EmptyHeaded: A Relational Engine for Graph Processing

Authors: Christopher R. Aberger, Susan Tu, Kunle Olukotun, Christopher Ré

Presenter: Jingnan Shi

Outline

- Introduction
- Preliminaries
- Query Compiler
- Code Generation
- Execution Engine Optimizer
- Experiments
- Questions

https://github.com/HazyResearch/EmptyHeade

Introduction

Low-level Graph Engines

- 1) Iterators and domain-specific primitives
 - 2) Optimized data layouts

Drawbacks: Require users to write code imperatively

Examples: Powergraph, Galois, SNAP, Ligra, ... V.S.

High-level Graph Engines

Supports tasks using query languages

Drawbacks:

1) Performance gap

Examples:

SociaLite, LogicBlox, Grail

Introduction

- SQL/Datalog query interface
- Worst-case Optimal
- Optimized data layout and code generation

Low-level Graph Engines

- 1) Iterators and domain-specific primitives
 - 2) Optimized data layouts

Drawbacks: Require users to write code imperatively

Examples: Powergraph, Galois, SNAP, Ligra, ... V.S.

High-level Graph Engines

Supports tasks using query languages

Drawbacks:

1) Performance gap

Examples:

SociaLite, LogicBlox, Grail

Preliminaries: Datalog

Facts: tuples in the database

Rules: queries

StudentID	GPA	Course	A tuple
0	4.5	6	
1	4.8	2]

StudentID	Dorm	Class
0	Ashdown	2019
1	SidPac	2020

Schemas:

academic(studentID, GPA, Course) info(studentID, dorm, class)

Facts:

academic(0, 4.5, 6) academic(1, 4.8, 2) info(0, Ashdown, 2019) info(1, SidPac, 2020)

Rules/Queries:

q(x) :- academic(x,y,z), z=6 Find students in course 6

q(x) :- academic(x,y,2), info(x, 'SidPac', w) Find student in course 2 who lives in SidPac

Preliminaries: Datalog

In general:

 $Q(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) := R_1(\text{ args }), R_2(\text{ args }), \dots$

- LHS: head
- RHS: body
- This is a conjunctive query:
 - R_i returns true if the relation contains the tuple described by the input arguments
 - Each of the R_i is called a subgoal, and the query results / tuples returned have to satisfy all of them
- Also can be expressed as natural join queries

-
$$Q(x_1, x_2, ..., x_n) := R_1(\text{ args }) \bowtie R_2(\text{ args }) \bowtie ...$$

Preliminaries: Query as a Hypergraph

- H = (V, E)
- V: non empty set of vertices
- E: hyperedges
 - Can connect more than two vertices
- Each vertex represents an attribute/variable in the body of the query
 - The "args"
- Each hyperedge represents a relation
- Eg: q :- R(x,y), S(y,z), T(z,x)
 - $V = \{x, y, z\}$
 - $E = \{(x,y), (y,z), (z,x)\}$

A hypergraph (https://commons.wikimedia.org/wiki/File:Hyper graph-wikipedia.svg)

Preliminaries: Worst-Case Optimal Join

- Evaluating conjunctive queries are NP-complete in terms of combined complexity
 - Combined complexity: Query
 + Input database
- Thus, we want to consider algorithms with respect to both input and output sizes
- The **AGM** (Atserias, Grohe, and Marx) bound tightly bounds the worst-case size of a join query using a notion called a *fractional* (edge) cover.

Definition of a fractional cover:

$$ext{ for each } v \in V ext{ we have } \sum_{e \in E: e
i v} x_e \geq 1$$

where x_e is a weight vector indexed by edges, and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

$$|\mathrm{OUT}| \leq \prod_{e \in E} |R_e|^{x_e}$$

where $\rm R_{e}$ is the size of the relation represented by edge $\rm e$

Preliminaries: Worst-Case Optimal Join

Example: triangle query

$$R(x,y) \bowtie S(y,z) \bowtie T(x,z)$$

Feasible cover: (1,1,0)

AGM bound: N²

```
Another feasible cover: (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})
```

AGM bound: N^{3/2}

This bound is tight: consider a complete graph with sqrt(N) vertices. On it this query produces $\Omega(N^{3/2})$ tuples.

