EmptyHeaded: A Relational Engine for Graph Processing

Authors: Christopher R. Aberger, Susan Tu, Kunle Olukotun, Christopher Ré

Presenter: Jingnan Shi

Outline

- Introduction

- Preliminaries

- Query Compiler
- Code Generation
- Execution Engine Optimizer é‘

o EMPTYHEADED

https://qithub.com/HazyResearch/EmptyHeade
d

https://github.com/HazyResearch/EmptyHeaded
https://github.com/HazyResearch/EmptyHeaded

Introduction

/ Low-level Graph Engines \

1)

.

2)

Iterators and domain-specific

primitives
Optimized data layouts

Drawbacks:

Require users to write code

imperatively

Examples:

Powergraph, Galois, SNAP, Ligra, ...

/

V.S.

/ High-level Graph Engines \

Supports tasks using query
languages

Drawbacks:
1) Performance gap

Examples:
Socialite, LogicBlox, Grail

. /

Introduction

/ Low-level Graph Engines \

1) Iterators and domain-specific
primitives
2) Optimized data layouts

Drawbacks:
Require users to write code
imperatively

Examples:
Powergraph, Galois, SNAP, Ligra, ...

. /

V.S.

- SQL/Datalog query interface

- Worst-case Optimal

- Optimized data layout and
code generation

/ High-level Graph Engines \

Supports tasks using query
languages

Drawbacks:
1) Performance gap

Examples:
Socialite, LogicBlox, Grail

. /

Preliminaries: Datalog

Facts: tuples in the database Schemas:

academic(studentID, GPA, Course)
Rules: queries info(studentID, dorm, class)
StudentlD | GPA Course Atuple Z:::Ise.mic(o, 4.5,6)
0 45 6 academic(1, 4.8, 2)

info(0, Ashdown, 2019)
1 4.8 2 info(1, SidPac, 2020)

Rules/Queries:
StudentlD | Dorm Class q(x) :- academic(x,y,z), z=6
Find students in course 6
0 Ashdown 2019
q(x) :- academic(x,y,2), info(x, ‘SidPac’, w)

1 SidPac 2020 Find student in course 2 who lives in SidPac

Preliminaries: Datalog

In general:

Q(X;s Xy, -, X) 1= R (args), R,(args), ...

- LHS: head
- RHS: body
- This is a conjunctive query:
- R returns true if the relation contains the tuple described by the input
arguments
- Each of the R is called a subgoal, and the query results / tuples returned
have to satisfy all of them
- Also can be expressed as natural join queries

- QX Xy .., X)= R (args) X R,(args)x ...

Preliminaries: Query as a Hypergraph

- H=(V, EB)
- V: non empty set of vertices
- E: hyperedges
- Can connect more than two vertices
- Each vertex represents an
attribute/variable in the body of the query
- The “args”
- Each hyperedge represents a relation
- Eg q:- R(X,Y), S(y,Z), T(Z’X)
- V={x,y,z}
- E= {(X’y)’ (y,Z), (Z’X)}

A hypergraph
(https://commons.wikimedia.org/wiki/File:Hyper
graph-wikipedia.svg)

.V7

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89
https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89

Preliminaries: Worst-Case Optimal Join

- Evaluating conjunctive queries are Definition of a fractional cover:
NP-complete in terms of
combined complexity for each v € V we have Z x. > 1
- Combined complexity: Query ecE:esv

+ Input database
- Thus, we want to consider
algorithms with respect to both

where x_ is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

input and output sizes Definition of the AGM bound:
- The AGM (Atserias, Grohe, and

Marx) bound tightly bounds the OUT| <] IR

worst-case size of a join query ecE

using a notion called a fractional

where R is the size of the relation represented
(edge) cover. e

by edge e

Preliminaries: Worst-Case Optimal Join

Example: triangle query

R(z,y) < S(y, z) < T'(z, 2)
Feasible cover: (1,1,0)

AGM bound: N?

Another feasible cover: (Y2, 72, 2)
AGM bound: N3?2

This bound is tight: consider a complete
graph with sqrt(N) vertices. On it this
query produces Q(N*?) tuples.

Definition of a fractional cover:

for each v € V we have Z Te > 1

ecFE:esv

where x_ is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

out| < [] IR

eck

Le

where R is the size of the relation represented
by edge e

Preliminaries: Worst-Case Optimal Join

We define worst-case optimal
join algorithms as those that
evaluate a full conjunctive
query in time that is
proportional to the worst-case
output size of the query.

