Paper Presentation
High-Performance Parallel Graph Coloring with
Strong Guarantees on Work, Depth, and Quality

by Besta et. al.

Presentation by Viktor Urvantsev

Graph Coloring

e Also known as vertex coloring

e vertex coloring: an assignment of vertices where no
two neighboring vertices share the same color

e k-coloring: a vertex coloring of a graph using k distinct
colors

e chromatic number (x(G)): the lowest number of colors
k that yields a successful k-coloring

e optimal coloring (or coloring problem): the problem
of finding x(G) given a graph G

e optimal coloring is an NP-complete problem

Heuristics

Used to compute colorings
greedy heuristic: for all colors, choose the smallest color not already chosen
by a neighbor for vertex v

(@)

Gives a guarantee for coloring of a graph G with at most A + 1 colors, where A is the maximum
degree of the graph

vertex ordering heuristic: a heuristic which decides in which order the
vertices are colored. Some examples are

(@)

O O O O O

first fit (FF): coloring via the default order in the vertices

largest-degree-first (LF): orders vertices based on degree in descending order

random (R): chooses vertices uniformly at random

incidence-degree (ID): largest number of uncolored neighbors first

saturation-degree (SD): largest number of distinct colors used by neighbors first
smallest-degree-last (SL): removes lowest degree vertices, colors remaining graph, colors
removed vertices

Sadly, with all of these combined with greedy, these algorithms have no
parallelism

Parallel Graph Coloring Algorithms

Jones and Plassman combined past heuristic work with parallel maximum
independent set deriving algorithms to make JP, a parallel graph coloring

algorithm
o Colors a vertex once all of its neighbors that come later in the ordering have been colored

JP combined with random vertex ordering (JP-R) ran with O(n+m) work, O(log
n/ log log n) depth for constant degree graphs (n = number of vertices, m =
number of edges)

Hasenplaugh et. al. use approximate LF and SL to create JP-LLF and
JP-SLL, which improve upon work and depth bounds over JP-R

Another approximate SL ordering was used to create JP-ASL, but offers no
work or depth bounds (scary)

Problems With Aforementioned Algorithms

e None have strong guarantees of quality!
o Quality: the closeness of a result to the chromatic number (true optimal coloring)
o JP-R may yield poor quality
o JP-LF and JP-SL yield better quality, but can balloon in performance (run in Q(n) or Q(A?) in
some instances)
o JP-LLF and JP-SLL yield quality of JP-LF and JP-SL with performance within a logarithmic
factor of JP-R

e None of the above algorithms have any upper bound coloring quality
guarantees

What The Paper Offers

e The first graph coloring algorithms with provably good bounds on work, depth,
and quality

e These algorithms do this using a new vertex ordering heuristic: provably
approximate degeneracy ordering (ADG)

e An algorithm using this heuristic with JP, called JP-ADG, with proven strong
bounds on work, depth and quality

e An algorithm using this ordering with speculative coloring, called DEC-ADG,
with proven strong bounds on work, depth and quality

e “Ause case of how ADG can seamlessly enhance an existing state-of-the-art
graph coloring scheme (DEC-ADG-ITR)"

e Extensive theoretical analysis of and experimentation with graph coloring
algorithms

e Superior coloring quality in practice

Fundamental Concepts: Graph Model and Representation

G

G[U]

A,, 5,6

d

deg(v), N(v)
degy (v)

Ny (v)

px (v)

2

A graph G = (V, E); V and E are sets of vertices and edges.
G[U] = (U, E[U]) is a subgraph of G induced on U C V.
Numbers of vertices and edges in G; |V | = n, |[E| = m.
Maximum degree, minimum degree, and average degree of G.
The degeneracy of G.

The degree and the neighborhood of a vertex v € V.

The degree of v in a subgraph induced by the vertex set U C V.
The neighborhood of v in a subgraph induced by U C V.

