of the
Galois engine using MemMode

+ They show promising results for scaling
to larger than DRAM sizes

How does our approach compare?

24

Results for Larger-than-DRAM Graphs

Tendrils

/ 164m — e
4.61% ."

WebDataCommons Graph

Largest publicly available graph today

LSCC
1,828 million
51.28%

3.5B vertices connected by |28B 11|T|139m
edges (225B symmetrized) 31.96%

= -~
-
—— -

O Disconnected

O 208m
O 5.84%

Results for Larger-than-DRAM Graphs

Tendrils

/ 164m — e
4.61% .’,

WebDataCommons Graph

* Largest publicly available graph today

LSCC
1,828 million
51.28%

* 3.5B vertices connected by 128B 11|T|139m
edges (225B symmetrized) 31.96%

= -~
-
—— -

Q Disconnected

O 208m
O 5.84%

Experiment
* Compare Sage results with
* GBBS using MemMode (existing shared-memory codes)

* Galois using MemMode (using numbers reported by
authors on the same machine)

90.1 \\\\\\\\\\\\\

S 3 TAANNS
Wn W 128
= =
S %o 8¢ NN\ N\
> @ o re
w O O
- U “ 625E E
901 ////////V N
SvZ AOWPJWWWWWW
(V) @ww FE
hp SSh /////////WF
S EANNNNN
.
G 287 NN\ \
1404
M 9Ll ////// \
< : %&mﬁm
R 9 NN\
D o) //////// N
- 4
c - ,/////////@ﬂ KKK
S
R “
yA
N o KL
.
(), o5 NN\
oT0,
r 9¢ /AAAAAAAAAAAAE
a L o
N N EQM& 0} M_>;m_9 C>>OU>>o_w
-
S
S
7y
<ud
[|
-
7y
o

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

Results for Larger-than-DRAM Graphs

* B 13 B Sage (NVRAM)
30 I @ 0 /7 GBBS-MemMode
I /N . o ~ o NN\ Galois
o AN g . © / S
325 O\ 2 8 2 . o / 7 2 S
20 N B E B =: 3 : B 7 0 :
= AN "/ ~ ; ; /, N\ 4 /, 4 /, / @ g\
ks W 7 Y 7 7 ; AN 7 7 " 3 °N
RN N L NG L . 5 s 7 AN
S ., =N 27 %/§ ©, 55/3 Y ERY, SN s0 80 w4 874 58 8z £, o 27 %/S
S N N N
0.5 N\ N N
\ \ \
0.0 / /\ /\\ 7/ / A\ / / y) J / / /\
f<o© \95@ (9666 (b(\(@} \90 & S Qo@o} c}\\\&\ W O «,;\d‘ Q:"’(§l~
@\66% \&0 \{X%Q o°°® {é\g ‘ O(\(@ Q},@(b N Q@Q@
F o ° 6&0 < & o €
\ i
?Q"\-

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

| .94x speedup on average over Galois (state-of-the-art existing
approach to NVRAM graph processing), and |.87x speedup over

simply running GBBS codes using MemMode

Results for Graphs Stored in Main Memory

ClueWeb Graph

* Large web crawl with ~IB vertices connected
by 42B edges (/4B symmetrized)

* Graph fits entirely in the main memory of our
machine

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/

Results for Graphs Stored in Main Memory

ClueWeb Graph

* Large web crawl with ~IB vertices connected
by 42B edges (/4B symmetrized)

* Graph fits entirely in the main memory of our
machine

Experiment
* Compare Sage (graph stored on NVRAM) with
* Sage (graph stored in DRAM)
* GBBS (graph stored in DRAM)
» GBBS with libvmmalloc (graph stored on NVRAM)

