
Graph Processing in NVRAM and Streaming Settings

1

Laxman Dhulipala
MIT (Postdoc)
https://ldhulipala.github.io/

Based on joint work with

Guy Blelloch and Julian Shun (PLDI’19)

Charles McGuffey, Hong Kang, Yan Gu, Guy Blelloch, Phil Gibbons, and Julian Shun (VLDB’20)

https://ldhulipala.github.io/
https://ldhulipala.github.io/

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms✤ Static
✤ Dynamic

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/

1995 2000 2005 2010 2015 2020
Number of Vertices + Edges

101

103

105

107

109

1011

1013

1015

Y
ea

r

Graph Type
Web

Social

Collaboration

Biology

Other

human brain graph (expected)
n = 1011 m = 1014

Year of sourcing vs total number of vertices and edges
for real-world graphs from the SNAP and LAW datasets

3

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/
https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/

4

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

A single shared-memory machine can already
store the largest publicly available graph
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

4

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

A single shared-memory machine can already
store the largest publicly available graph
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

What about graphs that are
larger-than-DRAM?

5

NVRAM Graph Processing

❖ Cheaper than DRAM on a per-byte basis

❖ Order of magnitude more capacity

❖ Memory is persistent and byte-addressable

Intel Optane DC Memory

Can we design algorithms that effectively use NVRAM as a
higher-capacity memory while achieving DRAM-competitive

performance?

6

Non-Volatile Memory (NVRAM)

Socket 1
(24 cores)

Socket 2
(24 cores)

12 DIMM slots 12 DIMM slots

DRAM: 6x32 GB
per socket

NVRAM: 6x256GB
per socket

48 cores with 2-way
hyper-threading

375GB DRAM and
3.024TB of NVRAM

❖ 8x more NVRAM than DRAM

❖ NVRAM read throughput ~3x lower than DRAM read

❖ NVRAM write throughput further 4x lower

Our Machine

7

NVRAM Characteristics

Benchmarking

❖ Two recent studies by Izraelevitz et al. [0] and van Renen et al.
[1] perform careful benchmarking of Optane memory, and
report similar asymmetries

Sources:
[0] Izraelevitz et al. Basic performance measurements of the Intel Optane DC persistent memory module. (2019)
[1] van Renen et al. Persistent Memory I/O Primitives (2019)
[2] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)
[3] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[4] Carson et al. Write-avoiding algorithms (2016)
[5] Peng et al. System Evaluation of the Intel Optane byte-addressable NVM (2019)
[6] Ni et al. SSP: Eliminating Redundant Writes in Failure-Atomic NVRAMs via Shadow Sub-Paging (2019)
[7] Yang et al. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory (2020)

Algorithms and Systems for Asymmetric Settings
❖ Recent work explores how to minimize the number of NVRAM

writes, e.g., [2 – 4], including many other papers

❖ Also significant work from systems, architecture, and database
communities, e.g., [5 – 7], amongst many other papers

8

Recent work on Asymmetry

https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf
https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf

Can we design practical and theoretically-
sound techniques to overcome read/write

asymmetry for graph problems on NVRAMs?

9

Semi-Asymmetric Parallel Graph Algorithms for
NVRAMs [DMKGBGS’20]

106 107 108 109 1010

Number of vertices (logscale)

0

20

40

60

80

100

N
um

.
E
dg

es
/

N
um

.
V
er

ti
ce

s

Graph Type

social

web

citation

Over 90% of graphs with > 1M vertices from
SNAP and LAW datasets have m/n ≥ 10

We expect that ratio of NVRAM/DRAM in future
systems will be similar (our ratio is 8x)Sources:

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php 10

Real World Graphs are not Ultra-Sparse

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

❖ Graph stored in NVRAM and accessed in a
read-only mode

❖ Amount of DRAM is proportional to the
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

11

Our Approach

❖ Graph stored in NVRAM and accessed in a
read-only mode

❖ Amount of DRAM is proportional to the
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

❖ Algorithms avoid costly NVRAM writes,
and algorithm design is independent of this
cost