The NPRR algorithm is one of
them.

NPRR has the so called min
property:

- the running time of the
intersection algorithm is
upper bounded by the
length of the smaller of
the two input sets.

Algorithm 1 Generic Worst-Case Optimal Join Algorithm

//Input: Hypergraph H = (V,E), and a tuple t.

Generic—Join(V ,E ,t):
if |V|=1 then return N.cgRe[t].

Let I ={v1} // the first attribute.

Q « 0 // the return wvalue

// Intersect all relations that

// Only those tuples that agree

for every ty € NecE:esv; T1(Re[t]) do
Q¢ < Generic—Join(V -1, E, t
Q +— QU{tv} x Q¢

return Q

contain v
with t.

by)

Preliminaries: Input and Output Data Structures

- Dictionary encoding maps Original Relation Dictionary Encoding Trie Representation
original data values to 32 bit
unsigned integer keys Menages i 95
- Sets of values can be annotated meneoerD | PoyeeiD]] employeekieling ol Y
with data values for i i bl s
aggregations 20 10 38 |:> 2 | 1 |:>1 .o BB
For oapl.a olee e o wo o w o Ve Vi
represents a sparse matrix or 40 20 6.4 1 (64
graph with edge properties. 43| 4
- Depth of the trie equals to the
arity of the relation Figure 2: EmptyHeaded transformations from a ta-

ble to trie representation using attribute order (man-
agerID,employerID) and employerID attribute annotated
with employeeRating.

- Atuple can be obtained by
simply getting the path from root
to leaf

EmptyHeaded: Overview

Generated Code

Sx = (ﬂxRﬂT[xR)

for x in sy:
sy := (my R[x] N iy R)

for yin sy:
sz := (7 R[y] N . R[x])

forzins;:

Execution Engine

/

Input Query Compiler
Data Query \
R ||K;(x,y,2) :-
of1 R(x,y),
1|2 R(y,z),
ol2 R(x,2).
R H
High-level GHD

Query

K; U (x,y,2)

Generated
C++ Code

Layout
Optimizer

Execution
Engine with
Optimization

Query Optimizer: Sample Queries

Name Query Syntax
Triangle Triangle (x,y,z) = R(x,¥),80y:2z);T(x,2)-
4-Clique 4Clique (x,y,2Z,@) = Rlx,¥),8(y,Z)T(x,Z),0(x,a) ,Viy,&) ,Q(2,w)..
Lollipop Lollipop(x,y.,z.%) == R(x,y).8(y.2z),T(x,;z), , 0(x,%).
Barbell Barbell (xsyizax? sy sz ?) w= Rlxsy) i8S yaz)s Tlxez) U (xsx?) s R20x? ;y2) 582 (y2s22): T2(x2522)
Count Triangle CountTriangle (;w:long) :- R(x,y),S(x,z),T(x,z); w=<<COUNT(*)>>.
N(;w:int) :- Edge(x,y); w=<<COUNT(x)>>.
PageRank PageRank (x;y:float) :- Edge(x,z); y= 1/N.
PageRank (x;y:float)*[i=5] :- Edge(x,z),PageRank(z),InvDeg(z); y=0.15+0.85*x<<SUM(z)>>.
SSSP SSSP(x;y:?nt) :- Edge("start",x); y=1.
SSSP(x;y:int)* :- Edge(w,x),SSSP(w); y=<<MIN(w)>>+1.

Table 1: Example Queries in EmptyHeaded

Query Optimizer: Using Queries

Join: You can also use SQL:

db.eval("Triangle(a,b,c) :- Edge(a,b),Edge(b,c), Edge(a,c).") db.eval("""
CREATE TABLE Triangle AS (
SELECT el.a, e2.a, e3.a

Project: FROM Edge el
JOIN Edge e2 ON el.b = e2.a
db.eval("Triangle(a,b) :- Edge(a,b),Edge(b,c), Edge(a,c).") JOIN Edge e3 ON e2.b = e3.a
AND e3.b = el.a
)
Selection: """, useSql=True)

db.eval("""FliqueSel(a,b,c,d) :- x=0,
Edge(a,b) ,Edge(b,c),Edge(a,c),
Edge(a,d) ,Edge(b,d),Edge(c,d) ,Edge(a,x).""")

(a) Hypergraph
Figure 3: We show the Barbell query hypergraph and two possible GHDs for the query. A node v in a GHD captures which
relations should be joined with A(v) and which attributes should be retained with projection with x(v).