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/

Results for Graphs Stored in Main Memory

Slowdown relative to fastest

3.5

3.0

2.5

2.0

1.5

o N
(@) o

o
o
&
S IDIDIDIDIDIDZS s s s s

2.0

\
\

\ \ \ \ \ \ \ \
R % § 8 R R R R R R R R R R 2 -
\ N \ \ N N Y O N. AN 8o
N ¥ N N N ¥ N 8 N Y N ¥ Ng2Q3 AN i
N 2 N AN N ¥ ON ¥ ON Y N = B N OV
+ O\ _o oo\ o\ _© /\ - S — ‘—\ N\ r\\ N\ N o N '?7\ g N\ D ™ /\ 0 9
NSNS NS SN N N NS, P
MM A A A A AN A A -
NN N XA A A A A A A
NG B0 N7 B0 NN Y NS I NG Y N b N PN N
I S e N I Y T
$<g< (\gé \Qé\ (\(\Q"o q>°°® RS é@\) & e;\\\‘\ O < N O\o&\ OO\@ \eoé Q@Q 0(,\\\0
L b?»% $efz’ 2N QQQ’ & Q(\Q’ QQ’ O %é\' 6‘30 P \l}@
& N S S & & & S X L
2 R & & ¢
@ +Q® A Q(b
Q
?\

GBBS-DRAM N\ GBBS-NVRAM (libvmmalloc) '/ / Sage-DRAM B Sage-NVRAM

.6

S S S S S S S S w21

/\\\\\(5.7

9.9
5.9

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

Results for Graphs Stored in Main Memory

"/ 7/ GBBS-DRAM N\ GBBS-NVRAM (libvmmalloc) '/ / Sage-DRAM B Sage-NVRAM
3.5 S 5 = ® w - ® 0 e ~ = e o ~ - ©
a0 : ¢ §¥ % % §¥ %2 % % ¢ 2 ¥ @ ¥ 5
B \ \ \ \ \ \ \ \ \
S : § 8 R R R R R R R R R R R OR &2 - 8
225 J N\ N Q9 N ¥ N ¥ N ¥ N ¥ N YN XN = N
0 R & % R & R R R R B R R R -k BB 3:-0
Z 20 \ N RN YN YN Y N Y NBEYIAN XN
o 1N Y YN RN N Y N N XN N XN NEEYAN VN
c 1.5 9 | o\ _ o oo\ o\ © Y - OoN_ T ‘—\ r\\ ™ N o X qu;\ g ' N\ / o
O No® & >/ ©ON s N\ N o \ o © SN o N\ « N\ 0 S N\
8 A A8 Wee AR NGNGB NN N NSNS, NN RN
/ / ~ ~ ™ e N~ Sl (@) ~ < < ™ © \© ~ 9\ O
=AM A AN DA A A AN AN
D o5 AN 2N BAS BB BANS 2N NS BN NG BN NS IR NS K /
0.5 A A A /N 2 A A / /
A N A7 BN, A7 Y NS B0 NS Y NS B NS IR NS P Y W
0o O WA SN SA A SARA A RA AR AR AR AN
S5 O d s ® R~ S S S I N T T T S
¢ & & 2 & &Y S SN & F S
& & & 8 & & & RGN S R e
NS X & & N, N o S ©
Q)Q @ Q)® OQ“ @) ,b&\ Q>\0 \6\(0 \(OQ Q‘\' Qé\' (\(5 (b(\
X &;\' © ¥ & AR
& ¢
?\

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

Sage provides DRAM-competitive performance even when reading

graph from NVRAM (only 5% slower on average)

Lessons and Directions for Future Work

Lessons and Directions for Future Work

Avoid Cross-Socket NVRAM Traffic

* NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Lessons and Directions for Future Work

Avoid Cross-Socket NVRAM Traffic

* NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

* Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode
approaches

Lessons and Directions for Future Work

Avoid Cross-Socket NVRAM Traffic

* NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

* Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode
approaches

Avoid NVRAM Writes

* PSAM implementations which only read from
NVRAM are over 6x faster than our algorithms
which write to NVRAM (using libvmmalloc)

Streaming Graph Processing

Dynamic Graph Processing

Measuring the spread of infections

slice:107 time 3 267 .00t 000 o b o
.| X o °DO
) D 0o a
R
P
I o
o
=)
OD
Q
Ya
'

Source: Infection transmission in a dynamic network

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

Dynamic Graph Processing

Measuring the spread of infections

slice:107 time 3 267 .00t 000 o b o
.| X o °DO
) D 0o a
R
P
I o
o
=)
OD
Q
Ya
'

Source: Infection transmission in a dynamic network

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

Dynamic Graph Processing

Measuri

1,267.0

ng the spread of infections Preventing money laundering and fraud

s .