❖ Algorithms do not contribute to NVRAM
wear-out

Benefits

11

Our Approach

❖ Graph stored in NVRAM and accessed in a
read-only mode

❖ Amount of DRAM is proportional to the
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

❖ Algorithms avoid costly NVRAM writes,
and algorithm design is independent of this
cost

❖ Algorithms do not contribute to NVRAM
wear-out

Benefits

Our contribution:
This (restrictive) semi-asymmetric
approach is effective for designing

fast parallel graph algorithms

11

Our Approach

NVRAM

DRAM

CPUs

12

Parallel Semi-Asymmetric Model (PSAM)

NVRAM

DRAM

CPUs

Read/Write: Unit
Cost

12

Parallel Semi-Asymmetric Model (PSAM)

NVRAM

DRAM

CPUs

Read/Write: Unit
Cost

Read:
Unit Cost

Write:
Cost ω > 1

12

Parallel Semi-Asymmetric Model (PSAM)

NVRAM

DRAM

CPUs

Unbounded Size

Read/Write: Unit
Cost

Read:
Unit Cost

Write:
Cost ω > 1

12

Parallel Semi-Asymmetric Model (PSAM)

NVRAM

DRAM

CPUs

Unbounded Size

Read/Write: Unit
Cost

Read:
Unit Cost

Write:
Cost ω > 1

Regular model:
O(n)

Relaxed model:
O(n + m/log n)

12

Parallel Semi-Asymmetric Model (PSAM)

❖ Start with work-efficient shared-memory
algorithms from the Graph Based
Benchmark Suite (GBBS)

❖ Implement interface primitives used by
GBBS algorithms (edgeMap and filtering)
efficiently in the PSAM

BucketingVertexSubset GraphVertex
represent subsets
of vertices

primitives on
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

GBBS Interface

13

Overview of Semi-Asymmetric Algorithms

❖ Start with work-efficient shared-memory
algorithms from the Graph Based
Benchmark Suite (GBBS)

❖ Implement interface primitives used by
GBBS algorithms (edgeMap and filtering)
efficiently in the PSAM

BucketingVertexSubset GraphVertex
represent subsets
of vertices

primitives on
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

GBBS Interface

edgeMap Filtering (relaxed model)

Other Techniques

GBBS work indicates the work of naively converting exisitng shared-
memory algorithms from GBBS to NVRAM algorithms

13

Overview of Semi-Asymmetric Algorithms

Motivation
❖ Some algorithms remove, or batch-delete

edges over the course of their
operation for work-efficiency

❖ Modifying the graph directly requires
writing to NVRAM

Parallel Approximate
Set Cover

Triangle Counting

Orient edges based on a
given order

Maximal Matching

14

Semi-Asymmetric Filtering

Motivation
❖ Some algorithms remove, or batch-delete

edges over the course of their
operation for work-efficiency

❖ Modifying the graph directly requires
writing to NVRAM

Parallel Approximate
Set Cover

Triangle Counting

Orient edges based on a
given order

Maximal Matching

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Semi-Asymmetric Filtering

❖ Work in the relaxed model

❖ Use one bit per edge and mirror the CSR
structure (in NVRAM) using a blocked
approach in DRAM

14

Semi-Asymmetric Filtering

15

Semi-Asymmetric Filtering

Graph

logically deleted

present in graph

16

Semi-Asymmetric Filtering

High-level Approach

0 6 9 13 ...Offsets

Edges

NVRAM

...

Graph in CSR format, stored in NVRAM (ℱB = 2)

(i) Set a filter block size, and logically chunk the CSR
structure into chunks of this size

17

Semi-Asymmetric Filtering

High-level Approach

GraphFilter in CSR format, stored in DRAM (ℱB = 2)

(ii) Create a “mirrored” filter structure in DRAM,
storing 1 bit per edge in NVRAM

1 1

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

0 3 5 7 ...Offsets
Blocks

18

Semi-Asymmetric Filtering

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Note: Blocks with no “1" bits remaining are deleted

Structure Overview

❖ SE model performs block-transfers, with a focus on I/O cost [0, 1]

