
Parallel algorithms for
butterfly + clique

computations
Jessica Shi (MIT CSAIL)

Laxman Dhulipala (MIT CSAIL)
Julian Shun (MIT CSAIL)

Outline

Problem statement + Applications
ParButterfly framework

Parallel butterfly counting
Parallel butterfly peeling

Implementation + evaluation of ParButterfly
Parallel clique counting framework

Parallel clique counting
Parallel clique peeling

Implementation + evaluation of parallel clique counting + peeling
Conclusion + Future work

Graph processing

Graphs are ubiquitous

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a
Major Power Outage in the Netherlands

http://bitcoinwiki.co/wp-content/uploads/
censorship-free-social-network-akasha-aims-
to-tackle-internet-censorship-with-blockchain-
technology.jpghttps://gizmodo.com/fascinating-graphic-shows-who-owns-all-the-major-

brands-1599537576

Bipartite graphs

Bipartite graphs: Represent relationships between two groups

Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations
The human disease network

Bipartite Graph Neural Networks for Efficient Node
Representation Learning

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Butterflies = 4-cycles = K2,2

Bipartite graphs

Think of these as the bipartite analogue of triangles (K3)
Note: Bipartite graphs contain no triangles

Finding dense subgraphs

Problem: Given a graph G, find dense (bipartite) subgraphs

Applications:
Find communities in social networks, websites, etc.
Discovering protein interactions in computational biology
Fraud detection in finance (tampered derivatives)

Link spam: Create many external links to a spam page, for web
search ranking promotion
Link graph: Webpages are nodes, connected by incoming /
outgoing hyperlinks

Link spam detection

Dogs wiki American kennel club

Corgi bloggerDog training tips

Professional dog grooming Cats of NYC

Note: Web communities tend to be dense bipartite subgraphs[1]

Web community bipartitions: topics, page creators interested in
topics

Link spam detection

Topics Page-creators
Dogs wiki American kennel club

Corgi bloggerDog training tips

Professional dog grooming Cats of NYC

[1] Kumar, Raghavan, Rajagopalan, Tomkins (99)

Tampered derivatives: Backed by set of assets/loans, tampered
to contain many unprofitable (lemon) asset classes[2]

Tampered derivatives

[2] Arora, Barak, Brunnermeier, Ge (09)

Derivatives Asset classes
Lemon

Lemon

Tampered

Tampered

How do we find dense subgraphs?

How do we find dense subgraphs (in general)?
Algorithms:

K-core
Triangle peeling

How do we find dense bipartite subgraphs?

How do we find dense subgraphs?

K-core: Repeatedly find + delete min degree vertex

2-core 3-core 3-core

Formally: A k-core is an induced subgraph where every vertex has degree at least k

How do we find dense subgraphs?

Problem with k-core:

Angela Merkel

How do we find dense subgraphs?

Triangle peeling: Repeatedly find + delete vertex contained
within the minimum # of triangles

3-triangle-cores

How do we find dense subgraphs?

Problem: Bipartite graphs do not contain any triangles

Butterfly peeling: Repeatedly find + delete vertex containing min
of butterflies[3]

[3] Sariyuce and Pinar (18)

Main goal: Build a framework ParButterfly to count and peel
butterflies

New parallel algorithms for butterfly counting + peeling
ParButterfly framework with modular settings

Tradeoff b/w theoretical bounds + practical speedups
Comprehensive evaluation

Counting outperforms fastest seq algorithms by up to 13.6x
Peeling outperforms fastest seq algorithms by up to 10.7x

Outline (Butterflies)

Main goal: Develop efficient exact and approximate algorithms for k-
clique counting and peeling

New parallel algorithms for k-clique counting + peeling
Comprehensive evaluation

Counting outperforms fastest parallel algorithms by up to 9.88x
Peeling outperforms fastest seq algorithms by up to 11.83x
Compute 4-clique counts on largest publicly-available graph with > 200
billion edges

Outline (Cliques)

Strong theoretical bounds
Work = total # operations = # vertices
in graph
Span = longest dependency path =
longest directed path
Running time ≤ (work / #
processors) + O(span)
Work-efficient = work matches
sequential time complexity

Important paradigms

Parallel computation graph

https://web.fe.up.pt/~jbarbosa/en/research_par.html

ParButterfly counting framework

Wedge = P2 =

How do we count butterflies? (per vertex)

Endpoints Center

Wedges with the same endpoints form butterflies:

How do we count butterflies? (per vertex)