=
{ U/ iime

Abe - Osinski

Other Applications

“Yeads o + Recommendation Systems
o + (Geospatial Systems

Source: Infection transmission in a dynamic network

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

Dynamic Graph Processing

Measuring the spread of infections Preventing money laundering and fraud
slice:107 time:3,267.000-3,268.000 o i Ty
abe.osinski@gmail.com 8171 Volkman Drives Erdmanmouth, AR
O
Other Applications

* Recommendation Systems
Geospatial Systems

Many important applications must maintain
information about evolving graphs!

Source: Infection transmission in a dynamic network

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

Dynamic Graph Processing: Example

Dynamic Graph Processing: Example

32

Dynamic Graph Processing: Example

<o Ehe New Pork Times ===

[EN WALK ON MOON

ASTRONAUTS LAND ON PLAIN;
COLLECT ROCKS, PLANT FLAG

Voice From Moon:
“Eagle Has Landed'

A Powdery Surface
Is Closely Explored

[PEY[JVA) The time: 9.18 pm,
(Y H3ge1d July 20, AD 1969

AND THE MESSAGE

N

=

The last practi

FROM EARTH: WE'RE
BREATHING AGAIN!

2 Man has lasded o the Mosn. A new ors in

his history began a1 9.18 last sight whert
the lesar module Eagle settled gently oa the
dusty surface of the Sea of Tranquillity.
laside it—Astronauts Armstroag asd Aldrin,
destined wyw for 3 permament place n
history. They immedistely began lo prepare
for their Mosa walk, There are stll greal

s ahesd. Sut these are truly great

s port
§Ce FUN schievements. America, e faad of
e fr

ontietsmes, has opened up 2 new froatier.
L e o mer s 2N LONMS LN WD

Dynamic Graph Processing: Example

Update Stream o WAL ON MOON

ASTRONAUTS LAND ON PLAIN;
COLLECT ROCKS, PLANT FLAG

Voice From Moon: <\ . A l‘owd&y Surface

Y) The Washington Post .

NBC NEWS REUTERS

-.\
45 g %
& {
- :/ o
4 e
’ o

(=11 \VA The time: 9.18 pm,
(Y [{ggeld July 20, AD 1969

W AND THE MESSAGE
« . FROM EARTH: WE'RE
= BREATHING AGAIN!

e Foi =
Thé last practice run ltlll't.l‘l.l;. America, th

Dynamic Graph Processing: Example

v Eommen

<o | The New Pork Times 555

Update Stream MEN WALK ON MOON

ASTRONAUTS LAND ON PLAIN;
COLLECT ROCKS, PLANT FLAG
> \\ .

A Powdery Surface

\\\\\ From Moon:

“Eagle Has Land \(\;
yoaas | WE e

' The Washington Post

NBC NEWS REUTERS

Query Stream

" Fetch similar Clustering
% vertices p Coefficients

"Fetch vertex u’s Centrality
_ neighbors Ranking

(=11 \VA The time: 9.18 pm,
(Y [{ggeld July 20, AD 1969

’ “”'v %%%%

Dynamic Graph Processing: Example

<o Ehe New Pork Times =55

U Pdate Stream MEN WALK ON MOON

e The Washington Post

COLLECT ROCKS, PLANT FLAG

Voice From M

NBC NEWS REUTERS =

Query Stream

Fetch similar Clustering
vertices Coefficients

[PEY[I"2l The time: 9.18 pm,
(Y Sg=1d July 20, AD 1969

Lyl g Y AND THE MESSAGE
P70 S " FROM EARTH: WE'RE
* 5-. BREATHING AGAIN!

- 3 Man has lasded

Fetch vertex u’s Centrality
neighbors Ranking

Streaming Graph Processing

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Dynamic Graph Processing: Example

| TheNow York Times T

U Pdate St ream MEN WALK ON MOON

‘ Aggff%féf’”p?ﬁﬂ’}%% ' Clusterin g
"GIIJc Washington Post 5.

Voice From Moo
“Eagle Has La

NBC NEWS REUTERS 1=

Query Stream

Fetch similar Clustering
vertices Coefficients

[PEY[I"2l The time: 9.18 pm,
[V I{{C1d July 20, AD 1969

g MOON Triangle Counting

" 3™ Q" FROM EARTH: WE'RE
, S MR - BREATHING AGAIN!