Definition of a fractional cover:

$$ext{ for each } v \in V ext{ we have } \sum_{e \in E: e
i v} x_e \geq 1$$

where x_e is a weight vector indexed by edges, and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

$$|\mathrm{OUT}| \leq \prod_{e \in E} |R_e|^{x_e}$$

where $\rm R_{e}$ is the size of the relation represented by edge e

Preliminaries: Worst-Case Optimal Join

- We define worst-case optimal join algorithms as those that evaluate a full conjunctive query in time that is proportional to the worst-case output size of the query.
- The NPRR algorithm is one of them.
- NPRR has the so called min property:
 - the running time of the intersection algorithm is upper bounded by the length of the smaller of the two input sets.

Algorithm 1 Generic Worst-Case Optimal Join Algorithm

Preliminaries: Input and Output Data Structures

- Dictionary encoding maps original data values to 32 bit unsigned integer keys
- Sets of values can be annotated with data values for aggregations
 - For example, a two-level trie annotated with a float value represents a sparse matrix or graph with edge properties.
- Depth of the trie equals to the arity of the relation
- A tuple can be obtained by simply getting the path from root to leaf

Figure 2: EmptyHeaded transformations from a table to trie representation using attribute order (*man-agerID*, *employerID*) and *employerID* attribute annotated with *employeeRating*.

EmptyHeaded: Overview

Query Optimizer: Sample Queries

Name	Query Syntax
Triangle	Triangle(x,y,z) := R(x,y), S(y,z), T(x,z).
4-Clique	4Clique(x,y,z,w) :- R(x,y),S(y,z),T(x,z),U(x,w),V(y,w),Q(z,w).
Lollipop	Lollipop(x,y,z,w) := R(x,y), S(y,z), T(x,z), U(x,w).
Barbell	Barbell(x,y,z,x',y',z') :- R(x,y),S(y,z),T(x,z),U(x,x'),R'(x',y'),S'(y',z'),T'(x',z').
Count Triangle	CountTriangle(;w:long) := R(x,y), S(x,z), T(x,z); w = < < COUNT(*) >>.
PageRank	N(;w:int) :- Edge(x,y); w=< <count(x)>>. PageRank(x;y:float) :- Edge(x,z); y= 1/N. PageRank(x;y:float)*[i=5] :- Edge(x,z),PageRank(z),InvDeg(z); y=0.15+0.85*<<sum(z)>>.</sum(z)></count(x)>
SSSP	<pre>SSSP(x;y:int) :- Edge("start",x); y=1. SSSP(x;y:int)* :- Edge(w,x),SSSP(w); y=<<min(w)>>+1.</min(w)></pre>

Table 1: Example Queries in EmptyHeaded

Query Optimizer: Using Queries

Join:

db.eval("Triangle(a,b,c) :- Edge(a,b),Edge(b,c),Edge(a,c).")

Project:

```
db.eval("Triangle(a,b) :- Edge(a,b),Edge(b,c),Edge(a,c).")
```

Selection:

```
db.eval("""FliqueSel(a,b,c,d) :- x=0,
Edge(a,b),Edge(b,c),Edge(a,c),
Edge(a,d),Edge(b,d),Edge(c,d),Edge(a,x).""")
```


You can also use SQL:

```
db.eval("""
CREATE TABLE Triangle AS (
   SELECT e1.a, e2.a, e3.a
   FROM Edge e1
   JOIN Edge e2 ON e1.b = e2.a
   JOIN Edge e3 ON e2.b = e3.a
        AND e3.b = e1.a
)
""", useSql=True)
```


Query Optimizer: Generalized Hypertree Decomposition (GHD)