Nodes represent a join and
projection operation

Edges represent data
dependencies

(b) LogicBlox GHD (c) EmptyHeaded GHD

- Given a query, there exists many
different GHDs

- Need to find the GHD with the
lowest cost

Query Compiler

Query Optimizer: Generalized Hypertree Decomposition (GHD)

Formal definition:

Let H be a hypergraph. A generalized hypertree
decomposition (GHD) of H is a triple D = (T; x; A),
where:

T(V(T), E(T)) is a tree

x : V(T) — 2V is a function associating a set of vertices x(v) C V(H) to
each node v of T';

A:V(T) — 2E(H) is a function associating a set of hyperedges to each vertex
vofT;

The following properties hold:

1. For each e € E(H), there is a node v € V(T') such that e C x(v) and
e € A\(v)

2. Foreach t € V(H), the set {v € V(T) | t € x(v)} is connected in T
3. For every v € V(T), x(v) C UA(v).

Query Compiler

Query Optimizer: Compute outputs from GHDs

- Define Q, as the query formed by joining the
relations in A(v).
- Width w of a GHD:

- AGM(Q)

- Given a GHD with width w, there is a simple
algorithm to run in time O(NY + OUT).

- First, run any worst-case optimal algorithm
on Q, for each node v of the GHD; each
join takes time O(NY) and produces at most
O(NY) tuples. EmptyHeaded brute force all GHDs of

- Then, run Yannakakis’ algorithm which all possible widths, because number of

relations and attributes is typically small.

enables us to compute the output in linear
time in the input size (O(N")) plus the
output size (OUT).

Generated Code

sx 1= (xRnmx R)
for xin sy

sy := (y R[x] N iy R)
9 foryin sy:

Query Optimizer: Code Generation from GHD D
KU (x,y,2)
- The goal is to translate GHDs into Operation Description
operations listed on the right. R[t] Returns the set
: matching tuple t € R.
- For each node, generate the code Trie (K) Appends elements in set xs

: : . i LA s to tuple t € R
using the worst-case optimal join s -

Iterates through the

algorithm' Set () for 'in a4 elements x of a set xs.
- The nodes are access first in a bottom s N ys i f;englze;sec“o“
up pass, then the result is constructed Table 2: Execution Engine Operations
by walking down the tree in a top-down
pass.

- Handles recursion through both naive
evaluation and semi-naive evaluation

Execution Engine

@_’
Optimizer

Execution Engine Optimizer: Layouts

|8 |63 | woe | 6 | B8 | co | Ui] _
Figure 4: Example of the bitset layout that contains n Associated Values:
blocks and a sequence of offsets (01-0,) and blocks (b1-by,).
The offsets store the start offset for values in the bitvector. - Layouts depend on the layouts of the set
- For the bitset layout:
Two layouts :
- store the associated values as a dense
UINT (for sparse data) vector (where associated values are
accessed based upon the data value in the
- Just an array of 32-bit unsigned integers set).
- For the UINT layout:
BITSET (for dense data) - store the associated values as a sparse

vector (where the associated values are
accessed based upon the index of the
value in the set)

- Stores a set of pairs (offset, bitvector).

- Offsets are indices of the smallest values
in the bitvectors.

- Offsets are packed contiguously.

Execution Engine

Execution Engine Optimizer: Intersection Algorithms ®_’}>

UINT N UINT

- Sizes of the two sets might be drastically different
Cardinality skew
- Asimple hybrid algorithm that selects a SIMD
galloping algorithm when the ratio of
cardinalities is greater than 32:1, and a SIMD
shuffling algorithm otherwise.

BITSET N BITSET

- Intersect offset firsts
- Then intersect blocks using SIMD AND

- The best case:
- all bits in the register are 1, a single
hardware instruction computes the
intersection of 256 values.

BITSET N UINT

First intersect the uint values with the
offsets in the bitset.

For each matching uint and bitset block we
check whether the corresponding bitset
blocks contain the uint value by probing
the block.

Execution Engine

Execution Engine Optimizer: Layout Selection Granularity

1073,

19
s " Ulnt
o, 0, l
) 103
E... £ 17 e N e g X
= 10~ =
=t c 5
S ie} Bitset=—————2,
3 3104,
> >
L (11|

10—)

Composite Type

1020 103 104

Sparse region cardinality
Figure 5: Intersection time of Figure 6: Intersection time of
uint and bitset layouts for layouts for sets with different

different densities. sizes of dense regions.