Fetch vertex u’s Centrality
neighbors ~ Ranking

ol
S et 2 Man has lasded oa the Moen.
an

\ o Jrea Connected Components

Streaming Graph Processing

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Dynamic Graph Processing: Example

<o Ehe New Pork Times =55

Update Stream VIEN WATK ON MOON

ASTRONAUTS LAND ON PLAIN:
PLANT FLAG
. A Pow: y S

dery Surface

Voice

Clustering

The Washington Post
' lp gton)

NBC NEWS REUTERS e

Query Stream

Fetch similar Clustering
vertices Coefficients

[PEY[I"2l The time: 9.18 pm,
(Y Sg=1d July 20, AD 1969

I MO0 Triangle Counting

/3P R FROM EARTH: WE'RE
, RSP . BREATHING AGAIN!
! Anew ors in

Fetch vertex u’s Centrality
neighbors Ranking

MRRETIF~ 5 Man han lasded oa the Mosn
his history began at 8.18

=< S Connected Components

Streaming Graph Processing Batch-Dynamic Graph Processing

Update the graph (in parallel); Pre-determined queries;
Execute arbitrary queries on snapshots. Process updates faster than recomputation.

Streaming Graph Processing

Local Global

Edge queries algorithms | | algorithms

Graph Queries Responses

Graph Updates| Graph-Streaming

_} System
O

Streaming Graph Processing

Local Global

Edge queries ~algorithms | | algorithms

Graph Queries Responses

Graph Updates| Graph-Streaming

_} System
O

Goal: low-latency for both updates and queries arriving

concurrently to the system

Streaming Graph Processing

Single-version
Ed . Local Global ’
&& qHENES ~algorithms | | algorithms STINGER [EMRB’I2]

cuSTINGER [GB’ | 6]
Kickstarter [VGX'| 7]

Graph Queries Responses

Graph Updates| Graph-Streaming

_} System
O

Goal: low-latency for both updates and queries arriving

concurrently to the system

Streaming Graph Processing

Single-version

Ed . Local Global |
& qUENES ~algorithms | | algorithms STINGER [EMRB’I 2]
Graph Queries Responses cuSTINGER [GB'16]

Kickstarter [VGX'| 7]

Graph Updates Graph-Streaming Multi-version (snapshot-based)

' System Kineograph [CHKMW+’|2]

G LLAMA [MMMS’| 5]

Goal: low-latency for both updates and queries arriving

concurrently to the system

Low-Latency Graph Streaming using Compressed
Purely-Functional Trees [DBS’| 9]

Can we design a system that can
compactly represent and
concurrently update and query
the largest real-world graphs?

Aspen: A Low-Latency Graph Streaming System

Purely-Functional
Graph Representation

¢

Compressed Purely-
Functional Trees

AN SN SN SN EE -EE S - -EE - -am

Aspen: A Low-Latency Graph Streaming System

K Query Interface \

Acquires or releases a snapshot
of the graph.

K Update Interface x

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

Update the graph with the
changes in the sequence of
edge insertions or deletions

-

- - - - - - S - - - -am

Aspen: A Low-Latency Graph Streaming System

Graph Algorithm
Interface

Snapshots implement the GBBS
interface, making it possible to
run parallel graph algorithms
from GBBS on snapshots in
Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Query Interface

Acquire Release

Acquires or releases a snapshot
of the graph.

Update Interface

InsertBatch DeleteBatch

Update the graph with the
changes in the sequence of
edge insertions or deletions

71\
\L/
N
/

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

— — — — — — — - = — — — — — — — — —_—

Main contribution: designing a scalable, space-efficient,
and efficiently-updatable graph representation using
compressed purely-functional trees

Purely-Functional Trees

Purely-Functional Trees

Red-black, AVL, or weight-balanced trees

Representing Graphs using Trees

Representing Graphs using Trees

Representing Graphs using Trees

7/ \

7N
N/

Vertex O’s
Edge Tree

Representing Graphs using Trees

7/ \

7N
N/

2

Vertex 3’s
Edge Tree

Vertex O’s
Edge Tree

Trees enable Simple Snapshots

Trees enable Simple Snapshots

A snapshot is just a tree root

Trees enable Simple Snapshots

A snapshot is just a tree root

Trees enable Simple Snapshots

A snapshot is just a tree root

Insert(12)

Trees enable Simple Snapshots

A snapshot is just a tree root

Insert(12)

8

S

Trees enable Simple Snapshots

A snapshot is just a tree root

Insert(12)

