
Paper Presentation
High-Performance Parallel Graph Coloring with
Strong Guarantees on Work, Depth, and Quality

by Besta et. al.

Presentation by Viktor Urvantsev

Graph Coloring

● Also known as vertex coloring
● vertex coloring: an assignment of vertices where no

two neighboring vertices share the same color
● k-coloring: a vertex coloring of a graph using k distinct

colors
● chromatic number (χ(G)): the lowest number of colors

k that yields a successful k-coloring
● optimal coloring (or coloring problem): the problem

of finding χ(G) given a graph G
● optimal coloring is an NP-complete problem

Heuristics
● Used to compute colorings
● greedy heuristic: for all colors, choose the smallest color not already chosen

by a neighbor for vertex v
○ Gives a guarantee for coloring of a graph G with at most Δ + 1 colors, where Δ is the maximum

degree of the graph
● vertex ordering heuristic: a heuristic which decides in which order the

vertices are colored. Some examples are
○ first fit (FF): coloring via the default order in the vertices
○ largest-degree-first (LF): orders vertices based on degree in descending order
○ random (R): chooses vertices uniformly at random
○ incidence-degree (ID): largest number of uncolored neighbors first
○ saturation-degree (SD): largest number of distinct colors used by neighbors first
○ smallest-degree-last (SL): removes lowest degree vertices, colors remaining graph, colors

removed vertices
● Sadly, with all of these combined with greedy, these algorithms have no

parallelism

Parallel Graph Coloring Algorithms
● Jones and Plassman combined past heuristic work with parallel maximum

independent set deriving algorithms to make JP, a parallel graph coloring
algorithm

○ Colors a vertex once all of its neighbors that come later in the ordering have been colored
● JP combined with random vertex ordering (JP-R) ran with O(n+m) work, O(log

n/ log log n) depth for constant degree graphs (n = number of vertices, m =
number of edges)

● Hasenplaugh et. al. use approximate LF and SL to create JP-LLF and
JP-SLL, which improve upon work and depth bounds over JP-R

● Another approximate SL ordering was used to create JP-ASL, but offers no
work or depth bounds (scary)

Problems With Aforementioned Algorithms

● None have strong guarantees of quality!
○ Quality: the closeness of a result to the chromatic number (true optimal coloring)
○ JP-R may yield poor quality
○ JP-LF and JP-SL yield better quality, but can balloon in performance (run in Ω(n) or Ω(Δ2) in

some instances)
○ JP-LLF and JP-SLL yield quality of JP-LF and JP-SL with performance within a logarithmic

factor of JP-R
● None of the above algorithms have any upper bound coloring quality

guarantees

What The Paper Offers
● The first graph coloring algorithms with provably good bounds on work, depth,

and quality
● These algorithms do this using a new vertex ordering heuristic: provably

approximate degeneracy ordering (ADG)
● An algorithm using this heuristic with JP, called JP-ADG, with proven strong

bounds on work, depth and quality
● An algorithm using this ordering with speculative coloring, called DEC-ADG,

with proven strong bounds on work, depth and quality
● “A use case of how ADG can seamlessly enhance an existing state-of-the-art

graph coloring scheme (DEC-ADG-ITR)”
● Extensive theoretical analysis of and experimentation with graph coloring

algorithms
● Superior coloring quality in practice

Fundamental Concepts: Graph Model and Representation

Fundamental Concepts: Degeneracy, Coreness, and Related Concepts

● s-degenerate: a graph is s-degenerate if, in each of its induced subgraphs, there is
a vertex with a degree of at most s.

● degeneracy: the degeneracy d of a graph is the smallest s where the graph is still
s-degenerate

● degeneracy ordering: an ordering where there are at most d neighbors of each
vertex ordered higher than it

● k-approximate degeneracy ordering: same as exact, but at most k * d neighbors
● partial k-approximate degeneracy ordering: same as k-approximate, but certain

vertices can be ranked equally
● k-core: A connected component that is left over after iteratively removing vertices

with degree less than k from G
● coreness: the largest possible k, such that v is part of a subgraph S of G with

minimum degree k

Fundamental Concepts: Models For Algorithm Analysis

● Compute model: DAG model of dynamic multithreading
● Machine model: Ideal parallel computer
● Work-Depth Analysis for bounding runtimes

○ Uses both concurrent reads exclusive writes (CREW) and concurrent reads concurrent writes
(CRCW)

Fundamental Concepts: Compute Primitives

● Reduce
○ Given a set S, it finds and returns the sum of the set in O(n) work and O(log n) depth
○ Used to implement Count(S), which simply returns the size of S

● DecrementAndFetch (DAF)
○ Atomically decrements its operand and returns a new value
○ Used to implement Join to synchronize processors

Fundamental Concepts: Randomization

● Monte Carlo Algorithms: algorithms which return the correct result w.h.p
● Las Vegas Algorithms: algorithms that always return the correct answer but

have probabilistic runtime bounds
○ JP is a Las Vegas algorithm

● Coupling: A coupling of two random variables X and Y is defined as a new
variable (X’ , Y’) over the joint probability space, such that the marginal
distribution of X’ and Y’ coincides with the distribution of X and Y respectively

Parallel Approximate Degeneracy Ordering

ε here is an
approximation
accuracy term

Parallel Approximate Degeneracy Ordering: Design Details

● D is an array
● U and R are n-bit dense bitmaps

○ Updates and contains() functions run in O(1) time
○ Constructing R takes O(1) depth and O(|U|) work
○ U = U\R takes O(1) depth and O(|R|) work
○ Average degree calculation takes O(log n) depth and O(|U|) work

Parallel Approximate Degeneracy Ordering: Depth

● O(log n) depth of contents in the while loop
● While loop runs O(log n) iterations
● Overall depth: O(log2 n)

Parallel Approximate Degeneracy
Ordering: Work

● Each iteration of the while loop does
O((deg v for all v in R) + Ui) work.