Wedge = P2 =

wedges w/endpoints = ! = 3

butterflies on endpoints = "
= %

= 3
butterflies on each center = ! − 1 = 3 – 1 = 2

One question: How do we aggregate wedges?
(will discuss wedge retrieval after)

Counting framework so far

3. Compute butterfly counts
+ !

" for each endpoint + # − 1 for each center

2. Aggregate wedges
For each pair of endpoints, count # wedges #

1. Retrieve wedges

Method 1: Semisorting (on endpoints)

Wedge aggregating

Method 1: Semisorting (on endpoints)

Wedge aggregating

3 1 2

Method 2: Hashing (keys = endpoints)

Wedge aggregating

Method 2: Hashing (keys = endpoints)

Wedge aggregating

Method 3: Histogramming (frequencies of endpoints)

Wedge aggregating

= 3
= 2
= 1

Semisorting[1], hashing[2], and histogramming[3] are all work-
efficient

w = # of wedges
O(w) expected work, O(log w) span whp

Wedge aggregating bounds

[1] Gu, Shun, Sun, and Blelloch (15)
[2] Shun and Blelloch (14)
[3] Dhulipala, Blelloch, and Shun (17)

Counting framework so far

One more way to count wedges: Batching
(not with polylogarithmic span, but fast in practice)

3. Compute butterfly counts

2. Aggregate wedges
Semisort, Hash Histogram

1. Retrieve wedges

Main idea: Process a subset of vertices in parallel, finding all
wedges where those vertices are endpoints

Wedge aggregating (batching)

:

Array of size |V|:

0 1 0 3

Array of size |V|:

1 1 0 0

:

Counting framework so far

More questions:
How do we retrieve wedges?
How many wedges are there?

3. Compute butterfly counts

2. Aggregate wedges
Semisort, Hash Histogram, Batch

1. Retrieve wedges

Method 1: Process wedges w/endpoints from one bipartition
(Side) [1]

It depends!

6 wedges 5 wedges

Is this optimal (min # wedges)? Not always.
[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

Regardless of which side we pick, butterfly count does not
change – only some “useful” wedges create butterflies

(Note: Butterfly count remains the same)

2 “useful” wedges = 1 butterfly

6 wedges 5 wedges

2 “useful” wedges = 1 butterfly

Method 2: Degree ranking

Retrieve wedges

Main idea:
Once we obtain all wedges with endpoint v, we do not have to consider

wedges with endpoint v again.

[1] Chiba and Nishizeki (85)

Method 2: Degree ranking

1. Order vertices by non-increasing degree
2. For each vertex v, only consider wedges with endpoint v that is

formed by vertices later in the ordering than v

Retrieve wedges

[1] Chiba and Nishizeki (85)

Method 2: Degree ranking

Retrieve wedges

3

4 1

6

2

5

7

8

3

4 1

6

2

5

7

8

2 wedges

Method 2: Degree ranking

Retrieve wedges

3

4

6

2

5

7

8

3

4

6

2

5

7

8

2 wedges

Method 2: Degree ranking

Retrieve wedges

We only processed 4 wedges!

3

4

6

5

7

8

4

6

5

7

8

wedges processed using degree order = O(⍺m) [1]

⍺ = arboricity/degeneracy (O(√#))
m = # edges

Therefore: (using work-efficient options)

Degree ranking

Ranking vertices = O(m) expected work, O(log m) span whp
Retrieving wedges = O(⍺m) expected work, O(log m) span whp
Counting wedges = O(⍺m) expected work, O(log m) span whp

Computing butterfly counts = O(⍺m) expected work, O(log m) span whp

Total = O(⍺m) expected work, O(log m) span whp
[1] Chiba and Nishizeki (85)

Approximate degree order
Log degree

Complement degeneracy order
Ordering given by repeatedly finding + deleting greatest degree vertex

Approximate complement degeneracy order
Complement degeneracy order, but using log degree

Other rankings

We show these are all work-efficient

Counting framework

O(⍺m) expected work, O(log m) span whp

4. Compute butterfly counts

3. Aggregate wedges
Semisort, Hash Histogram, Batch

2. Retrieve wedges

1. Rank vertices
Side, Degree, Approx Degree, Co Degeneracy, Approx Co Degeneracy

ParButterfly peeling framework

Goal: Iteratively remove all vertices with min butterfly count

How do we peel butterflies?

Subgoal 1: A way to keep track of vertices with min butterfly count

Subgoal 2: A way to update butterfly counts after peeling vertices

Note: We’ve already done subgoal 2 in counting framework

For subgoal 1, we give a work-efficient batch-parallel Fibonacci heap which

supports batch insertions/decrease-keys (see paper).