❖ Both PSAM and SE models provide the same amount of DRAM, but
SE does not account for DRAM reads and writes

Semi-External Memory (SE) Model

Sources:
[0] Abello et al. A Functional Approach to External Graph Algorithms (2002)
[1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
[2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016) 19

Relationship to Other Models

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf

❖ SE model performs block-transfers, with a focus on I/O cost [0, 1]

❖ Both PSAM and SE models provide the same amount of DRAM, but
SE does not account for DRAM reads and writes

Semi-External Memory (SE) Model

Asymmetric RAM and Asymmetric Nested Parallel Models
❖ Both ARAM [2] and ANP [3] models capture asymmetry of writing to

NVRAM

❖ Unlike ARAM/ANP models, the PSAM includes a fast memory, and is
specialized for graph problems

Sources:
[0] Abello et al. A Functional Approach to External Graph Algorithms (2002)
[1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
[2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016) 19

Relationship to Other Models

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf

NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

AppDirect Mode enables a direct implementation
of PSAM algorithms

20

Semi-Asymmetric Graph Engine (Sage) Approach

Consider an algorithm that maps over all vertices,
and for each vertex performs a reduction over the
neighbors of the vertex

21

NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

Three experiments based on (threads, storage)

22

NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

7 s
> 4x slower

first run
~7s subsequently

26 s

Cross-socket NVM reads should be avoided

23

NUMA Optimization in Sage

Socket 0 Socket 1

Both graphs stored in compressed CSR format
4.3 s for microbenchmark

❖ Applications do not distinguish between
DRAM and NVRAM

❖ Existing shared-memory software does
not require modification

❖ Workloads that are larger than DRAM
can involve costly NVRAM writes

24

Existing Approaches: DRAM as a Cache

❖ Applications do not distinguish between
DRAM and NVRAM

❖ Existing shared-memory software does
not require modification

❖ Workloads that are larger than DRAM
can involve costly NVRAM writes

Galois (Gill et al.)

❖ Gill et al. study the performance of the
Galois engine using MemMode

❖ They show promising results for scaling
to larger than DRAM sizes

24

Existing Approaches: DRAM as a Cache

❖ Applications do not distinguish between
DRAM and NVRAM

❖ Existing shared-memory software does
not require modification

❖ Workloads that are larger than DRAM
can involve costly NVRAM writes

Galois (Gill et al.)

❖ Gill et al. study the performance of the
Galois engine using MemMode

❖ They show promising results for scaling
to larger than DRAM sizes

How does our approach compare?
24

Existing Approaches: DRAM as a Cache

❖ Largest publicly available graph today

❖ 3.5B vertices connected by 128B
edges (225B symmetrized)

WebDataCommons Graph

25

Results for Larger-than-DRAM Graphs

❖ Largest publicly available graph today

❖ 3.5B vertices connected by 128B
edges (225B symmetrized)

WebDataCommons Graph

Experiment
❖ Compare Sage results with

❖ GBBS using MemMode (existing shared-memory codes)

❖ Galois using MemMode (using numbers reported by
authors on the same machine)

25

Results for Larger-than-DRAM Graphs

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

26

Results for Larger-than-DRAM Graphs

1.94x speedup on average over Galois (state-of-the-art existing
approach to NVRAM graph processing), and 1.87x speedup over

simply running GBBS codes using MemMode

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

26

Results for Larger-than-DRAM Graphs

❖ Large web crawl with ~1B vertices connected
by 42B edges (74B symmetrized)

❖ Graph fits entirely in the main memory of our
machine

ClueWeb Graph

libvmmalloc: see https://pmem.io/pmdk/libvmmalloc/ 27

Results for Graphs Stored in Main Memory

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/

❖ Large web crawl with ~1B vertices connected
by 42B edges (74B symmetrized)

❖ Graph fits entirely in the main memory of our
machine

ClueWeb Graph

Experiment
❖ Compare Sage (graph stored on NVRAM) with

❖ Sage (graph stored in DRAM)

❖ GBBS (graph stored in DRAM)

