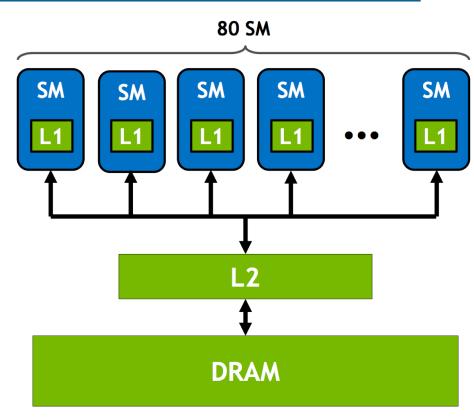
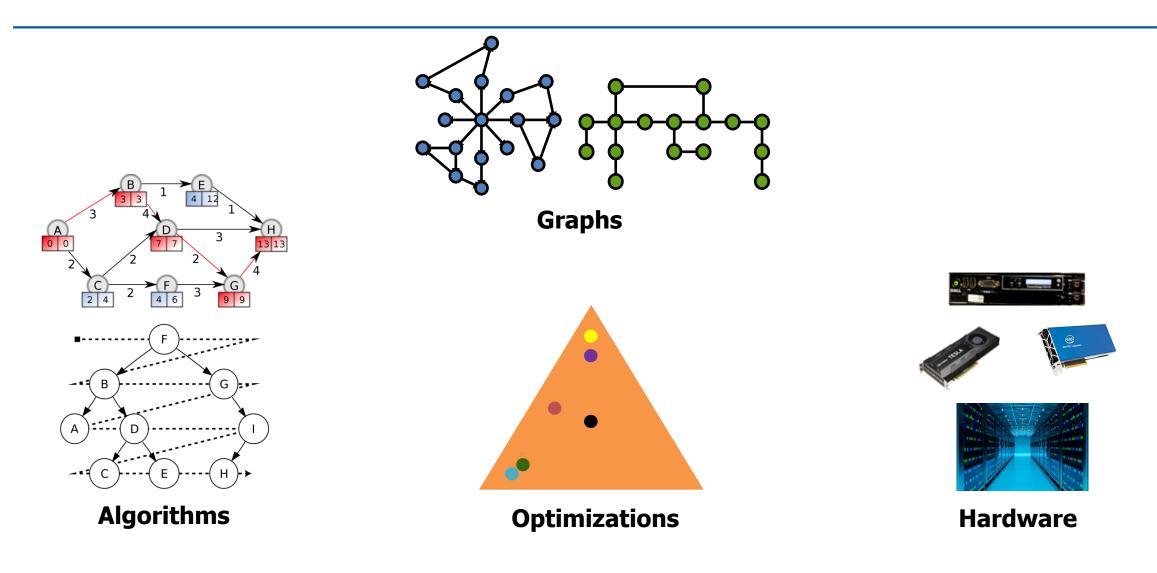

Compiling Graph Applications for GPUs with GraphIt


Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib Kamil, Julian Shun, Saman Amarasinghe

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

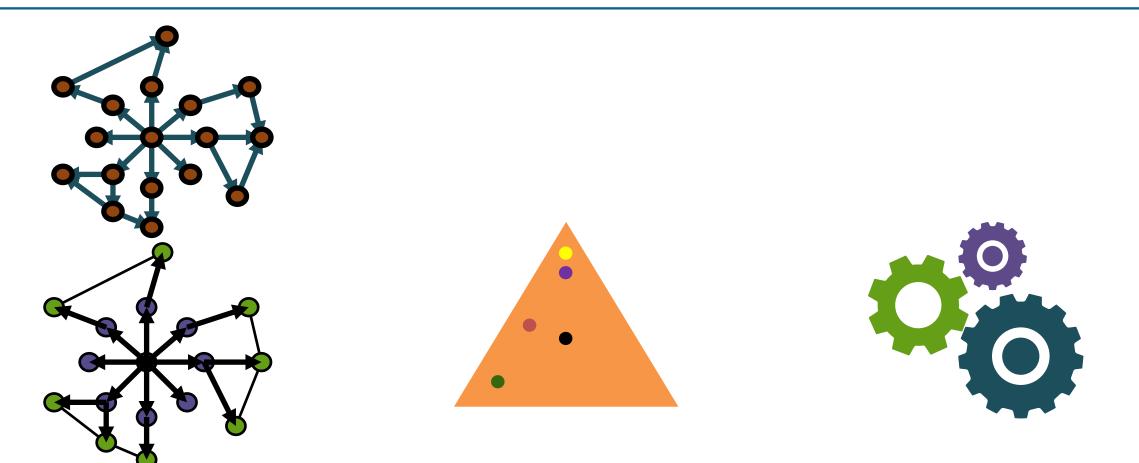
- CPU is designed to execute one thread fast
- GPU is designed to execute many (slower) threads in parallel, achieving higher throughput