! I : vl R 103!
103 10-3 102 101
Density

Execution Engine

Execution Engine Optimizer: Layout Selection Granularity 9[@*}9

Relation level:

- Force the data in all relations to be stored using
the same layout

- Does not address density skew
- UINT provides the best performance
Set level:

- Decide on a per-set level if the entire set should

be represented using a UINT or a BITSET layout.

Block level:

- Regards the domain as a series of fixed-sized
blocks; we represent sparse blocks using the
UINT layout and dense blocks using the BITSET
layout

Dataset Relation level Set level Block level
Google+ 7.3x 1.1x 3.2x
Higgs 1.6x 1.4x 2.4x
LiveJournal 1.3x 1.4x 2.0x
Orkut 1.4x 1:4% 2.0x
Patents .25 1.6x 1.9x

Table 4: Relative time of the level optimizers on triangle
counting compared to the oracle.

Selecting layouts on a set level works best
on real-world graphs.

It selects the BITSET layout when each
value in the set consumes at most as
much space as a SIMD (AVX) register and
the UINT layout otherwise.

Experiments: Setup

: Dir. Undir. .
- S datasets are used intests. . g\fﬁdos Edges Edges SDE:;IW Preiciistibi
- Low-level Engines Tested: = M] M]
Google+ [42] 0.11 13.7 12.2 1.17 User network
- PowerGraph, CGT-X, Snap-R Higgs [2] 0.4 149 125 023 Tweets about
- No Ligra :(|| Higgs Boson
. . LiveJournal [23] 4.8 68.5 43.4 0.09 User network
- High-level Engines Tested: Orkut 54]_] — 31 1172 1172 0.08 User network
\ . Patents [‘lf 3.8 16.5 16.5 0.09 Citation
- LogicBlox, SociaLite (| et
- Runon a single machine Twitter |17 41.7 1,468.4 757.8 0.12 Follower
[_I network
with 48 cores on four Intel Table 3: Graph datasets presented in Section |5.1.1|that are

Xeon E5-4657L v2 CPUs used in the experiments.
and 1 TB of RAM.

Experiments: Results

Triangle Counting:

- Outperforms other baselines
by 2x - 60x

- Speedups most significant
on datasets with large
density skew

Low-Level High-Level

Dataset EH PG CGT-X SR SL LB

Google+ 0.31 8.40x 62.19x 4.18x 1390.75x 83.74x
Higgs 0.15 3.25x 5H7.96x 5.84x 387.41x 29.13x
LiveJournal 0.48 5.17x 3.85x 10.72x 225.97x 23.53x
Orkut 2.36 2.94x - 4.09x 191.84x 19.24x
Patents 0.14 10.20x 7.45x 22.14x 49.12x 27.82x
Twitter 56.81 4.40x - 2.22x t/o 30.60x

Table 5: Triangle counting runtime (in seconds) for Empty-
Headed (EH) and relative slowdown for other engines includ-
ing PowerGraph (PG), a commercial graph tool (CGT-X),
Snap-Ringo (SR), SociaLite (SL) and LogicBlox (LB). 48
threads used for all engines. “-” indicates the engine does
not process over 70 million edges. “t/o” indicates the engine
ran for over 30 minutes.

Experiments: Results

PageRank:

- 2X - 4x faster than

compared

- An order of magnitude
faster than high-level graph
engines compared

Low-Level

High-Level

Dataset EH G PG CGT-X SR SL LB

Google+ 0.10 0.021 0.24 1.65 0.24 1.25 7.03
Higgs 0.08 0.049 0.5 224 032 1.78 T.72
LiveJournal 0.58 0.51 4.32 = e 5.09 25.03
Orkut 0.65 0.59 4.48 = 1.1 1752 T7b.11
Patents 0.41 0.78 3.12 445 1.06 10.42 17.86
Twitter 15.41 17.98 57.00 - 27.92 367.32 442.85

Table 6: Runtime for 5 iterations of PageRank (in seconds)

using 48 threads for all engines.

W

indicates the engine

does not process over 70 million edges. EH denotes Emp-
tyHeaded and the other engines include Galois (G), Power-
Graph (PG), a commercial graph tool (CGT-X), Snap-Ringo
(SR), SociaLite (SL), and LogicBlox (LB).