❖ GBBS with libvmmalloc (graph stored on NVRAM)

libvmmalloc: see https://pmem.io/pmdk/libvmmalloc/ 27

Results for Graphs Stored in Main Memory

https://pmem.io/pmdk/libvmmalloc/
https://pmem.io/pmdk/libvmmalloc/

28

Results for Graphs Stored in Main Memory

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

Sage provides DRAM-competitive performance even when reading
graph from NVRAM (only 5% slower on average)

28

Results for Graphs Stored in Main Memory

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

29

Lessons and Directions for Future Work

Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

29

Lessons and Directions for Future Work

Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

❖ Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode
approaches

29

Lessons and Directions for Future Work

Avoid NVRAM Writes

❖ PSAM implementations which only read from
NVRAM are over 6x faster than our algorithms
which write to NVRAM (using libvmmalloc)

Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

❖ Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode
approaches

29

Lessons and Directions for Future Work

30

Streaming Graph Processing

31Source: Infection transmission in a dynamic network

Dynamic Graph Processing
Measuring the spread of infections

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

31Source: Infection transmission in a dynamic network

Dynamic Graph Processing
Measuring the spread of infections

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

31Source: Infection transmission in a dynamic network

Dynamic Graph Processing
Measuring the spread of infections Preventing money laundering and fraud

❖ Recommendation Systems
❖ Geospatial Systems

Other Applications

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

31Source: Infection transmission in a dynamic network

Dynamic Graph Processing
Measuring the spread of infections

Many important applications must maintain
information about evolving graphs!

Preventing money laundering and fraud

❖ Recommendation Systems
❖ Geospatial Systems

Other Applications

http://statnetproject.org/movies/index.html
http://statnetproject.org/movies/index.html

Dynamic Graph Processing: Example

32

Dynamic Graph Processing: Example

32

Dynamic Graph Processing: Example

32

Dynamic Graph Processing: Example

Update Stream

32

Dynamic Graph Processing: Example

Update Stream

Query Stream

Fetch vertex u’s
neighbors

Clustering
Coefficients

Centrality
Ranking

Fetch similar
vertices

32

Dynamic Graph Processing: Example

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Streaming Graph Processing

Update Stream

Query Stream

Fetch vertex u’s
neighbors

Clustering
Coefficients

Centrality
Ranking

Fetch similar
vertices

32

Dynamic Graph Processing: Example

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Streaming Graph Processing

Update Stream

Query Stream

Fetch vertex u’s
neighbors

Clustering
Coefficients

Centrality
Ranking

Fetch similar
vertices

Clustering

Triangle Counting

Connected Components

32

Dynamic Graph Processing: Example

Update the graph (in parallel);
Execute arbitrary queries on snapshots.

Streaming Graph Processing

Update Stream

Pre-determined queries;
Process updates faster than recomputation.

Batch-Dynamic Graph Processing

Query Stream

Fetch vertex u’s
neighbors

Clustering
Coefficients

Centrality
Ranking

Fetch similar
vertices

Clustering

Triangle Counting

Connected Components

32

33

Streaming Graph Processing

Graph Updates

Graph Queries Responses

Graph-Streaming
System

Edge queries
Local

algorithms
Global

algorithms

33

Streaming Graph Processing

Goal: low-latency for both updates and queries arriving
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming
System

Edge queries
Local

algorithms
Global

algorithms

33

Streaming Graph Processing
Single-version

STINGER [EMRB’12]

cuSTINGER [GB’16]

Kickstarter [VGX’17]

Goal: low-latency for both updates and queries arriving
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming
System

Edge queries
Local

algorithms
Global

algorithms

33

Streaming Graph Processing
Single-version

STINGER [EMRB’12]

cuSTINGER [GB’16]

Kickstarter [VGX’17]

Multi-version (snapshot-based)

Kineograph [CHKMW+’12]

LLAMA [MMMS’15]

Goal: low-latency for both updates and queries arriving
concurrently to the system

Graph Updates

Graph Queries Responses

Graph-Streaming
System

Edge queries
Local

algorithms
Global

algorithms

Can we design a system that can
compactly represent and

concurrently update and query
the largest real-world graphs?