A priority function V' — R associated with vertex ordering X.
The number of processors (in a given PRAM machine).

TABLE I: Selected symbols used in the paper. When we use a symbol in the
context of a specific loop iteration ¢, we add £ in brackets or as subscript

(e.g., oy 1s 0 in iteration /).

Fundamental Concepts: Degeneracy, Coreness, and Related Concepts

e s-degenerate: a graph is s-degenerate if, in each of its induced subgraphs, there is
a vertex with a degree of at most s.

e degeneracy. the degeneracy d of a graph is the smallest s where the graph is still
s-degenerate

e degeneracy ordering: an ordering where there are at most d neighbors of each
vertex ordered higher than it

e k-approximate degeneracy ordering. same as exact, but at most k * d neighbors

e partial k-approximate degeneracy ordering. same as k-approximate, but certain
vertices can be ranked equally

e k-core: A connected component that is left over after iteratively removing vertices
with degree less than k from G

e coreness: the largest possible k, such that v is part of a subgraph S of G with
minimum degree k

Fundamental Concepts: Models For Algorithm Analysis

e Compute model: DAG model of dynamic multithreading
e Machine model: Ideal parallel computer

e \Work-Depth Analysis for bounding runtimes

o Uses both concurrent reads exclusive writes (CREW) and concurrent reads concurrent writes
(CRCW)

Fundamental Concepts: Compute Primitives

e Reduce

o Given aset S, it finds and returns the sum of the set in O(n) work and O(log n) depth
o Used to implement Count(S), which simply returns the size of S

e DecrementAndFetch (DAF)

o Atomically decrements its operand and returns a new value
o Used to implement Join to synchronize processors

Fundamental Concepts: Randomization

e Monte Carlo Algorithms: algorithms which return the correct result w.h.p
e Las Vegas Algorithms: algorithms that always return the correct answer but

have probabilistic runtime bounds
o JPis a Las Vegas algorithm

e Coupling: A coupling of two random variables X and Y is defined as a new
variable (X', Y’) over the joint probability space, such that the marginal
distribution of X" and Y’ coincides with the distribution of X and Y respectively

Parallel Approximate Degeneracy Ordering

Input: A graph G(V, FE). -
Output: A priority (ordering) function p: V — R. */ € here IS an

gD = [deg(v1) deg(vg) ... deg(vn)] //An array with vertex degrees apprOX|mat|0n

1; U=V //U is the induced subgraph used in each iteration £

while U # 0 do: accuracy term
|U| = Count(U); //Derive |U| using a primitive Count
cnt = Reduce(U); //Derive the sum of degrees in U: ZvEU D[v]

o — T{}lt //Derive the average degree for vertices in U

CONANAWN =

//R contains vertices assigned priority in a give iteration:

R={ueU| Dul<((1+¢e)é }

UPDATE(U, R, D) //Update D eflect removing R from U

U=U\R //Remove selected low-degree vertices (that are

for all v € R do in parallel: //Set the priority of vertices
paog(v) = € //The priority is the current iteration number £

e=¢+4+1

20 //Update D to reflect removing vertices R from a set U:
21 UPDATE(U, R, D):

22 for all v € R do in parallel:

23 for all w € Ny (v) do in parallel:

24 DecrementAndFetch (D[u])

Algorithm 1: ADG, our algorithm for computing the 2(1 + &)-approximate
degeneracy ordering; it runs in the CRCW setting.

Parallel Approximate Degeneracy Ordering: Design Details

e D isanarray

e U and R are n-bit dense bitmaps

Updates and contains() functions run in O(1) time

Constructing R takes O(1) depth and O(|U|) work

U = U\R takes O(1) depth and O(|R]|) work

Average degree calculation takes O(log n) depth and O(|U|) work

(@)
(@)
(@)
(@)

Parallel Approximate Degeneracy Ordering: Depth

O(log n) depth of contents in the while loop

While loop runs O(log n) iterations
Overall depth: O(log? n)

Lemma 1. For a constant ¢ > 0, ADG does O(logn)
iterations and has O(log® n) depth in the CRCW setting.

