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Introduction

Low-level Graph Engines

1) Iterators and domain-specific 
primitives

2) Optimized data layouts

Drawbacks: 
Require users to write code 

imperatively

Examples:
Powergraph, Galois, SNAP, Ligra, ...

High-level Graph Engines

Supports tasks using query 
languages

Drawbacks:
1) Performance gap

Examples:
SociaLite, LogicBlox, Grail

V.S. 
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- SQL/Datalog query interface
- Worst-case Optimal
- Optimized data layout and 

code generation



Preliminaries: Datalog 
Facts: tuples in the database

Rules: queries

StudentID GPA Course

0 4.5 6

1 4.8 2

StudentID Dorm Class

0 Ashdown 2019

1 SidPac 2020

Schemas:
academic(studentID, GPA, Course)
info(studentID, dorm, class)

Facts:
academic(0, 4.5, 6)
academic(1, 4.8, 2)
info(0, Ashdown, 2019)
info(1, SidPac, 2020)

Rules/Queries:
q(x) :- academic(x,y,z), z=6
Find students in course 6

q(x) :- academic(x,y,2), info(x, ‘SidPac’, w)
Find student in course 2 who lives in SidPac

A tuple



Preliminaries: Datalog 
In general: 

Q(x1, x2, ... , xn) := R1( args ), R2( args  ), ...

- LHS: head
- RHS: body
- This is a conjunctive query:

- Ri returns true if the relation contains the tuple described by the input 
arguments

- Each of the Ri is called a subgoal, and the query results / tuples returned 
have to satisfy all of them

- Also can be expressed as natural join queries
- Q(x1, x2, ... , xn) := R1( args ) ⨝ R2( args )⨝ ...



Preliminaries: Query as a Hypergraph

- H = （V，E）
- V: non empty set of vertices
- E: hyperedges

- Can connect more than two vertices
- Each vertex represents an 

attribute/variable in the body of the query
- The “args”

- Each hyperedge represents a relation
- Eg: q :- R(x,y), S(y,z), T(z,x)

- V = {x,y,z}
- E = {(x,y), (y,z), (z,x)}

A hypergraph
(https://commons.wikimedia.org/wiki/File:Hyper
graph-wikipedia.svg） 

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89
https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg%EF%BC%89


Preliminaries: Worst-Case Optimal Join 

- Evaluating conjunctive queries are 
NP-complete in terms of 
combined complexity

- Combined complexity: Query 
+ Input database 

- Thus, we want to consider 
algorithms with respect to both 
input and output sizes

- The AGM (Atserias, Grohe, and 
Marx) bound tightly bounds the 
worst-case size of a join query 
using a notion called a fractional 
(edge) cover.

Definition of a fractional cover:

where xe is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

where Re is the size of the relation represented 
by edge e



Preliminaries: Worst-Case Optimal Join 

where xe is a weight vector indexed by edges,
and H = (V, E) is a fixed hypergraph.

Definition of the AGM bound:

where Re is the size of the relation represented 
by edge e

Definition of a fractional cover:Example: triangle query

Feasible cover: (1,1,0)

AGM bound: N2

Another feasible cover: (½, ½, ½)

AGM bound: N3/2

This bound is tight: consider a complete 
graph with sqrt(N) vertices. On it this 
query produces Ω(N3/2) tuples.



Preliminaries: Worst-Case Optimal Join 

- We define worst-case optimal 
join algorithms as those that 
evaluate a full conjunctive 
query in time that is 
proportional to the worst-case 
output size of the query.

- The NPRR algorithm is one of 
them.

- NPRR has the so called min 
property:

- the running time of the 
intersection algorithm is 
upper bounded by the 
length of the smaller of 
the two input sets.



Preliminaries: Input and Output Data Structures

- Dictionary encoding maps 
original data values to 32 bit 
unsigned integer keys

- Sets of values can be annotated 
with data values for 
aggregations

- For example, a two-level trie 
annotated with a float value 
represents a sparse matrix or 
graph with edge properties.

- Depth of the trie equals to the 
arity of the relation

- A tuple can be obtained by 
simply getting the path from root 
to leaf



EmptyHeaded: Overview

High-level 
Query

GHD Generated 
C++ Code

Execution 
Engine with 
Optimization



Query Optimizer: Sample Queries



Query Optimizer: Using Queries

Join:

Project:

Selection:

You can also use SQL:



Query Optimizer: Generalized Hypertree Decomposition (GHD)

- Nodes represent a join and 
projection operation

- Edges represent data 
dependencies

- Given a query, there exists many 
different GHDs

- Need to find the GHD with the 
lowest cost



Query Optimizer: Generalized Hypertree Decomposition (GHD)

Formal definition:

Let H be a hypergraph. A generalized hypertree 
decomposition (GHD) of H is a triple D = (T; χ; λ), 
where:

T(V(T), E(T)) is a tree

The following properties hold:



Query Optimizer: Compute outputs from GHDs

- Define Qv  as the query formed by joining the 
relations in λ(v).

- Width w of a GHD:
- AGM(Qv)

- Given a GHD with width w, there is a simple 
algorithm to run in time O(Nw + OUT). 

