
EmptyHeaded: A Relational Engine for Graph Processing
Authors: Christopher R. Aberger, Susan Tu, Kunle Olukotun, Christopher Ré

Presenter: Jingnan Shi

Outline

- Introduction
- Preliminaries
- Query Compiler
- Code Generation
- Execution Engine Optimizer
- Experiments
- Questions

https://github.com/HazyResearch/EmptyHeade
d

https://github.com/HazyResearch/EmptyHeaded
https://github.com/HazyResearch/EmptyHeaded

Introduction

Low-level Graph Engines

1) Iterators and domain-specific
primitives

2) Optimized data layouts

Drawbacks:
Require users to write code

imperatively

Examples:
Powergraph, Galois, SNAP, Ligra, ...

High-level Graph Engines

Supports tasks using query
languages

Drawbacks:
1) Performance gap

Examples:
SociaLite, LogicBlox, Grail

V.S.

Introduction

Low-level Graph Engines

1) Iterators and domain-specific
primitives

2) Optimized data layouts

Drawbacks:
Require users to write code

imperatively

Examples:
Powergraph, Galois, SNAP, Ligra, ...

High-level Graph Engines

Supports tasks using query
languages

Drawbacks:
1) Performance gap

Examples:
SociaLite, LogicBlox, Grail

V.S.

- SQL/Datalog query interface
- Worst-case Optimal
- Optimized data layout and

code generation

Preliminaries: Datalog
Facts: tuples in the database

Rules: queries

StudentID GPA Course

0 4.5 6

1 4.8 2

StudentID Dorm Class

0 Ashdown 2019

1 SidPac 2020

Schemas:
academic(studentID, GPA, Course)
info(studentID, dorm, class)

Facts:
academic(0, 4.5, 6)
academic(1, 4.8, 2)
info(0, Ashdown, 2019)
info(1, SidPac, 2020)

Rules/Queries:
q(x) :- academic(x,y,z), z=6
Find students in course 6

q(x) :- academic(x,y,2), info(x, ‘SidPac’, w)
Find student in course 2 who lives in SidPac

A tuple

Preliminaries: Datalog
In general:

Q(x1, x2, ... , xn) := R1(args), R2(args), ...

- LHS: head
- RHS: body
- This is a conjunctive query:

- Ri returns true if the relation contains the tuple described by the input
arguments

- Each of the Ri is called a subgoal, and the query results / tuples returned
have to satisfy all of them

- Also can be expressed as natural join queries
- Q(x1, x2, ... , xn) := R1(args) ⨝ R2(args)⨝ ...

Preliminaries: Query as a Hypergraph

- H = （V，E）
- V: non empty set of vertices
- E: hyperedges

- Can connect more than two vertices
- Each vertex represents an

attribute/variable in the body of the query
- The “args”

- Each hyperedge represents a relation
- Eg: q :- R(x,y), S(y,z), T(z,x)

- V = {x,y,z}
- E = {(x,y), (y,z), (z,x)}

A hypergraph
(https://commons.wikimedia.org/wiki/File:Hyper
graph-wikipedia.svg）

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89
https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89

Preliminaries: Worst-Case Optimal Join

- Evaluating conjunctive queries are
NP-complete in terms of
combined complexity

- Combined complexity: Query
+ Input database

- Thus, we want to consider
algorithms with respect to both
input and output sizes

- The AGM (Atserias, Grohe, and
Marx) bound tightly bounds the
worst-case size of a join query
using a notion called a fractional
(edge) cover.

Definition of a fractional cover:

where xe is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

where Re is the size of the relation represented
by edge e

Preliminaries: Worst-Case Optimal Join

where xe is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

where Re is the size of the relation represented
by edge e

Definition of a fractional cover:Example: triangle query

Feasible cover: (1,1,0)

AGM bound: N2

Another feasible cover: (½, ½, ½)

AGM bound: N3/2

This bound is tight: consider a complete
graph with sqrt(N) vertices. On it this
query produces Ω(N3/2) tuples.

Preliminaries: Worst-Case Optimal Join

- We define worst-case optimal
join algorithms as those that
evaluate a full conjunctive
query in time that is
proportional to the worst-case
output size of the query.

- The NPRR algorithm is one of
them.

- NPRR has the so called min
property:

- the running time of the
intersection algorithm is
upper bounded by the
length of the smaller of
the two input sets.

Preliminaries: Input and Output Data Structures

- Dictionary encoding maps
original data values to 32 bit
unsigned integer keys

- Sets of values can be annotated
with data values for
aggregations

- For example, a two-level trie
annotated with a float value
represents a sparse matrix or
graph with edge properties.

- Depth of the trie equals to the
arity of the relation

- A tuple can be obtained by
simply getting the path from root
to leaf

EmptyHeaded: Overview

High-level
Query

GHD Generated
C++ Code

Execution
Engine with
Optimization

Query Optimizer: Sample Queries

Query Optimizer: Using Queries

Join:

Project:

Selection:

You can also use SQL:

Query Optimizer: Generalized Hypertree Decomposition (GHD)

- Nodes represent a join and
projection operation

- Edges represent data
dependencies

- Given a query, there exists many
different GHDs

- Need to find the GHD with the
lowest cost

Query Optimizer: Generalized Hypertree Decomposition (GHD)

Formal definition:

Let H be a hypergraph. A generalized hypertree
decomposition (GHD) of H is a triple D = (T; χ; λ),
where:

T(V(T), E(T)) is a tree

The following properties hold:

Query Optimizer: Compute outputs from GHDs

- Define Qv as the query formed by joining the
relations in λ(v).