Proof. At each step ¢ of the algorithm we can have at most
— vertices with a degree larger than (1 + ¢) . This can
be seen from the fact, that the sum of degrees in lhe current
subgraph can be at most n times the average degree d. For
vertices wilh a degree exactly (1 + €)d, we get 75 - (1 +
)m = no(Wthh would result in a contradiction if we had

: + arger degree. Thus, if we remove

all vertices with degree < (1 +)é; we remove a constant

fraction of vertices in each iteration (at least le vertices),

which implies that ADG performs O(log n) iterations in the
worst case, immediately giving the O(log®n) depth. To see
this explicitly, one can define a simple recurrence relation for

the number of iterations 7'(n) < 1+ T (—n) Biay =1

solving it gives T'(n) < Loi"ﬁi 5+ l.‘ € O(logn). O

Parallel Approximate Degeneracy
Ordering: Work

e Each iteration of the while loop does
O((deg v for all v in R) + U) work.

e (degvforallvinR)foralli=1tok=
O(m)

e U fromi=1to k can be bound by a
geometric series, implying that it is still
O(n)

e Overall runtime: O(m + n)

Work The proof of work is similar; it also uses the fact
that a constant fraction of vertices is removed in each iteration.
Intuitively, (1) we show that each while loop iteration per-
forms O ((Y°,cr deg(v)) +|U;|) work (where U; is the set
U in iteration %), and (2) we bound Zle |U;| by a geometric
series, implying that it is still in O(n).

Lemma 2. For a constant € > 0, ADG does O(n + m) work
in the CRCW setting.

Proof. Let k be the number of iterations we perform and let
U, be the set U in iteration i. To calculate the total work
performed by ADG, we first consider the work in one iteration.
As explained in “Design Details”, deriving the average degree
takes O(|U;|) work in one iteration. Initializing R takes
O(|U;|) and removing R from U; takes O(|R|). UPDATE
takes O (3, deg(v)) work. Thus, the total work in one
iteration is in O ((3_,cpdeg(v)) + |Ui]). As each vertex
becomes included in R in a single unique iteration, this gives
Zle > ver, deg(v) € O(m). Moreover, since we remove
a constant number of vertices in each iteration from U (at
least 1= as shown above in the proof of the depth of ADG),
we can bound ZLI \U;| by a geometric series, implying
that it is still in O(n). This can be seen from the fact that

k o k : . ¥ (14¢)
i1 Uil £ X (ﬁ) n < Y2 <i) B= =

- < 1 (which holds as £ > 0). Ultimately, we have

Fo (Cuer, deg®)) + |Uil) € O(m)+0(n) € O(m+

O

Parallel Approximate Degeneracy Ordering: Quality

Approximation ratio of 2(1+¢)

All vertices removed in a step have a
degree of at most (1+¢€)*the average
degree of vertices in the subgraph at that
point, which is upper bounded by 2d
Therefore, each vertex has at most 2(1+¢)d
neighbors that are ranked equal or higher.

Approximation ratio We now prove that the approxima-
tion ratio of ADG on the degeneracy order is 2(1 +). First,
we give a small lemma used throughout the analysis.

Lemma 3. Every induced subgraph of a graph G with
degeneracy d, has an average degree of at most 2d.

Proof. By the definition of a d-degenerate graph, in every
induced subgraph G[U], there is a vertex v with degy (v) < d.
If we remove v from G/|[U], at most d edges are removed. Thus,
if we iteratively remove such vertices from G[U], until only
one vertex is left, we remove at most d - (|U| — 1) edges. We

conclude that 4 7[0)]) = ﬁ > ver degu(v) < 2d. O

Lemma 4. ADG computes a partial 2(1 + =)-approximate
degeneracy ordering of G.