- Nodes represent a join and projection operation
- Edges represent data dependencies

- Given a query, there exists many different GHDs

Vo

 Need to find the GHD with the lowest cost

Query Compiler v_0 $\lambda:\mathbb{R}$ $\chi:x,y,z$

Query Optimizer: Generalized Hypertree Decomposition (GHD)

Formal definition:

Let H be a hypergraph. A generalized hypertree decomposition (GHD) of H is a triple D = (T; χ ; λ), where:

T(V(T), E(T)) is a tree

 $\chi:V(T) o 2^{V(H)}$ is a function associating a set of vertices $\chi(v)\subseteq V(H)$ to each node v of T;

 $\lambda: V(T) \rightarrow 2^{E(H)}$ is a function associating a set of hyperedges to each vertex v of T;

The following properties hold:

1. For each $e \in E(H)$, there is a node $v \in V(T)$ such that $e \subseteq \chi(v)$ and $e \in \lambda(v)$ 2. For each $t \in V(H)$, the set $\{v \in V(T) \mid t \in \chi(v)\}$ is connected in T. 3. For every $v \in V(T), \chi(v) \subseteq \cup \lambda(v)$.

Query Optimizer: Compute outputs from GHDs

- Define Q_v as the query formed by joining the relations in $\lambda(v)$.
- Width w of a GHD:
 - AGM(Q_v)
- Given a GHD with width w, there is a simple algorithm to run in time O(N^w + OUT).
 - First, run any worst-case optimal algorithm on Q_v for each node v of the GHD; each join takes time O(N^w) and produces at most O(N^w) tuples.
 - Then, run Yannakakis' algorithm which enables us to compute the output in linear time in the input size (O(N^w)) plus the output size (OUT).

Ouerv Compiler

EmptyHeaded brute force all GHDs of all possible widths, because number of relations and attributes is typically small.

Query Optimizer: Code Generation from GHD

 $\label{eq:constraint} \begin{gathered} \textbf{Generated Code} \\ \textbf{S}_x := (\pi_x \, \mathbb{R} \cap \pi_x \, \mathbb{R}) \\ \textbf{for } x \, \textbf{in } s_x : \\ \textbf{s}_y := (\pi_y \, \mathbb{R}[x] \cap \pi_y \, \mathbb{R}) \\ \textbf{for } y \, \textbf{in } s_y : \\ \textbf{s}_z := (\pi_z \, \mathbb{R}[y] \cap \pi_z \, \mathbb{R}[x]) \\ \textbf{for } z \, \textbf{in } s_z : \\ \textbf{K}_3 \cup (x, y, z) \end{gathered} \end{gathered}$

- The goal is to translate GHDs into operations listed on the right.
- For each node, generate the code using the worst-case optimal join algorithm.
- The nodes are access first in a bottom up pass, then the result is constructed by walking down the tree in a top-down pass.
- Handles recursion through both naive evaluation and semi-naive evaluation

Operation	Description		
R[t]	Returns the set matching tuple $t \in R$.		
$R \gets R \cup t \times xs$	Appends elements in set xs to tuple $t \in R$.		
for x in xs	Iterates through the elements x of a set xs .		
$xs \cap ys$	Returns the intersection of sets xs and ys .		
	Operation R[t] $R \leftarrow R \cup t \times xs$ for x in xs $xs \cap ys$		

Execution Engine Optimizer: Layouts

 $n \quad o_1 \quad \dots \quad o_n \quad b_1 \quad \dots \quad b_n$

Figure 4: Example of the **bitset** layout that contains n blocks and a sequence of offsets (o_1-o_n) and blocks (b_1-b_n) . The offsets store the start offset for values in the bitvector.

Two layouts

UINT (for sparse data)

- Just an array of 32-bit unsigned integers

BITSET (for dense data)

- Stores a set of pairs (offset, bitvector).
- Offsets are indices of the smallest values in the bitvectors.
- Offsets are packed contiguously.