● (deg v for all v in R) for all i = 1 to k =
O(m)

● Ui from i=1 to k can be bound by a
geometric series, implying that it is still
O(n)

● Overall runtime: O(m + n)

Parallel Approximate Degeneracy Ordering: Quality

● Approximation ratio of 2(1+ε)
● All vertices removed in a step have a

degree of at most (1+ε)*the average
degree of vertices in the subgraph at that
point, which is upper bounded by 2d

● Therefore, each vertex has at most 2(1+ε)d
neighbors that are ranked equal or higher.

Parallel Approximate Degeneracy Ordering: Extras

● Graph to the right shows ADG
compared to other ordering
heuristics

● In the CREW model, depth
stays the same, while work
increases to O(m+nd), after
redesigning the update function

JP-ADG

JP-ADG: Quality

JP-ADG: Depth, Work

● Expected longest path in DAG Gρ is O(d log n
+ log d log 2 n / log log n)

● Expected depth is O(log 2 n + log Δ * (longest
path)

● Work is O(n+m) since both ADG and JP take
O(n+m) work

DEC-ADG

● Employs the use of a function
called SIM-COL (Simple
Coloring), which colors a
subgraph using (1+μ)Δ colors

SIM-COL

SIM-COL: Work, Depth

● SIM-COL performs O(log n) iterations w.h.p
● The work in each iteration has depth O(Δ) in CREW and O(log Δ) in CRCW
● Thus, depth is O(Δ log n) and O(log Δ log n) in CREW and CRCW

respectively
● Work is O(n + m)

DEC-ADG: Work, Depth, and Quality

● O(log d log2 n) depth in CRCW
● O(n + m) work w.h.p
● Coloring quality: (2+ε)d coloring of the graph for 0 < ε ≤ 8.
● Work and depth proofs of this algorithm and SIM-COL made possible by use

of Markov Inequalities and Chernoff Bounds, taking advantage of randomness
in conjunction with constants, to create high probability bounds on size and
computation

DEC-ADG-ITR

● Same as DEC-ADG, but instead of choosing a random color in SIM-COL line
7, it chooses the smallest color not taken by a vertex v’s neighbors

Using Concurrent Reads (CREW)

● Adds a (small) factor of d to a subcomponent of ADG, yielding a new work of
O(dn + m) for ADG and DEC-ADG

Optimizations

● Representation of U and R
○ R should be listed in the same array as U, where R(.) precedes U
○ Done so “the actual removal of R(i + 1) from U takes O(1) time by simply moving the index

pointer by |R(i+1)| positions “to the right”, giving – at the end of iteration i + 1 – a
representation [R(0) R(1) ... R(i) R(i + 1) index U]”

● Explicit Ordering in R(.)
○ “ often enhances the accuracy of the obtained approximate degeneracy ordering, which in turn

consistently improves the ultimate coloring accuracy”
● Combining JP and ADG

○ “where one derives predecessors and successors in a given ordering to construct the DAG Gρ
[in JP], can also be implemented as a part of UPDATE in ADG, in Algorithm 1”

○ Doesn’t improve theoretical results, but saves time in implementation

Optimizations Pt. 2
● Usage of degree median instead of degree average

○ Takes O(1) time in a sorted array
○ Variants with “-M” at the end use this variation
○ “However, the whole U has to be sorted in each pass. We incorporate linear-time integer

sorting, which was shown to be fast in the context of sorting vertex IDs [86] ADG-M only differs
from Algorithm 1 in that”

○ “Additionally we limit R to half the size of U (+1 if |U| is odd). We refer to the priority function
produced by ADG-M as ρADG-M”

● Push vs Pull style updating
○ “ (pushing updates to a shared state or pulling updates to a private state)”
○ While pushing needs atomics, pulling takes more updates
○ Similar performance in practice

● Caching Sums of Degrees
○ When computing average degree, one can just subtract edges from existing sum instead of

fully recomputing from all edges
○ Slightly improves runtime (~1%)

Implementation

● Integrated with GBBS and GAP benchmark suite
● Implemented with optimizations
● ADG-M

○ Work: O(n + m)
○ Depth: O(log2 n), from half of the vertices being removed each iteration, and each iteration

taking O(log n) work
○ ADG-M computes a partial 4-approximate degeneracy ordering of G

● JP-ADG-M
○ Same work and depth as JP-ADG

Evaluations

● Coloring Quality is superior
● Algorithm runtime is comparable or marginally higher
● “Thus, we offer the best coloring quality at the smallest required run-time

overhead. Finally, our routines are the only ones with theoretical guarantees
on work, depth, and quality.”

Evaluations: Runtime and Quality

Evaluations: Runtime and Quality

Evaluations: Runtime and Quality

Evaluations: Scaling

Evaluations: Impact of ε

Evaluations: Memory Pressure

Evaluations: Color Quality Frequency

Thoughts

● Overall very strong paper
● Provides ground breaking results, explains concepts well, provided reader

knowledge from ground up, thorough experimentation
● Nothing for me to really nitpick after reading

Discussion Questions

● Other practical optimizations that can be made? Theoretical?
● Is recoloring worthwhile?
● Applications?
● Potential approaches for exact parallel colorings?

Bibliography

● Image on slide 2 is from wikipedia’s graph coloring page
https://en.wikipedia.org/wiki/Graph_coloring

● All other images come from the reviewed paper

https://en.wikipedia.org/wiki/Graph_coloring