Proof. By the definition of R (Line 13), all vertices removed
in step ¢ have a degree of at most (1 + £)dy, where d¢ is
the average degree of vertices in subgraph U in step £. From
Lemma 3, we know that ; < 2d. Thus, each vertex has a
degree of at most 2(1+4¢)d in the subgraph G[U] (in the current
step). Hence, each vertex has at most 2(1+ ¢)d neighbors that
are ranked equal or higher. The result follows by the definition
of a partial 2(1 + ¢)-approximate degeneracy order. O

Parallel Approximate Degeneracy Ordering: Extras

e Graph to the right shows ADG [T TN]
. FF (first-fit) [25]) 0O(1) n/a n/a
compared to other ordering R (random) [26], [31] ; O(n) O na
ID (incidence-degree) [1] O(n +m) n/an/a
icti SD (saturation-degree) [27], [31] O(n +m) n/an/a
heuristics LF (largest-degree-first) [31] ' O(n) @ n/a
LLF (largest-log-degree-first) [31] O(1) O(n) & n/a
® ln the CREW mOdel, depth SLL (smallest-log-degree-last) [31] O(log., Alogn) O(n+m)dh)
. SL (smallest-degree-last) [28], [31] O(n) O(m)) & exact
StayS the same, Wh||e Work ASL (approximate-SL) [32] ' O(m) (S

increases tO O(m+nd) after ADG [approx. degeneracy] O (log® n) On+m)h O2(1 +¢)
y VAN "1 [N YNNG - S - R . ST N ~ S S - 7 PPN M 0
. . . TABLE 1I: Ordering heuristics related to the degeneracy ordering.
I’ed eS|g Ni ng the u pd ate fu nCtlon “F. (Free)?”’: Is the scheme free from concurrent writes? “B. (Bounds)?”: Are

there provable bounds and approximation ratio on degeneracy ordering? “¢y":
support, “"": no support. Notation is explained in Table I and in Section IL

1 UPDATE(U;, R;, D): U; R; ai » R i
2 for all v € U; do in parallel:
3

D[v] = D[v] — (..'oun.t(;\"(r_r? (v) N R;)

Algorithm 2: The modified version of the UPDATE routine from ADG
(Algorithm 1) that works in the CREW setting.

JP-ADG

Input
OQutput

Part 1 comput t (?.
S C:=100:: 0]

for all v € V do in parallel

pred|v) {1 v) | (L > p(L)}
succ|v] {u | p(u) < p(v)}

countlv] = |p7‘ed[1;]|

Part 2 lor rtice i Gp
for all v € V do in parallel:

if pred[v] == 0: JPColor(v)

JPColor(v)
Clv] = GetColor(z)
for all u € succ[v] in parallel:
r S | ef
if Join(countlu]) == 0:
JPColor(u) 1 u

25 GetColor(v)]
|pred[v]| + 1}
for all u € pred[v] do in parallel: C = C — {C[u]}
return min (C) Output 1 ila

Algorithm 3: JP, the Jones-Plassman coloring heuristic. With p =
(paDG» PR), it gives JP-ADG that provides (2(1 + £)d + 1)-coloring.

JP-ADG: Quality

Coloring Quality The coloring quality now follows from
the properties of the priority function obtained with ADG.

Corollary 1. With priorities p = (papc, pr), JP-ADG colors
a graph with at most 2(1 + €)d + 1 colors, for £ > 0.

Proof. Since (papg, pr) 18 a 2(1+¢)-approximate degeneracy
ordering, the result follows from Lemma 6 and 4.]