Associated Values:

- Layouts depend on the layouts of the set
- For the bitset layout:
 - store the associated values as a dense vector (where associated values are accessed based upon the data value in the set).
- For the UINT layout:
 - store the associated values as a sparse vector (where the associated values are accessed based upon the index of the value in the set)

Execution Engine Optimizer: Intersection Algorithms

$\mathsf{UINT}\cap\mathsf{UINT}$

- Sizes of the two sets might be drastically different
 - Cardinality skew
- A simple hybrid algorithm that selects a SIMD galloping algorithm when the ratio of cardinalities is greater than 32:1, and a SIMD shuffling algorithm otherwise.

BITSET ∩ BITSET

- Intersect offset firsts
- Then intersect blocks using SIMD AND
- The best case:
 - all bits in the register are 1, a single hardware instruction computes the intersection of 256 values.

$\mathsf{BITSET} \cap \mathsf{UINT}$

- First intersect the uint values with the offsets in the bitset.
- For each matching uint and bitset block we check whether the corresponding bitset blocks contain the uint value by probing the block.

Execution Engine Optimizer: Layout Selection Granularity

Figure 5: Intersection time of Figure 6: Intersection time of uint and bitset layouts for layouts for sets with different different densities. sizes of dense regions.

Execution Engine Optimizer: Layout Selection Granularity

Relation level:

- Force the data in all relations to be stored using the same layout
 - Does not address density skew
- UINT provides the best performance

Set level:

 Decide on a per-set level if the entire set should be represented using a UINT or a BITSET layout.

Block level:

 Regards the domain as a series of fixed-sized blocks; we represent sparse blocks using the UINT layout and dense blocks using the BITSET layout

Dataset	Relation level	Set level	Block level
Google+	7.3x	1.1x	3.2x
Higgs	1.6x	1.4x	2.4x
LiveJournal	1.3x	1.4x	2.0x
Orkut	1.4x	1.4x	2.0x
Patents	1.2x	1.6x	1.9x

Table 4: Relative time of the level optimizers on triangle counting compared to the oracle.

- Selecting layouts on a set level works best on real-world graphs.
- It selects the BITSET layout when each value in the set consumes at most as much space as a SIMD (AVX) register and the UINT layout otherwise.

Experiments: Setup

- 5 datasets are used in tests.
- Low-level Engines Tested:
 - PowerGraph, CGT-X, Snap-R
 - No Ligra :(
- High-level Engines Tested:
 - LogicBlox, SociaLite
- Run on a single machine with 48 cores on four Intel Xeon E5-4657L v2 CPUs and 1 TB of RAM.

Dataset	Nodes [M]	Dir. Edges [M]	Undir. Edges [M]	Density Skew	Description
Google+ 42	0.11	13.7	12.2	1.17	User network
Higgs 42	0.4	14.9	12.5	0.23	Tweets about
					Higgs Boson
LiveJournal 23	4.8	68.5	43.4	0.09	User network
Orkut 4	3.1	117.2	117.2	0.08	User network
Patents 1	3.8	16.5	16.5	0.09	Citation network
Twitter 17	41.7	1,468.4	757.8	0.12	Follower network

Experiments: Results

Triangle Counting:

- Outperforms other baselines
 by 2x 60x
- Speedups most significant on datasets with large density skew

			Low-Leve	High-Level			
Dataset	EH	PG	CGT-X	SR	\mathbf{SL}	LB	
Google+	0.31	8.40x	62.19x	4.18x	1390.75x	83.74x	
Higgs	0.15	3.25x	57.96x	5.84x	387.41x	29.13x	
LiveJournal	0.48	5.17x	3.85x	10.72x	225.97x	23.53x	
Orkut	2.36	2.94x	-	4.09x	191.84x	19.24x	
Patents	0.14	10.20x	7.45x	22.14x	49.12x	27.82x	
Twitter	56.81	4.40x	-	2.22x	t/o	30.60x	

Table 5: Triangle counting runtime (in seconds) for Empty-Headed (EH) and relative slowdown for other engines including PowerGraph (PG), a commercial graph tool (CGT-X), Snap-Ringo (SR), SociaLite (SL) and LogicBlox (LB). 48 threads used for all engines. "-" indicates the engine does not process over 70 million edges. "t/o" indicates the engine ran for over 30 minutes.