- Width w of a GHD:
- AGM(Qv)

- Given a GHD with width w, there is a simple
algorithm to run in time O(Nw + OUT).

- First, run any worst-case optimal algorithm
on Qv for each node v of the GHD; each
join takes time O(Nw) and produces at most
O(Nw) tuples.

- Then, run Yannakakis’ algorithm which
enables us to compute the output in linear
time in the input size (O(Nw)) plus the
output size (OUT).

EmptyHeaded brute force all GHDs of
all possible widths, because number of
relations and attributes is typically small.

Query Optimizer: Code Generation from GHD

- The goal is to translate GHDs into
operations listed on the right.

- For each node, generate the code
using the worst-case optimal join
algorithm.

- The nodes are access first in a bottom
up pass, then the result is constructed
by walking down the tree in a top-down
pass.

- Handles recursion through both naive
evaluation and semi-naive evaluation

Execution Engine Optimizer: Layouts

Two layouts

UINT (for sparse data)

- Just an array of 32-bit unsigned integers

BITSET (for dense data)

- Stores a set of pairs (offset, bitvector).
- Offsets are indices of the smallest values

in the bitvectors.
- Offsets are packed contiguously.

Associated Values:

- Layouts depend on the layouts of the set
- For the bitset layout:

- store the associated values as a dense
vector (where associated values are
accessed based upon the data value in the
set).

- For the UINT layout:
- store the associated values as a sparse

vector (where the associated values are
accessed based upon the index of the
value in the set)

Execution Engine Optimizer: Intersection Algorithms

UINT ∩ UINT

- Sizes of the two sets might be drastically different
- Cardinality skew

- A simple hybrid algorithm that selects a SIMD
galloping algorithm when the ratio of
cardinalities is greater than 32:1, and a SIMD
shuffling algorithm otherwise.

BITSET ∩ UINT

- First intersect the uint values with the
offsets in the bitset.

- For each matching uint and bitset block we
check whether the corresponding bitset
blocks contain the uint value by probing
the block.BITSET ∩ BITSET

- Intersect offset firsts
- Then intersect blocks using SIMD AND
- The best case:

- all bits in the register are 1, a single
hardware instruction computes the
intersection of 256 values.

Execution Engine Optimizer: Layout Selection Granularity

Execution Engine Optimizer: Layout Selection Granularity

Relation level:

- Force the data in all relations to be stored using
the same layout

- Does not address density skew
- UINT provides the best performance

Set level:

- Decide on a per-set level if the entire set should
be represented using a UINT or a BITSET layout.

Block level:

- Regards the domain as a series of fixed-sized
blocks; we represent sparse blocks using the
UINT layout and dense blocks using the BITSET
layout

- Selecting layouts on a set level works best
on real-world graphs.

- It selects the BITSET layout when each
value in the set consumes at most as
much space as a SIMD (AVX) register and
the UINT layout otherwise.

Experiments: Setup

- 5 datasets are used in tests.
- Low-level Engines Tested:

- PowerGraph, CGT-X, Snap-R
- No Ligra :(

- High-level Engines Tested:
- LogicBlox, SociaLite

- Run on a single machine
with 48 cores on four Intel
Xeon E5-4657L v2 CPUs
and 1 TB of RAM.

Experiments: Results

Triangle Counting:

- Outperforms other baselines
by 2x - 60x

- Speedups most significant
on datasets with large
density skew

Experiments: Results

PageRank:

- 2x - 4x faster than
compared

- An order of magnitude
faster than high-level graph
engines compared

Experiments: Results

SSSP:

- Slower than Galois, still
competitive against other
baseline methods

- Require significantly fewer
lines of code (2 vs. 172 for
Galois)

Experiments: Micro-Benchmarking

Setups:

- Run three different queries:
- 4-clique (K4)
- Lollipop (L3,1)
- Barbell (B3,1)

- Run COUNT(*) aggregate
queries to test GHD

- Did not benchmark against
low-level graph engines t/o indicates the engine ran for over 30 minutes.

-R is EH without layout optimizations.
-RA is EH without both layout (density skew) and intersection

algorithm (cardinality skew) optimizations. -GHD is EH without GHD
optimizations (single-node GHD).

Experiments: Micro-Benchmarking

Observations:

- GHD optimizations help
significantly

- Faster than LogicBlox, which
doesn’t have GHD optimizations

- GHDs enable early aggregation,
eliminating computation on
datasets with high density skew

- 8.93x speed up on Google+ vs.
other datasets

- SIMD parallelism significantly
improve EmptyHeaded’s
performance

t/o indicates the engine ran for over 30 minutes.
-R is EH without layout optimizations.

-RA is EH without both layout (density skew) and intersection algorithm (cardinality skew)
optimizations. -GHD is EH without GHD optimizations (single-node GHD).

Questions

- Some of the concepts are not clearly
defined in the paper.

- Did not compare against Ligra.

- EmptyHeaded applies the paradigm of
relational algebra / databases to graph
processing. Has anyone tried the inverse:
treat traditional relational databases as
graphs?

- Are there graph engines that treat these
queries as mathematical programs instead
of relational queries?

Drawbacks