Proof. Let G,(f) be the subgraph of GG, induced by the vertex

set V(£) = {v € V | papg = €}. Let A; be the maximal

degree and 3¢ be the average degree of the subgraph G, (/).
Since, by the definition of G, there can be no edges in

. G, that go from one subgraph G ,(f) to another G ,(¢') with

J P—AD G De pth WO rk ¢’ > £, we can see that a longest (directed) path P in G, will
-) always go through the subgraph G,(£) in a monotonically

decreasing order with regards to f. Therefore, we can split P

into a sequence of (directed) sub-paths 7, P5. where Py

is a path in G(£). We have [P| =37, vy |Pil and

° Expected |ongest path in DAG Gp 1S O(d |og n by Corollary 6 from past work [31], the expected length of

a longest sub-path P; is in O(A¢ + log A¢logn/loglogn),

2 because G,(£) is induced by a random priority function. By
+ |Og d |Og n / |Og |Og n) linearity of (exlpccm[ion. we ;mve for the Fi\r’hol::\’path ;" ’
e Expected depth is O(log ? n + log A * (longest ; -
E[|P]] = Z (A,- +log A, - e ;:)” ”)> (1)
path) =

Next, since papg is a partial k-approximate degeneracy

e Workis O(n+m) since both ADG and JP take Ol Too, Ay < i tolis, Thie o, e
O(n+m) work

p € O(logn) gives:

P

Z A; < Z d-k e O(dlogn)
Theorem 1. JP-ADG colors a graph G with degeneracy d in =l
expected depth O(log?n +log A - (dlogn + eadles n

2)) and
O(n + m) work in the CRCW setting.

orleen og A; € O(logdlogn)

Thus, for the expected length of a longest path in G:
Proof. Since papg i1s a partial 2(1 + &)-approximate de-
4)

generacy ordering (Lemma 4) and since ADG performs at
most O(logn) iterations (Lemma 1), the depth follows from
Lemma 7, Lemma | and past work [31], which shows that JP
runs in O(logn + log A - |P|) depth. As both JP and ADG
perform O(n + m) work, so does JP-ADG. O

E[|P||=0 <(l logn +

2
log dlog”n)

log logn

O

Our main result follows by combining our bounds on the
longest path P in the DAG G/, and a result by Hasenplaugh et
al. [31], which shows that JP has O(log n+log A -|P|) depth.

DEC-ADG

Input G(V, E)

2+ Output > e Employs the use of a function
R 065 called SIM-COL (Simple

G = [G(1) ... G(p)

D g A S RIS Coloring), which colors a
e (21 + e/12)(1 +)] 4+ 1 subgraph using (1+u)A colors

Y.ev By =[00...0 2
2 SIM-COL(G(P), {B. v € R(P)}) G(3)

4 for £ from 57— 1 down to 1 do:
Q=R(P)V---UR(£+1)
for all v (£) do in parallel:
for all u € Ngo(v) do in parallel:
B, = B, UClu]
SIM-COL(G(£), {B, | v € R(£)})

[

Algorithm 4: DEC-ADG., the second proposed parallel coloring heuristic that
provides a (2(1 + £)d)-coloring. Note that we use factors =/4 and £/12 for
more straightforward proofs (this is possible as £ can be an arbitrary non-

negative value).

SIM-COL

Input: G(V (£), E(¢)) : vartiti
colors forbidden for Output
U=V()
while U # (0 do:
Part 1 11 tices in U are colored
for all v € (’ do in parallel:
choose C[v] u.a.r. from {1,...,(1 4 p)degyp(v)}

O o0 n H Wik -

Part 2
for all"z,vrer_[,rf do inr parallerlr:
feq(v,u) = (Clv] == Cl[u]) is :
if Reduce(Ny (v), feq) > 0 || C[]

Part 3: Update B, fo
for all v € U do in parallel
for all u € Ny (v) do in parallel:
if Clu] >0: B, =B, U(’[u]
U=U \{LEI']('[U]>0}

Algorithm 5: SIM-COL, our simple coloring routine used by DEC-ADG. It
delivers a ((1 + p)A)-coloring, where g > 0 is an arbitrary value. When
using SIM-COL as a subroutine in DEC-ADG, we instantiate p as g = £/4;
we use this value in the listing above for concreteness.