34

Low-Latency Graph Streaming using Compressed
Purely-Functional Trees [DBS’19]

Graph Algorithm
Interface

Snapshots implement the GBBS
interface, making it possible to
run parallel graph algorithms
from GBBS on snapshots in

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the
changes in the sequence of
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot
of the graph.

Graph Algorithm
Interface

Snapshots implement the GBBS
interface, making it possible to
run parallel graph algorithms
from GBBS on snapshots in

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the
changes in the sequence of
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot
of the graph.

Graph Algorithm
Interface

Snapshots implement the GBBS
interface, making it possible to
run parallel graph algorithms
from GBBS on snapshots in

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the
changes in the sequence of
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot
of the graph.

Graph Algorithm
Interface

Snapshots implement the GBBS
interface, making it possible to
run parallel graph algorithms
from GBBS on snapshots in

Aspen.

Breadth-First Search

Maximal Independent Set

Parallel Connectivity

And many others

Aspen: A Low-Latency Graph Streaming System

Purely-Functional
Graph Representation

Compressed Purely-
Functional Trees

InsertBatch

Update Interface

Update the graph with the
changes in the sequence of
edge insertions or deletions

DeleteBatch

Query Interface

Acquire Release

Acquires or releases a snapshot
of the graph.Main contribution: designing a scalable, space-efficient,

and efficiently-updatable graph representation using
compressed purely-functional trees

8

5

1 7

11

9 15

Purely-Functional Trees

8

5

1 7

11

9 15

Red-black, AVL, or weight-balanced trees

Purely-Functional Trees

1

0

2

43

5

G

Representing Graphs using Trees

1

0

2

43

5

G

2

0

1

4

3 5

Tree(G)

Representing Graphs using Trees

1

0

2

43

5

G

2

0

1

4

3 5

Tree(G)

2

1 3

Vertex 0’s
Edge Tree

Representing Graphs using Trees

1

0

2

43

5

G

2

0

1

4

3 5

Tree(G)

2

1 3

Vertex 0’s
Edge Tree

Representing Graphs using Trees

2

0 4

1

Vertex 3’s
Edge Tree

5

Trees enable Simple Snapshots

A snapshot is just a tree root

Trees enable Simple Snapshots

A snapshot is just a tree root

8

5

1 7

11

9

Trees enable Simple Snapshots

A snapshot is just a tree root

8

5

1 7

11

9

Insert(12)

Trees enable Simple Snapshots

A snapshot is just a tree root

8

5

1 7

11

9

Insert(12)
8

11

12

Trees enable Simple Snapshots

A snapshot is just a tree root

8

5

1 7

11

9

Insert(12)
8

11

12

Trees enable Simple Snapshots

Algorithms generalize to handle batches of
updates in low work/depth [BFS’16]

Purely-Functional Trees are Safe for Concurrency

…

𝗏0

Purely-Functional Trees are Safe for Concurrency

…

𝗏0

Query

Purely-Functional Trees are Safe for Concurrency

…

𝗏0 𝗏1

Query

Purely-Functional Trees are Safe for Concurrency

…

𝗏0 𝗏1

Queries are serialized once they
acquire a tree root

Query

Purely-Functional Trees are Safe for Concurrency

Challenges

Challenges

Poor Cache Usage

Challenges

Poor Cache Usage

2

0 5

1

Edge Tree

Challenges

Poor Cache Usage

Space Inefficiency

2

0 5

1

Edge Tree

Challenges

Poor Cache Usage

❖ Significant space overheads for tree nodes

❖ Lose ability to compress adjacency lists

Space Inefficiency

2

0 5

1

Edge Tree

Challenges

Poor Cache Usage

❖ Significant space overheads for tree nodes

❖ Lose ability to compress adjacency lists

Space Inefficiency
108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

2

0 5

1

Edge Tree

Challenges

Poor Cache Usage

❖ Significant space overheads for tree nodes

❖ Lose ability to compress adjacency lists

Space Inefficiency
108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

19.6x

Aspen using naive approach requires

7 TB of memory for WDC2012 graph

2

0 5

1

Edge Tree

Challenges

Poor Cache Usage

❖ Significant space overheads for tree nodes

❖ Lose ability to compress adjacency lists

Space Inefficiency
108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

19.6x

Aspen using naive approach requires

7 TB of memory for WDC2012 graph

2

0 5

1

Edge Tree

To overcome these challenges we designed
C-trees: compressed purely-functional trees