Experiments: Results

PageRank:

- 2x 4x faster than compared
- An order of magnitude faster than high-level graph engines compared

	Low-Level				High-Level	
EH	G	PG	CGT-X	SR	\mathbf{SL}	LB
0.10	0.021	0.24	1.65	0.24	1.25	7.03
0.08	0.049	0.5	2.24	0.32	1.78	7.72
0.58	0.51	4.32	-	1.37	5.09	25.03
0.65	0.59	4.48	-	1.15	17.52	75.11
0.41	0.78	3.12	4.45	1.06	10.42	17.86
15.41	17.98	57.00	-	27.92	367.32	442.85
	EH 0.10 0.08 0.58 0.65 0.41 5.41	EHG0.100.0210.080.0490.580.510.650.590.410.785.4117.98	EHGPG0.100.0210.240.080.0490.50.580.514.320.650.594.480.410.783.125.4117.9857.00	EH G PG CGT-X 0.10 0.021 0.24 1.65 0.08 0.049 0.5 2.24 0.58 0.51 4.32 - 0.65 0.59 4.48 - 0.41 0.78 3.12 4.45 5.41 17.98 57.00 -	EHGPGCGT-XSR0.100.0210.241.650.240.080.0490.52.240.320.580.514.32-1.370.650.594.48-1.150.410.783.124.451.065.4117.9857.00-27.92	EHGPGCGT-XSRSL0.100.0210.241.650.241.250.080.0490.52.240.321.780.580.514.32-1.375.090.650.594.48-1.1517.520.410.783.124.451.0610.425.4117.9857.00-27.92367.32

Table 6: Runtime for 5 iterations of PageRank (in seconds) using 48 threads for all engines. "-" indicates the engine does not process over 70 million edges. EH denotes Emp-tyHeaded and the other engines include Galois (G), Power-Graph (PG), a commercial graph tool (CGT-X), Snap-Ringo (SR), SociaLite (SL), and LogicBlox (LB).

Experiments: Results

SSSP:

- Slower than Galois, still competitive against other baseline methods
- Require significantly fewer lines of code (2 vs. 172 for Galois)

		I	Low-Le	High-Level			
Dataset	EH	G	PG	CGT-X	SL	LB	
Google+	0.024	0.008	0.22	0.51	0.27	41.81	
Higgs	0.035	0.017	0.34	0.91	0.85	58.68	
LiveJournal	0.19	0.062	1.80	-	3.40	102.83	
Orkut	0.24	0.079	2.30	-	7.33	215.25	
Patents	0.15	0.054	1.40	4.70	3.97	159.12	
Twitter	7.87	2.52	36.90	-	x	379.16	

Table 7: SSSP runtime (in seconds) using 48 threads for all engines. "-" indicates the engine does not process over 70 million edges. EH denotes EmptyHeaded and the other engines include Galois (G), PowerGraph (PG), a commercial graph tool (CGT-X), and SociaLite (SL). "x" indicates the engine did not compute the query properly.