SIM-COL: Work, Depth

e SIM-COL performs O(log n) iterations w.h.p

e The work in each iteration has depth O(A) in CREW and O(log A) in CRCW

e Thus, depthis O(Alog n) and O(log A log n) in CREW and CRCW
respectively

e Workis O(n+m)

DEC-ADG: Work, Depth, and Quality

O(log d log? n) depth in CRCW

O(n + m) work w.h.p

Coloring quality: (2+€)d coloring of the graph for 0 < € < 8.

Work and depth proofs of this algorithm and SIM-COL made possible by use
of Markov Inequalities and Chernoff Bounds, taking advantage of randomness
in conjunction with constants, to create high probability bounds on size and
computation

DEC-ADG-ITR

e Same as DEC-ADG, but instead of choosing a random color in SIM-COL line
7, it chooses the smallest color not taken by a vertex v's neighbors

Selecting colors can be done in O(A) depth and O(A-|U;|)
work, where U; is the set U in iteration ¢ (of the while loop

in SIM-COL) and A = max,cy (¢) dege(v). For the modified
SIM-COL, we get, since all other operations are equal, O(AI)
depth (/ is the number of iterations of ITR); the work is

0 (z]: li U+) df%g(v)]) :

i=1 veU;

Depth and work in DEC-ADG-ITER are, respectively

O(Idlogn)

and (as a simple sum over all iterations I)

(@) (Z ([E |U;i| + Z defg('u)] + Z dffg(‘lf))) _

=1 \ i=1 vEU; vER(L)

Note that these bounds are valid in the CREW setting.

Using Concurrent Reads (CREW)

e Adds a (small) factor of d to a subcomponent of ADG, yielding a new work of
O(dn + m) for ADG and DEC-ADG

Optimizations

e Representation of U and R
o R should be listed in the same array as U, where R(.) precedes U
o Done so “the actual removal of R(i + 1) from U takes O(1) time by simply moving the index
pointer by |[R(i+1)| positions “to the right”, giving — at the end of iterationi + 1 — a
representation [R(0) R(1) ... R(i) R(i + 1) index U]’
e Explicit Ordering in R(.)
o “often enhances the accuracy of the obtained approximate degeneracy ordering, which in turn
consistently improves the ultimate coloring accuracy”

e Combining JP and ADG

o ‘“where one derives predecessors and successors in a given ordering to construct the DAG Gp
[in JP], can also be implemented as a part of UPDATE in ADG, in Algorithm 1”
o Doesn’t improve theoretical results, but saves time in implementation

Optimizations Pt. 2

e Usage of degree median instead of degree average

o Takes O(1) time in a sorted array

o Variants with “-M” at the end use this variation

o “However, the whole U has to be sorted in each pass. We incorporate linear-time integer
sorting, which was shown to be fast in the context of sorting vertex IDs [86] ADG-M only differs
from Algorithm 1 in that”

o “Additionally we limit R to half the size of U (+1 if |U| is odd). We refer to the priority function
produced by ADG-M as pADG-M”

e Push vs Pull style updating

o “(pushing updates to a shared state or pulling updates to a private state)”
o While pushing needs atomics, pulling takes more updates
o Similar performance in practice

e Caching Sums of Degrees

o When computing average degree, one can just subtract edges from existing sum instead of
fully recomputing from all edges
o Slightly improves runtime (~1%)

Implementation

e Integrated with GBBS and GAP benchmark suite
e Implemented with optimizations

e ADG-M
o Work: O(n + m)
o Depth: O(log? n), from half of the vertices being removed each iteration, and each iteration
taking O(log n) work
o ADG-M computes a partial 4-approximate degeneracy ordering of G
e JP-ADG-M
o Same work and depth as JP-ADG

Evaluations

e Coloring Quality is superior

e Algorithm runtime is comparable or marginally higher

e “Thus, we offer the best coloring quality at the smallest required run-time
overhead. Finally, our routines are the only ones with theoretical guarantees
on work, depth, and quality.”