8

S

Wi

Algorithms generalize to handle batches of
updates in low work/depth [BFS’ | 6]

Purely-Functional Trees are Safe for Concurrency

Purely-Functional Trees are Safe for Concurrency

Yo

Purely-Functional Trees are Safe for Concurrency

Query

Qe

Purely-Functional Trees are Safe for Concurrency

VO Vi
N\ '

®
A

Purely-Functional Trees are Safe for Concurrency

Query

Q

VO Vi
N\ ’

®
A

Queries are serialized once they
acquire a tree root

Challenges

Challenges

Poor Cache Usage

Challenges

Poor Cache Usage

Edge Tree

Challenges

Poor Cache Usage

Edge Tree

Space Inefficiency

Challenges

Poor Cache Usage

Edge Tree

Space Inefficiency

+ Significant space overheads for tree nodes

+ Lose ability to compress adjacency lists

Challenges

Poor Cache Usage
Edge Tree S

Space Inefficiency

+ Significant space overheads for tree nodes

+ Lose ability to compress adjacency lists

104

102

102

101

10Y

101

1072

Number of edges

E -
. W 2

. >

— /”

. ’,”

: o

E ””’

1 e

- --®- Purely-functional tree parallel-byte
IIIII | | IIIIIII | | IIIIIII | | IIIIIII | |

10° 107 101 101!

Challenges

E r"’
Poor Cache Usage 10° I9.6XI

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/’
-

Edge Tree

> 4
-
-
-
> 4
-
-
-
-
/’
-

Space used (Gb)

--@- Purely-functional tree parallel-byte

B O
Space Inefficiency Number of edges

+ Significant space overheads for tree nodes

Aspen using naive approach requires

+ Lose ability to compress adjacency lists 7/ TB of memory for WDC2012 graph

To overcome these challenges we designed
C-trees: compressed purely-functional trees

C-trees

+ Chunking parameter B. Fix a hash function, h

+ Select elements as heads with probability /B using h

‘ = heads 25

|5

C-trees

+ Chunking parameter B. Fix a hash function, h

+ Select elements as heads with probability /B using h

‘ = heads 25

|5

C-trees

+ Chunking parameter B. Fix a hash function, h

+ Select elements as heads with probability /B using h

‘ = heads 25

|5

tree

28 29 32 40

C-tree

C-trees

+ Chunking parameter B. Fix a hash function, h

+ Select elements as heads with probability /B using h

‘ = heads 25

|5

28 29 32 40

C-tree

C-trees

+ Chunking parameter B. Fix a hash function, h

+ Select elements as heads with probability /B using h

‘ = heads 25 Further improve space usage for integer

C-trees by difference encoding chunks
|5
prefix tree

28 29 32 40

C-tree

Space Improvement in Aspen using C-trees

Space used (Gb)

104

Number of edges

E -
. ',r’
- ”’,
- -
E - ,‘
E ”/ ’.‘/
- ”,z’ ”",’ WDC(
— .,z’ -~ WDC2014
- ’/” - - ClueWeb
i z” /”’
”’/ "”/
= -
= ’,‘ ’,z’
- ."’ ,/” Twitter
- ’,/
-
= _ -9
1 &~
i Orkut
LiveJournal -
E Jourizle- - Purely-functional tree parallel-byte
- -®- (-tree
I | | | rFrrrrij | | Frrrrij | | rFrrrrij | |
10° 10? 101 101

2012

Space Improvement in Aspen using C-trees

4 ——
10 § .
- W 2
)] e 1 9% smaller
10° = _-
= _-” _-.
a -~ y 4 .
—) - . WDQ2012
< 102 E ",/ T WDC2014
O E ,/” ’z” ClueWeb
Q | - ’,/
g 1 z” ~-
Q 10 —E ,/" ,/’,.
% 1 o~ ,/” Twitter
o 7 ’,’
1 &~
i Orkut
- Li | .
10714 HveoU™le - Pyrely-functional tree parallel-byte
- -@- (-tree
10_2 I | 1 1 rFrrrrij 1 1 Frrrrij 1 1 rFrrrrij 1 1
10° 10° 101 10t
Number of edges