Experiments: Results

SSSP:

Slower than Galois, still
competitive against other
baseline methods

Require significantly fewer
lines of code (2 vs. 172 for
Galois)

Low-Level High-Level

Dataset EH G PG CGT-X SL LB

Google+ 0.024 0.008 0.22 0.51 0.27 41.81
Higgs 0.035 0.017 0.34 0.91 0.85 58.68
LiveJournal 0.19 0.062 1.80 - 3.40 102.83
Orkut 0.24 0.079 2.30 - 7.33 215.25
Patents 0.15 0.054 1.40 4.70 3.97 159.12
Twitter 7.87 2.52 36.90 - x 379.16

Table 7: SSSP runtime (in seconds) using 48 threads for
all engines. “-” indicates the engine does not process over
70 million edges. EH denotes EmptyHeaded and the other
engines include Galois (G), PowerGraph (PG), a commercial
graph tool (CGT-X), and SociaLite (SL). “x” indicates the
engine did not compute the query properly.

Experiments: Micro-Benchmarking

Dataset Query EH -R -RA -GHD SL LB

Setups: Ky 412 10.01x 10.01x -| tlo t/o
Google+ 3, 311 1.05x 1.10x 8.93x| t/o t/o
Bz 3.17 1.05x 1.14x t/o t/o t/o

- Run three different queries: Ki 066 3.10x 10.69x -| 666x 50.88x
. Higgs Ls; 093 197x 7.78x 1.28x| t/o t/o

- 4-clique (K,) Bs; 095 253 11.79x t/o| t/o t/o

- |_0|||pop (L3 1) . Ky 2.40 36.94x 183.15x - t/o 141.13x

‘ LiveJournal 1,5, 1.64 45.30x 176.14x 1.26x| t/o t/o

- Barbell (B3’1) Bz, 1.67 88.03x 344.90x t/o| t/o t/o

_ * Ky 7.65 8.09x 162.13x -l t/o 49.76x
Run COUNT()aggregate Orkut Ls; 879 252x 24.67x 1.09x| t/o t/o

: B3, 887 399x 47.81x t/o t/o t/o
queries to test GHD K4 0.25 328.77x 1021.77x -]20.05x 21.77x

: : Patents Lz 0.46 104.42x 575.83x 0.99x| 318x 62.23x

- Did not benchmark agamSt Bs1 0.48 200.72x 1105.73x t/o| t/o t/o

low-level graph engines

t/o indicates the engine ran for over 30 minutes.
-R is EH without layout optimizations.
-RA is EH without both layout (density skew) and intersection
algorithm (cardinality skew) optimizations. -GHD is EH without GHD
optimizations (single-node GHD).

Experiments: Micro-Benchmarking

X —_—

. . Dataset Query EH -R -RIGHD SL LB

Observations: Ki: 4.12| 1001x 10.01x 1 /o t/o
..) Google+ y ! . :

- GHD optimizations help il el s B IR

significantly K: 066] 3.10x 10.69x 7 666x | 50.88x

- Faster than LogicBlox, which Higgs Lz; 093] 1.97x 7.78x|1.28x| t/o t/o

doesn’t have GHD optimizations Bsz1 0.95 253 11.79x| t/o t/o t/o

- GHDs enable early aggregation, Ky 2.40] 36.94x 183.15x - t/ol141.13x

eliminating computation on LiveJournal 15, 1.64| 45.30x 176.14x| 1.26x| t/o t/o

datasets with high density skew Ba 167) BBOS%X B tO0w] H6] ®/6) W0

- 8.93x speed up on Google+ vs. I I W A

otherdatasets By 887 399x 4781x 't/)cj :?g E;g

i .SIMD parallelism S|gn|f!cantly Ka 0.25|328.77x 1021.77x -[20.05x | 21.77x

improve EmptyHeaded'’s Patents L3, 0.46[104.42x 575.83x|0.99x| 318x| 62.23x

performance Bs1 0.48]200.72x 1105.73x| t/o| t/o t/o

——/

t/o indicates the engine ran for over 30 minutes.
-R is EH without layout optimizations.
-RA is EH without both layout (density skew) and intersection algorithm (cardinality skew)
optimizations. -GHD is EH without GHD optimizations (single-node GHD).

Drawbacks Questions

- Some of the concepts are not clearly - EmptyHeaded applies the paradigm of
defined in the paper. relational algebra / databases to graph
- Did not compare against Ligra. processing. Has anyone tried the inverse:
treat traditional relational databases as
graphs?

- Are there graph engines that treat these
queries as mathematical programs instead
of relational queries?