Evaluations: Runtime and Quality

Smaller graphs (used in

online execution scheduling, ...)

SC JP

SC: speculative
coloring schemes Plassman schemes

SC

JP: Jones and

Larger graphs (used in
offline data analytics, ...)

=

SC

JP

SC: speculative coloring schemes
JP: jones and Plassman schemes

.auDﬂunDD!!

—

-——=D

-ﬂﬂﬂﬂncﬂull

dﬂnnn

| olono

il
|

“Ial

i

;a:nﬂDDDD!!

2

56
86

1]
[

Evaluations: Runtlme and Quallt

u 0

0

e @ § 33 40
2 06 - 2

S 03 =

& 3

oo !DD‘HDDUD 4 8 i

o ae 5

4k i 3

: 72
© 20 &) 67 M54
Pt

ERE (X
F asl >
;JBQJDDDDDH L s

‘ ! » 31““.’313139331‘0 @
iandﬂnnnD! J £

:T !! ; g !— m ’
. ma0MononlL

HannﬂDcDD!!_

Evaluations: Runtime and Quality

/ : 4
E GBBS/Ligra
[ColPack] * gra] ﬁzmlan;

orderi me [lcoloring time [ColPack]

Fig. I: Run-times (1st and 3rd columns) and coloring quality (2nd and 4th columns). Two plots next to each other correspond to the same graph. Graphs are representative
(other results follow similar patterns). Parametrization: 32 cores (all available). = = 0.01, sorting: Radix sort, direction-optimization: push, JP-ADG variant based on average degrees

SL and SLL are excluded from run-times in the right column (for larger graphs) because they performed consistently worse than others. We exclude DEC-ADG for similar
reasons and because it is of mostly theoretical interest; instead. we focus on DEC-ADG-ITR, which is based on core design ideas in DEC-ADG. Numbers in bars for color counts
are numbers of used colors. *SC™: results for the class of algorithms based on speculative coloring (ITR. DEC-ADG-ITR). “JP: results for the class of algorithms based on the
Jones and Plassman approach (color scheduling. JP-*). A vertical line in each plot helps to separate these two classes of algorithms. [ADG-ITR uses dynamic scheduling.
JP-ADG uses linear time sorting of 2. Any schemes that are always outperformed in a given respect (e.g., Zoltain in runtimes or ColPack in qualities) are excluded from the plots.

Evaluations: Scaling

Weak scaling (Kronecker graphs)

Strong scaling (h-bai graph)

Strong scaling (s-pok graph)

Most schemes
n this regime
do not hit the
memory wall

Overall run-time
increases due lo ™
memaoryboltienack

)
w
o
&
>
=
5]
o
&
o
s
£
o
£
-

0.1

Both JP-ADG and ITR-ADG
offer competitive or best scaling,
« the best coloring quality while
minimizing run-time overhead

Both JP-ADG and ITR-ADG
offer compeditive or bast scaling,
+ the best caloring quality while
minimizing run-time overhead

141 242 4+4 848 16+16 32432
#edges/vertex (implies the graph size) + #threads

Number of threads

JP) Jones- +[C]UP-ASL +[OlyP-ADG [O}:Our scheme.

(Pla)ssman + [G]JUP-LF [GJUP-R X [Cl: ColPack

algorithm ¥ [G]JP-LLF & [GJP-FF [G): GBBS/Ligra
class HlJP-SL [H]JP-SLL [H]: HasenPl. et al

= [C]ITR-ASL
[O]DEC-ADG-ITR
[C]ITR

[C]: ColPack [O]:Our scheme.