25

15

7 19

32

28 40

1 8 27 29 42

❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h

C-trees

= heads

= heads

C-trees

25

15

7 19

32

28 40

1 8 27 29 42

❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h

= heads

27

15 42

C-tree

2519

2928 4032

tree

C-trees

25

15

7 19

32

28 40

1 8 27 29 42

❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h

= heads

71 8

prefix

27

15 42

C-tree

2519

2928 4032

tree

C-trees

25

15

7 19

32

28 40

1 8 27 29 42

❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h

= heads

71 8

prefix

27

15 42

C-tree

2519

2928 4032

tree

Further improve space usage for integer

C-trees by difference encoding chunks

C-trees

25

15

7 19

32

28 40

1 8 27 29 42

❖ Chunking parameter B. Fix a hash function, h

❖ Select elements as heads with probability 1/B using h

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree

C-tree

parallel-byte

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Space Improvement in Aspen using C-trees

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree

C-tree

parallel-byte

9x smaller

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Space Improvement in Aspen using C-trees

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree parallel-byte

108 109 1010 1011

Number of edges

10°2

10°1

100

101

102

103

104

S
pa

ce
us

ed
(G

b)

Purely-functional tree

C-tree

parallel-byte

9x smaller

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Space Improvement in Aspen using C-trees

Fully-dynamic representation of the WebDataCommons hyperlink
graph using 700GB of memory

Operations on C-trees

𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S)

𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f)

f

f{ f {

𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f)

f

f{ f {

𝖬𝗎𝗅𝗍𝗂𝖨𝗇𝗌𝖾𝗋𝗍(𝖢𝗍𝗋𝖾𝖾 C, 𝖲𝖾𝗊 S)
C S

𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S) 𝖬𝖺𝗉(𝖢𝗍𝗋𝖾𝖾 C, f)

f

f{ f {

CS = 𝖡𝗎𝗂𝗅𝖽(𝖲𝖾𝗊 S)
𝖮𝗎𝗍𝗉𝗎𝗍 = 𝖴𝗇𝗂𝗈𝗇(C, CS)

𝖬𝗎𝗅𝗍𝗂𝖨𝗇𝗌𝖾𝗋𝗍(𝖢𝗍𝗋𝖾𝖾 C, 𝖲𝖾𝗊 S)
C S

union(t1, t2)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

union(t1, t2)

l1 r1

expose(t1)

k1

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

union(t1, t2)

l1 r1

expose(t1)

k1

t2

split(t2,k1)

l2 r2

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

union(t1, t2)

l1 r1

expose(t1)

k1

t2

split(t2,k1)

l2 r2 union(l1, l2) union(r1, r2)

L R

k1

join(L,k1,R)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

Similar algorithms for difference and
intersection

union(t1, t2)

l1 r1

expose(t1)

k1

t2

split(t2,k1)

l2 r2 union(l1, l2) union(r1, r2)

L R

k1

join(L,k1,R)

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

L
R

k

join(L, k, R)

L R

k

L
R

k

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

The Join Function

L
R

k

Join enables balance-agnostic expression of
all other primitives[1]

join(L, k, R)

L R

k

L
R

k

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

The Join Function

ex
t2

spli

l r uni uni
union(t1, t2) runs in

expose split join

O (m log (n
m

+ 1)) work and O (log n log m) depth

Batch Updates on Trees

ex
t2

spli

l r uni uni
union(t1, t2) runs in

expose split join

O (m log (n
m

+ 1)) work and O (log n log m) depth

Proof idea from [1]:

Overall cost = work done over all splits

Splitting a tree costs O (log |T |) work and depth

[1] Just Join for Parallel Ordered Sets, Blelloch et al. (SPAA’16)