Experiments: Micro-Benchmarking

Setups:

- Run three different queries:
 - 4-clique (K₄)
 - Lollipop (L_{3,1})
 - Barbell (B_{3,1})
- Run COUNT(*) aggregate queries to test GHD
- Did not benchmark against low-level graph engines

Dataset	Query	EH	-R	-RA	-GHD	SL	LB
	K_4	4.12	$10.01 \mathrm{x}$	10.01x	-	t/o	t/o
Google+	$L_{3,1}$	3.11	1.05x	1.10x	8.93x	t/o	t/o
	$B_{3,1}$	3.17	$1.05 \mathrm{x}$	1.14x	t/o	t/o	t/o
	K_4	0.66	3.10x	10.69x	-	666x	50.88x
Higgs	$L_{3,1}$	0.93	1.97x	7.78x	1.28x	t/o	t/o
	$B_{3,1}$	0.95	2.53	11.79x	t/o	t/o	t/o
	K_4	2.40	36.94x	183.15x	-	t/o	141.13x
LiveJournal	$L_{3,1}$	1.64	45.30x	176.14x	1.26x	t/o	t/o
	$B_{3,1}$	1.67	88.03x	344.90x	t/o	t/o	t/o
	K_4	7.65	8.09x	162.13x	-	t/o	49.76x
Orkut	$L_{3,1}$	8.79	2.52x	24.67x	1.09x	t/o	t/o
8	$B_{3,1}$	8.87	3.99x	47.81x	t/o	t/o	t/o
	K_4	0.25	328.77x	1021.77x	-	20.05x	21.77x
Patents	$L_{3,1}$	0.46	104.42x	575.83x	0.99x	318x	62.23x
	$B_{3,1}$	0.48	200.72x	1105.73x	t/o	t/o	t/o

t/o indicates the engine ran for over 30 minutes. -R is EH without layout optimizations. -RA is EH without both layout (density skew) and intersection algorithm (cardinality skew) optimizations. -GHD is EH without GHD optimizations (single-node GHD).

Experiments: Micro-Benchmarking

Observations:

- GHD optimizations help significantly
 - Faster than LogicBlox, which doesn't have GHD optimizations
- GHDs enable early aggregation, eliminating computation on datasets with high density skew
 - 8.93x speed up on Google+ vs. other datasets
- SIMD parallelism significantly improve EmptyHeaded's performance

			\frown		\square		
Dataset	Query	EH	-R	-RA	-GHD	\mathbf{SL}	LB
	K_4	4.12	10.01x	10.01x	-	t/o	t/o
Google+	$L_{3,1}$	3.11	$1.05 \mathrm{x}$	1.10x	8.93x	t/o	t/o
	$B_{3,1}$	3.17	$1.05 \mathrm{x}$	1.14x	t/o	t/o	t/o
	K_4	0.66	3.10x	10.69x		666x	50.88x
Higgs	$L_{3,1}$	0.93	1.97x	7.78x	1.28x	t/o	t/o
	$B_{3,1}$	0.95	2.53	11.79x	t/o	t/o	t/o
	K_4	2.40	36.94x	183.15x	-	t/o	141.13x
LiveJournal	$L_{3,1}$	1.64	45.30x	176.14x	1.26x	t/o	t/o
	$B_{3,1}$	1.67	88.03x	344.90x	t/o	t/o	t/o
	K_4	7.65	8.09x	162.13x		t/o	49.76x
Orkut	$L_{3,1}$	8.79	2.52x	24.67x	1.09x	t/o	t/o
	$B_{3,1}$	8.87	3.99x	47.81x	t/o	t/o	t/o
	K_4	0.25	328.77x	1021.77x	-	20.05x	21.77x
Patents	$L_{3,1}$	0.46	104.42x	575.83x	0.99x	318x	62.23x
	$B_{3,1}$	0.48	200.72x	1105.73x	t/o	t/o	t/o

t/o indicates the engine ran for over 30 minutes.

-R is EH without layout optimizations.

-RA is EH without both layout (density skew) and intersection algorithm (cardinality skew)

optimizations. -GHD is EH without GHD optimizations (single-node GHD).

Drawbacks

- Some of the concepts are not clearly defined in the paper.
- Did not compare against Ligra.

Questions

- EmptyHeaded applies the paradigm of relational algebra / databases to graph processing. Has anyone tried the inverse: treat traditional relational databases as graphs?
- Are there graph engines that treat these queries as mathematical programs instead of relational queries?