Speculative
coloring (SP)
algorithm class

A3

2 4 {
Number of threads

Good scaling of our baselines (indicated with .yfows*
Is due to using graph degeneracy d (or log d) instead
of maximum degree A in the bounds, as opposed 10
the competition. This Is an advantage as d is usually
much smaller than A. Detalls are in Sec. IV.E on page 7

Fig. 2: Weak and strong scaling. Graphs are representative (other results follow similar patterns). Parametrization: £ = 0.01. sorting: Radix sort. direction-optimization: push,
JP-ADG variant based on average degrees 6. DEC-ADG-ITR uses dynamic scheduling. JP-ADG uses linear time sorting of 2. In weak scaling, we use n = 1M vertices.

Evaluations: Impact of €

—
(o))
o

N

- NN W s
o O

o
Coloring quality

Full runtime [s]

8
6
4
P

o O

0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00 0.01.0.10 1.00
Epsilon Epsilon Epsilon Epsilon

Algorithm: |l = DEC-ADG-ITR-d [+ JP-ADG-s

Fig. 3: Impact of = on run-times and coloring quality. Parametrization: 32 cores,
sorting: Radix sort, direction-optimization: push, JP-ADG variant based on average
degrees 6. DEC-ADG-ITR uses dynamic scheduling.

H. Memory Pressure and Idle Cycles

We also investigate the pressure on the memory bus, see

Evaluations: Memory Pressure Figure 4. For this, we use PAPI [102] to gather data about

idle CPU cycles and L3 cache misses. Low ratios of L3 misses
or idle cycles indicate high locality and low pressure on the
memory bus. Overall, our routines have comparable or best
ratios of active cycles and L3 hits.

h-bai

é‘
/

N

~
)]
Y
d

o
o)
2
2

=
@
=
@
el
®
K =
<
o
[}
=
°
©
£
£

(
N
19)}
N

Event ratio

moé'{eﬁ?#‘é’é}?&iﬂiﬁ]ﬁgﬁé'Zf“af;éﬁiﬁﬂg’ha;veé%%'éfgst‘?tﬂ'é'}@’é‘)’“c”éu!ts [Fraction of stalled cycles
of idle CPU cycles and L3 misses, indicating low memory pressure B Fraction of L3 misses
Fig. 4: Fractions of L3 misses (out of all L3 accesses) and idle (stalled) CPU cycles
(out of all CPU cycles) in each algorithm execution. Parametrization: graph h-hud, 32
cores, sorting: Radix sort, direction-optimization: push, JP-ADG uses average degrees 9.
DEC-ADG-ITR uses dynamic scheduling. JP-ADG uses linear time sorting of R.

Evaluations: Color Quality Frequency

]DEC-ADG 100;
OI""JTR 4

@ [H] JP-SL 2
®[o)Jr-ADG~ B°
[H] JP-SLL 70
®[G]JP-LF
®[GlJP-LLF
@®(Z] ITRB
®(C] ITR
®(G] JP-R 30
®([C] JP-FF 56 "1.0" indicates the best IJ
@®I[C] ITR-ASL obtained graph coloring JP-ASL
@[ClJP-ASL 10

[Z]: Zoltan 0 ,
[C]: ColPack 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 35

) [O]:Our scheme T (color) A qi ; o o
. given percentage for a given "t" indicates how
[G]: GBBS/Ligra [H]: HasenPl. et al many data samples are within T of the best coloring

60

50

40

% of instances

Fig. 5: Color qualities from Figure 1 summarized with a performance profile.

Thoughts

e Overall very strong paper

e Provides ground breaking results, explains concepts well, provided reader
knowledge from ground up, thorough experimentation

e Nothing for me to really nitpick after reading

Discussion Questions

Other practical optimizations that can be made? Theoretical?
Is recoloring worthwhile?

Applications?

Potential approaches for exact parallel colorings?

Bibliography

e Image on slide 2 is from wikipedia’s graph coloring page
https://en.wikipedia.org/wiki/Graph_coloring
e All other images come from the reviewed paper

https://en.wikipedia.org/wiki/Graph_coloring