Peeling framework

We show this algorithm is work-efficient
(with respect to peeling complexity)

2. Iteratively remove vertices with min butterfly count

1. Obtain butterfly counts

Use batch-parallel Fibonacci heap to find vertex set S
Count wedges with endpoints in S

Semisort, Hash, Histogram, Batch
Compute updated butterfly counts

ParButterfly evaluation

m5d.24xlarge AWS EC2 instance: 48 cores (2-way hyper-
threading), 384 GiB main memory

Cilk Plus[1] work-stealing scheduler

Koblenz Network Collection (KONECT) bipartite graphs

Experiments for the different modular options in our framework

Some modifications:
Julienne[2] instead of batch-parallel Fibonacci heap

Cannot hold all wedges in memory – batch wedge retrieval

Environment

[1] Leiserson (10)
[2] Dhulipala, Blelloch, and Shun (17)

Counting:
Best aggregation method: Batching

Counting:
Best ranking method: Approx Complement Degeneracy / Approx Degree

6.3 – 13.6x speedups over best seq implementations[1] [2]

349.6 – 5169x speedups over best parallel implementations[3]

Due to work-efficiency

7.1 – 38.5x self-relative speedups

Up to 1.7x additional speedup using a cache-optimization[4]

Butterfly counting results

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)
[2] ESCAPE: Pinar, Seshadhri, Vishal (17)
[3] PGD: Ahmed, Neville, Rossi, Duffield, and Wilke (17)
[4] Wang, Lin, Qin, Zhang, and Zhang (19)

Peeling:
Best aggregation method: Histogramming

1.3 – 30696x speedups over best seq implementations[1]

Depends heavily on peeling complexity
Largest speedup due to better work-efficiency for some graphs

Up to 10.7x self-relative speedups
No self-relative speedups if small # of vertices peeled

Butterfly peeling results

[1] Sariyuce and Pinar (18)

k-clique counting and peeling

Repeatedly intersect the neighborhoods of vertices

How do we find k-cliques?

c d

a b

e

c d

a b

e

Neighbors of = {b, c, d, e} Neighbors of = {c, d, e}

Repeatedly intersect the neighborhoods of vertices

How do we find k-cliques?

c d

a b

e

c d

a b

e

Neighbors of = {d} Neighbors of = {} 4-clique = {a, b, c, d}

How do we avoid double-counting k-cliques?
Ranking

Déjà vu: Ranking vertices

c d

a b

e
At each level, only store the set of vertices in the intersection of the

out-neighborhood of the clique

Ranking vertices

Degree ranking

K-core ranking

Arboricity ranking

Goodrich-Pszona

Barenboim-Elkin

Used in previous work

Work-efficient serially

Our contribution (parallelizations

of these algorithms)

Space-efficient in parallel

Polylogarithmic span in parallel

O(⍺)-orientations in O(m) expected work, O(log2 n) span whp

k-clique counting in O(m⍺k-2) expected work, O(k log n + log2 n) span whp,

O(m + P⍺) space

Goal: Iteratively remove all vertices with min k-clique count

How do we peel k-cliques?

Subgoal 1: A way to keep track of vertices with min k-clique count
Subgoal 2: A way to update k-clique counts after peeling vertices

Note: We’ve already done subgoal 2 in the counting algorithm

And we’ve already done subgoal 1 in the butterfly peeling algorithm!

We show this algorithm is work-efficient
(with respect to peeling complexity)

An aside on k-clique peeling

k-clique peeling uses essentially the same algorithm, but must
consider the undirected neighborhood of the peeled vertex
Nash-Williams Theorem gives work-efficient bounds

For every subgraph S, ∝≥ #$(&)
(&)*

k-clique evaluation

Evaluation (k-clique counting)

60-core GCP instance (two-way hyperthreading)

1.31 – 9.88x speedups over parallel KClist[1]

2.26 – 79.20x speedups over serial KClist

Up to 196.28x speedups over parallel Pivoter

Pivoter[2] is faster: k ≥ 8 on as-skitter, com-dblp; k ≥ 10 on com-orkut

Obtain 4-clique counts on

ClueWeb (74 billion edges) in < 2 hours

Hyperlink2014 (~100 billion edges) in < 4 hours

Hyperlink 2012 (~200 billion edges) in < 45 hours

[1] Danisch, Balalau, Sozio (18)
[2] Jain and Seshadhri (20)

Evaluation (k-clique counting)

Comparison to KClist

Evaluation (k-clique peeling)