- First, run any worst-case optimal algorithm 
on Qv for each node v of the GHD; each 
join takes time O(Nw) and produces at most 
O(Nw) tuples.

- Then, run Yannakakis’ algorithm which 
enables us to compute the output in linear 
time in the input size (O(Nw)) plus the 
output size (OUT).

EmptyHeaded brute force all GHDs of 
all possible widths, because number of 
relations and attributes is typically small.



Query Optimizer: Code Generation from GHD

- The goal is to translate GHDs into 
operations listed on the right.

- For each node, generate the code 
using the worst-case optimal join 
algorithm.

- The nodes are access first in a bottom 
up pass, then the result is constructed 
by walking down the tree in a top-down 
pass.

- Handles recursion through both naive 
evaluation and semi-naive evaluation



Execution Engine Optimizer: Layouts

Two layouts

UINT (for sparse data)

- Just an array of 32-bit unsigned integers

BITSET (for dense data)

- Stores a set of pairs (offset, bitvector).
- Offsets are indices of the smallest values 

in the bitvectors.
- Offsets are packed contiguously.

Associated Values:

- Layouts depend on the layouts of the set
- For the bitset layout:

- store the associated values as a dense 
vector (where associated values are 
accessed based upon the data value in the 
set). 

- For the UINT layout:
- store the associated values as a sparse 

vector (where the associated values are 
accessed based upon the index of the 
value in the set)



Execution Engine Optimizer: Intersection Algorithms

UINT ∩ UINT

- Sizes of the two sets might be drastically different
- Cardinality skew

- A simple hybrid algorithm that selects a SIMD 
galloping algorithm when the ratio of 
cardinalities is greater than 32:1, and a SIMD 
shuffling algorithm otherwise.

BITSET ∩ UINT

- First intersect the uint values with the 
offsets in the bitset.

- For each matching uint and bitset block we 
check whether the corresponding bitset 
blocks contain the uint value by probing 
the block.BITSET ∩ BITSET

- Intersect offset firsts
- Then intersect blocks using SIMD AND
- The best case:

- all bits in the register are 1, a single 
hardware instruction computes the 
intersection of 256 values.



Execution Engine Optimizer: Layout Selection Granularity



Execution Engine Optimizer: Layout Selection Granularity

Relation level:

- Force the data in all relations to be stored using 
the same layout

- Does not address density skew
- UINT provides the best performance 

Set level:

- Decide on a per-set level if the entire set should 
be represented using a UINT or a BITSET layout.

Block level:

- Regards the domain as a series of fixed-sized 
blocks; we represent sparse blocks using the 
UINT layout and dense blocks using the BITSET 
layout

- Selecting layouts on a set level works best 
on real-world graphs.

- It selects the BITSET layout when each 
value in the set consumes at most as 
much space as a SIMD (AVX) register and 
the UINT layout otherwise.



Experiments: Setup

- 5 datasets are used in tests.
- Low-level Engines Tested:

- PowerGraph, CGT-X, Snap-R
- No Ligra :(

- High-level Engines Tested:
- LogicBlox, SociaLite

- Run on a single machine 
with 48 cores on four Intel 
Xeon E5-4657L v2 CPUs 
and 1 TB of RAM.



Experiments: Results

Triangle Counting:

- Outperforms other baselines 
by 2x - 60x

- Speedups most significant 
on datasets with large 
density skew



Experiments: Results

PageRank:

- 2x - 4x faster than 
compared 

- An order of magnitude 
faster than high-level graph 
engines compared



Experiments: Results

SSSP:

- Slower than Galois, still 
competitive against other 
baseline methods

- Require significantly fewer 
lines of code (2 vs. 172 for 
Galois)



Experiments: Micro-Benchmarking

Setups:

- Run three different queries:
- 4-clique (K4)
- Lollipop (L3,1)
- Barbell (B3,1)

- Run COUNT(*) aggregate 
queries to test GHD

- Did not benchmark against 
low-level graph engines t/o indicates the engine ran for over 30 minutes. 

-R is EH without layout optimizations.
-RA is EH without both layout (density skew) and intersection 

algorithm (cardinality skew) optimizations. -GHD is EH without GHD 
optimizations (single-node GHD).



Experiments: Micro-Benchmarking

Observations:

- GHD optimizations help 
significantly

- Faster than LogicBlox, which 
doesn’t have GHD optimizations

- GHDs enable early aggregation, 
eliminating computation on 
datasets with high density skew

- 8.93x speed up on Google+ vs. 
other datasets

- SIMD parallelism significantly 
improve EmptyHeaded’s 
performance

t/o indicates the engine ran for over 30 minutes. 
-R is EH without layout optimizations.

-RA is EH without both layout (density skew) and intersection algorithm (cardinality skew) 
optimizations. -GHD is EH without GHD optimizations (single-node GHD).



Questions

- Some of the concepts are not clearly 
defined in the paper.

- Did not compare against Ligra.

- EmptyHeaded applies the paradigm of 
relational algebra / databases to graph 
processing. Has anyone tried the inverse: 
treat traditional relational databases as 
graphs?

- Are there graph engines that treat these 
queries as mathematical programs instead 
of relational queries?

Drawbacks