Batch Updates on Trees

union(C1=(T1, P1)), C2=(T2, P2)))

Batch Updates on Trees

union(C1=(T1, P1)), C2=(T2, P2)))

Expose one of the trees

Batch Updates on Trees

union(C1=(T1, P1)), C2=(T2, P2)))

Split the other C-tree with k2

< k2 > k2

𝖡𝟤 =

Batch Updates on Trees

union(C1=(T1, P1)), C2=(T2, P2)))

Split the other C-tree with k2

Part of v2 may belong in BT2,
similarly with BP2

< k2 > k2

𝖡𝟤 =

Batch Updates on Trees

Batch Updates on C-trees
union(C1=(T1, P1)), C2=(T2, P2)))

Split v2 based on BT2,
BP2 based on R2

< k2
> k2

𝖡𝟤 =

union(C1=(T1, P1)), C2=(T2, P2)))

< k2
> k2

𝖡𝟤 =

Recursive union of two
C-trees

Join done on the
underlying purely-
functional tree

Batch Updates on Trees

union(C1=(T1, P1)), C2=(T2, P2)))

< k2
> k2

𝖡𝟤 =

O (B2m log (n
m

+ 1)) expected work

O (B log n log m) depth whp

union(C1, C2) runs in

Batch Updates on Trees

Experiments

59

Dell PowerEdge R930

❖ 72-cores, 2-way hyper-threaded*
❖ 1TB of main memory
❖ Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Our Machine

59

Dell PowerEdge R930

❖ 72-cores, 2-way hyper-threaded*
❖ 1TB of main memory
❖ Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Our Machine

Streaming Experiment

Streaming Experiment

Sampled insertions
+ deletions from G

Streaming Experiment

Stream of Parallel
BFS queries from
random vertices

BFS trees

Sampled insertions
+ deletions from G

Streaming Experiment

Stream of Parallel
BFS queries from
random vertices

BFS trees

Sampled insertions
+ deletions from G

What’s the impact on the
concurrent execution on latency?

Streaming Experiment

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Streaming Experiment

Orkut

Twitter

ClueWeb

WDC2014

WDC2012

LiveJournal

Less than 3% impact
on queries in the

concurrent setting

Batch Update Experiment

Batch Update Experiment

Edge insertions
drawn from RMAT

Batch Update Experiment

Edge insertions
drawn from RMAT

Represent G using
Aspen and STINGER

Batch Update Experiment

Edge insertions
drawn from RMAT

Represent G using
Aspen and STINGER

How does the throughput scale
as a function of batch size?

100 102 104 106 108

Batch Size

103

104

105

106

107

108

T
hr

ou
gh

pu
t

on
72

co
re

s

Aspen Batch Updates STINGER Batch Updates

Batch Update Performance

100 102 104 106 108

Batch Size

103

104

105

106

107

108

T
hr

ou
gh

pu
t

on
72

co
re

s

Aspen Batch Updates STINGER Batch Updates

32x

Batch Update Performance

100 102 104 106 108

Batch Size

103

104

105

106

107

108

T
hr

ou
gh

pu
t

on
72

co
re

s

Aspen Batch Updates STINGER Batch Updates

32x

329x

Batch Update Performance

Building on Aspen and C-trees

Batch-Dynamic Graph Processing

Updates

Dynamic Algorithm

G𝖯𝗋𝖾𝗏 G𝖭𝖾𝗑𝗍

E.g.: Connected components, clustering
coefficients, graph clusterings, etc

Aspen

Batch-Dynamic Algorithms

Interested in practical and memory-
efficient dynamic graph algorithms

[TDB’18]

Forest Conn.

[AABD’19]

Connectivity Clique-counting

[DLSY’20]

❖ has strong theoretical bounds
❖ provides memory-efficient graph representations
❖ enables lightweight snapshots
❖ runs on commodity hardware
❖ can process the largest publicly-available graphs

Aspen
Scalable graph data structures and
interfaces for processing streaming
graphs

github.com/ldhulipala/aspen

Thank you!

https://github.com/ldhulipala/aspen
https://github.com/ldhulipala/aspen