Space Improvement in Aspen using C-trees

].04_5 9
5 -
i - 9% smaller
103 = -
— - ‘
- -~ _-
- -
. . - Reod WDA2012
O 7 ,z’ ,"
2_ -~ ’/’
O 10 g /‘/ - g WV:DCZOM
(V)] B ’/’ ’/”
o 10" < e e
- -~ -
% 1 o~ ,/” Twitter
o - ,z’
1 &~
_ Orkut
—1 LiveJournal .
107" < Journe. - Purely-functional tree parallel-byte
- -®- (-tree

Fully-dynamic representation of the WebDataCommons hyperlink

graph using 700GB of memory

Operations on C-trees

Build(Seq $)

oo

Build(Seq
) Map(Ctree C,f)

P

Build(Seq 5) Map(Ctree C, f)
I I

MultiInsert(Ctree C, Seq)

C S
I I A &

Build(Seq) Map(Ctree C,f)
[[T IT 1

MultiInsert(Ctree C, Seq)

C S
1 L]

C, = Build(Seq $)
] a Output = Union(C, Cy)

Batch Updates on Trees

union(ty, t2)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’| 6)

Batch Updates on Trees

union(ty, t2)

expose(t))

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’ 6)

Batch Updates on Trees

union(ty, t2)

expose(t)) split(tz,ki)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’ 6)

Batch Updates on Trees

union(ty, t2)

expose(ti) split(tz, ki) join(L,k,R)

union(li, I2) union(r,, r2)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’ 6)

Batch Updates on Trees

union(ty, t2)

expose(ti) split(tz, ki) join(L,k,R)

union(li, I2) union(r,, r2)

Similar algorithms for difference and
Intersection

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’ 6)

The Join Function

join(L, k, R)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’1 6)

The Join Function

join(L, k, R)

Join enables balance-agnostic expression of
all other primitives||]

[I] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

expose split join

union(ti, t2) runs in . . .

n
0, (m log (— + 1)) work and 0 lognlogm depth
m

Batch Updates on Trees

expose split join

()l (A £

union(ty, t2) runs in

m

n
0, (m log (— + 1)) work and O (lognlog m) depth

Proof idea from [1]:

Splitting a tree costs O (log | T) work and depth

Overall cost = work done over all splits

Batch Updates on Trees
union(C,=(Ty, P1)), C2=(T2, P2)))

Batch Updates on Trees
union(C,=(Ty, P1)), C2=(T2, P2)))

Expose one of the trees

Batch Updates on Trees
union(C,=(Ty, P1)), C2=(T2, P2)))

-

Expose(T))

~

v2:ta|I

(B1, (BT2, BP2))
= Split(C,, k)

Split the other C-tree with k»

Batch Updates on Trees
union(C,=(Ty, P1)), C2=(T2, P2)))

-

Expose(T))

~

v2:ta|I

(B1, (BT2, BP2))
= Split(C,, k)

Split the other C-tree with k;

Part of v2 may belong in BT»,
similarly with BP;

Batch Updates on C-trees
union(C=(T, P1)), C2=(T2, P2)))

4 Expose(T)) [(B1,(BT2, BP?)H(C k)\ /SplitChunk(vz, Smallest(BTﬁ
= SPHtL,, K,

SplitChunk(BP_, Smallest(R.))

i
VL \ VR
BP,
Pl Py
_ /

Split v2 based on BT»,
BP, based on R;

Batch Updates on Trees

union(C=(T1, P1)), C2=(T2, P2)))

" Expose(T)) ((B1.(BT2,BP2)

\

= Split(C, k)

Recursive union of two

C-trees

Join done on the
underlying purely-
functional tree

/SplitChunk(vz, Smallest(BTﬁ
SplitChunk(BP,, Smallest(R.))
\V2
VL \ VR
\
\ BP,
P\ P,
. \)
C, = Union((L,, Cz.Prefix), B1) A

| C .Prefix |

LCL.Treel

C.=Union((R, v,), (B, Tree, P))

| UnionChunk(vL, PL)

LCR.Treei
_/

Batch Updates on Trees

union(C=(T1, P1)), C2=(T2, P2)))

" Expose(T)) ((B1,(BT2,BP2)
= Split(C,, k)

/SplitChunk(vz, Smallest(BTﬁ
SplitChunk(BP,, Smallest(R.))