60-core GCP instance (two-way hyperthreading)
1.01 – 11.83x speedups over serial KClist
Constrained by peeling complexity

Conclusion

New parallel algorithms for butterfly counting/peeling
Modular ParButterfly framework w/ranking + aggregation options
Strong theoretical bounds + high parallel scalability
Github: https://github.com/jeshi96/parbutterfly

New parallel algorithms for k-clique counting/peeling
Strong theoretical bounds + high parallel scalability
Github:
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CliqueCounting

Conclusion

https://github.com/jeshi96/parbutterfly
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CliqueCounting

Cycle counting (for k ≥ 6)[1, 2, 3]

Dynamic/Streaming subgraph counting[4, 5]

Nucleus decomposition[6]

Objective function for butterfly peeling[7]

GraphIt extensions

Hypergraph algorithms

Future Work

[1] Bera, Pashanasangi, Seshadhri (19)
[2] Kowalik (03)
[3] Pinar, Seshadhri, Vishal (16)
[4] Sanei-Mehri, Zhang, Sariyuce, Tirthapura (19)
[5] Eppstein, Spiro (09)

[6] Sariyuce, Seshadhri, Pinar, Catalyurek (15)
[7] Tsourakakis (15)

Thank you

Butterfly peeling is P-complete (limited speedups)
Work-efficient butterfly counting is not the fastest in practice

Reducing space usage in butterfly counting
Not easily generalized to other subgraphs

Limitations

wedges = ∑"∈$ ∑%∈&'(") *+,"(-)
Where ."(-) and *+,"(-) refer to neighbors / degree of y considering vertices
with rank > rank(x)

≤ 0
1,3 ∈4

min(deg ; , deg(<))

≤ 0
=>?@AB C

0
(1,3)∈C

min(deg ; , deg(<))

≤ 0
=>?@AB C

0
3∈$

deg(<)

= E(FG)

Deriving ⍺m

u v
(where u has higher degree
(lower rank) than v)

Batch-parallel Fibonacci heap:
k insertions: O(k) amortized expected work, O(log(n+k)) span whp
k decrease-keys: O(k) amortized work, O(log2 n) span whp
delete-min: O(log n) amortized expected work, O(log n) span whp

Priority queue for butterfly counts

Analysis follows directly from serial Fibonacci heap analysis, except marks
are integers instead of booleans

Additionally, we use a parallel hash table to maintain buckets for butterfly peeling

By vertex: (⍴v = number of peeling rounds across all vertices)
O(min(max-bv, ⍴v log m) + ∑ degree(v)2) expected work, O(⍴v log 2

m) span whp, O(n2 + max-bv) space

By edge: (⍴e = number of peeling rounds across all edges)
O(min(max-be, ⍴e log m) + ∑(u,v) ∑u’∈N(u) min(degree(u), degree(u’)))

expected work, O(⍴e log 2 m) span whp, O(m + max-be) space

Peeling framework bounds

(Using batch-parallel Fibonacci heap and Julienne)

By vertex: (⍴v = number of peeling rounds across all vertices)
O(⍴v log m + ∑ degree(v)2) expected work, O(⍴v log 2 m) span whp,

O(n2) space

By edge: (⍴e = number of peeling rounds across all edges)
O(⍴e log m + ∑(u,v) ∑u’∈N(u) min(degree(u), degree(u’))) expected

work, O(⍴e log 2 m) span whp, O(m) space

Peeling framework bounds

(Using batch-parallel Fibonacci heap)

By vertex: (⍴v = number of peeling rounds across all vertices)
O(⍴v log m + b) expected work, O(⍴v log 2 m) span whp, O(⍺m)

space

By edge: (⍴e = number of peeling rounds across all edges)
O(⍴e log m + b) expected work, O(⍴e log 2 m) span whp, O(⍺m)

space

Peeling framework bounds (Storing all wedges)

(Using batch-parallel Fibonacci heap)

By vertex: (⍴v = number of peeling rounds across all vertices)
O(b) expected work, O(⍴v log m) span whp, O(⍺m + max-bv) space

By edge: (⍴e = number of peeling rounds across all edges)
O(b) expected work, O(⍴e log m) span whp, O(⍺m + max-be) space

Peeling framework bounds (Storing all wedges)

(Using Julienne)

Edge sparsification: Keep each edge independently
w/probability p

Colorful sparsification: Assign a random color [1, …, 1/p] to each
vertex + keep each edge if the endpoints match

Sampling

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

Scalability (Per vertex counting)

Sampling

Wedge Aggregation (Per vertex counting with cache optimization)