\\V,
VL\ Ve

\
\ BP,

union(Cj, C3) runs in

m

P \\ P

n
O| B*m log (— + 1) expected work

0, (B lognlog m) depth whp

/

C, = Union((L,, Ca.Prefix), B1)
C,. = Union((R,, v.), (B, Tree, P.))

~

-

CL.PreWo\nChunk(vu P)

CL.Tree CR.Tree
/ \ / \

/

Experiments

Our Machine

Dell PowerEdge R930

* 72-cores, 2-way hyper-threaded*
+ | TB of main memory
+ Cost: about 20k USD

l :

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Our Machine

Dell PowerEdge R930

* 72-cores, 2-way hyper-threaded*
+ | TB of main memory
+ Cost: about 20k USD

-—--_-----

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Streaming Experiment

Streaming Experiment

Sampled insertions
+ deletions from G

—

Streaming Experiment

Stream of Parallel
BFS queries from

random vertices)

BFS trees

Sampled insertions
+ deletions from G

—

Streaming Experiment

Stream of Parallel
BFS queries from

random vertices .

BFS trees

Sampled insertions
+ deletions from G

—

What’s the impact on the
concurrent execution on latency!?

Streaming Experiment

——— Latency (Concurrent) Latency (Isolated)

N
/ WDC2012

e

WDC2014
ClueWeb

S
)
w
>
O
-
)
-
©
>
—
)
-
O

Twitter

LiveJournal ~ Orkut

a L
10° 10"
Number of edges

Streaming Experiment

——— Latency (Concurrent) Latency (Isolated)

Less than 3% impact /A WDC2012

4 /

on queries in the woc2014
. ClueWeb
concurrent setting /

Twitter

S
)
w
>
O
-
)
-
©
>
—
)
-
O

LiveJournal ~ Orkut

b ' ' P ' L
10° 10° 10"
Number of edges

Batch Update Experiment

Batch Update Experiment

Edge insertions
drawn from RMAT

—

Batch Update Experiment

Edge insertions
drawn from RMAT

—

Represent G using
Aspen and STINGER

Batch Update Experiment

Edge insertions
drawn from RMAT

—

Represent G using
Aspen and STINGER

How does the throughput scale
as a function of batch size?

Batch Update Performance

108

107

Throughput on 72 cores

104

103

-@— Aspen Batch Updates =~ —@— STINGER Batch Updates

| | | |
10% 104 10° 10°
Batch Size

[
-
o

Batch Update Performance

108

107

Throughput on 72 cores

104

103

-@— Aspen Batch Updates =~ —@— STINGER Batch Updates

| | | |
10% 104 10° 10°
Batch Size

[
-
o

Batch Update Performance

108'§
107'§

106'§

Throughput on 72 cores

104'§

-@— Aspen Batch Updates =~ —@— STINGER Batch Updates

| | | |
10Y 10% 104 10° 10°
Batch Size

Building on Aspen and C-trees

Batch-Dynamic Graph Processing
Dynamic Algorithm

GPrev GN ext

Updates
q

E.g.: Connected components, clustering
coefficients, graph clusterings, etc

Batch-Dynamic Algorithms

Forest Conn. Connectivity Clique-counting

Batch-Parallel Euler Tour Trees*

Thomas Tseng' Laxman Dhulipala’ Guy Blelloch’

Abstract

bl

The dynamic trees | is to maintain a forest undergoing edge insertions and deletions
while supporting queries for information such as connectivity. There are many existing data
structures for this problem, but few of them are capable of exploiting parallelism in the batch
setting, in which large batches of edges are inserted or deleted from the forest at once. In
this paper, we demonstrate that the Euler tour tree, an existing sequential dynamic trees data
structure, can be parallelized in the batch setting. For a batch of k updates over a forest of
n vertices, our parallel Euler tour trees achieve O(klog(1 + n/k)) expected work and O(logn)
depth with high probability. Our work bound is asymptotically optimal, and we improve on the
depth bound achieved by Acar et al. for the batch-parallel dynamic trees problem [1].

Our main building block for | g Buler tour trees is a batch-parallel skip list data
structure, which we believe may be of independent interest. Euler tour trees require a sequence
data structure capable of joins and splits. Traditionally, balanced binary trees are used, but
they are difficult to join or split in parallel when processing batches of updates. We show that
skip lists, on the other hand, support batches of joins or splits of size k over n elements with
O(klog(1 +n/k)) work in expectation and O(log n) depth with high probability. We also achieve
the same efficiency bounds for augmented skip lists, which allows us to augment our Euler tour
trees to support subtree queries.

Our data structures achieve be 67-96x self-relative speedup on 72 cores with hyper-

wy 2020

C

08794v2 [cs.DS] 17 M

Parallel Batch-Dynamic Graph Connectivity®

Umut A. Acar Daniel Anderson Guy E. Blelloch
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

umutfics.cmu.edu dlandersfics.cmu.edu guybfics.cmuedu

Laxman Dhulipala
Carnegic Mellon University
ldhulipa@es.cmu.edu

Abstract

In this paper, we study batch parallel algorithms for the dynamic connectivity problem,
a fundamental problem that has received considerable attention in the sequential setting. The
most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm
of Holm, de Lichtenberg and Thorup (HDT), which achieves 0(1!,7 n) amortized time per edge
insertion or deletion, and O(lgn/lglgn) time per query.

We design a parallel batch-dynamic connectivity algorithm that is work-eflicient with respect
to the HDT algorithn for small batch sizes, and is asymptotically faster when the average batch
size is sufficiently large. Given a sequence of batched updates, where A is the average batch
size of all deletions, our algorithm achieves O(lgnlg(l + n/4)) expected amortized work per
edge insertion and deletion and O(lg* n) depth w.h.p. Our algorithm answers a batch of k
connectivity queries in O(klg(1 + n/k)) expected work and O(lgn) depth w.h.p. To the best of
our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.

Parallel Batch-Dynamic k-Clique Counting

Laxman Dhulipala Quanquan C. Liu
Carnegie Mellon University Massachusetts Institute of Technology
ldhulipa@cs.cmu.edu quangquan@mit.edu

Julian Shun
Massachusetts Institute of Technology
jshun@mit.edu

March 31, 2020

Abstract

In this paper, we study new batch-dy for k-clique ing, which are dy
algorithms where the updates are batches of edge insertions and deletions. We study this problem in the
parallel setting, where the goal is to obtain algorithms with low (poly-logarithmic) depth. Our first result
is a new parallel batch-dynamic triangle counting algorithm with O(Av/A + m) amortized work and
O(log" (A + m)) depth with high probability (w.h.p.), and O(A + m) space for a batch of A edge inser-
tions or deletions. Our second result is a simple parallel batch-dy ic k-clique g al that
uses a newly developed parallel k-clique i to b ap itself, by ing smaller
cliques, and intersecting them with the batch. Instantiating this idea gives a simple batch-dynamic algo-
rithm running in O(A(m + A)a**) expected work and ()(log" #1n) depth wh.p., all in O(m + A)
space. Our third result is an algebraic algorithm based on parallel fast matrix multiplication. Assuming

threading on large batch sizes. Our data structures also significantly outperform the fastest
existing sequential dynamic trees data structures empirically.

that a parallel fast matrix multiplication algorithm exists with parallel matrix multiplication constant wy,

the same algorithm solves dynamic k-clique ing with O (min (Am TS0 (A +m) T))

~
3

2k

amortized work, O(log(A + m)) depth, and O ((A +m)

rXiv:190:

<

arXiv:2003.13585v1 [cs.DS] 30 Mar 2020

o0
(=
o
O
)
A
o0
(@
—
72]
a
v
o
D
(]
>
o0
on
~
o
—_—
(e
—
o0
—
2
»<
—
«<

“This is the full version of the paper appearing in ALENEX 2019.
'Computer Science Department, Carnegie Mellon University. thomasts Galums e *This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Archi-
*Computer Science Department, Carnegie Mellon University. Idhulips A tectures (SPAA), 2019

fComputer Science Department, Carnegie Mellon University. guybiics

[TDB’18] [AABD’ 9] [DLSY’20]

Interested in practical and memory-
efficient dynamic graph algorithms

N/ N/ N/
L) 0‘0 0‘0

N/
0‘0

‘0

Thank you!

Aspen

Scalable graph data structures and
interfaces for processing streaming
graphs

github.com/Idhulipala/aspen

has strong theoretical bounds

provides memory-efficient graph representations
enables lightweight snapshots

runs on commodity hardware

can process the largest publicly-available graphs

https://github.com/ldhulipala/aspen
https://github.com/ldhulipala/aspen