- GPU has multiple streaming multiprocessors (SMs)
 - For example, Tesla V100 has 80 SMs
- Work in GPUs is organized into thread blocks (CTAs), and dynamically assigned to SMs
- Each SM has its own data cache, which can be partitioned between L1 cache and shared memory
 - 128KB on Tesla V100
- There is global DRAM (16 or 32 GB on V100) and a global L2 cache (6144 KB on V100)



GPU Architecture

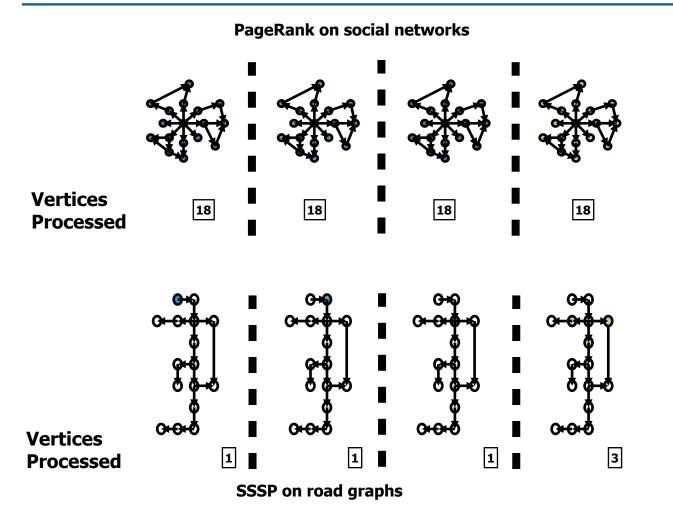
- Each SM schedules warps (groups of 32 threads) to execute the same computation together
 - Tesla V100 has 4 warp schedulers and instruction units, and can execute 4 warps at a time
- Each instruction unit has its own cores for arithmetic, and L0 instruction cache


L1 Instruction Cache																	
L0 Instruction Cache									L0 Instruction Cache								
Warp Scheduler (32 thread/clk)													nedule	-			
Dispatch Unit (32 thread/clk)											Di	spatcl	h Unit	(32 th	read/	clk)	
Register File (16,384 x 32-bit)										Reg	ister	File ('	16,384	4 x 32	2-bit)		
FP64	INT	INT	FP32	FP32					FP64		INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32					FP64	•	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32					FP64	•	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32	TENSOR		TENSOR		FP64	•	INT	INT	FP32	FP32		ISOR	TENSOR
FP64	P64 INT II		FP32	FP32	co	ORE	CORE		FP64		INT	INT	FP32	FP32	CC	DRE	CORE
FP64	INT	INT	FP32	FP32					FP64	•	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32					FP64	•	INT	INT	FP32	FP32			
FP64	INT	INT	FP32						FP64		INT	INT	FP32		\vdash		
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU			LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU
		L0 Ir	nstruc	tion C	ache			ΪĒ		_	_	L0 lr	nstruc	tion C	ache		
		_	_	_	_			ΪĒ				_		_	_		
		rp Sch	nedule	r (32 t	hread/		_					p Sch	nedule	r (32 t	hread		
	Di	rp Sch spatcl	nedule h Unit	r (32 t (32 th	_	ik)					Di	p Sch spatcl		<mark>r (32</mark> t (32 th	hread read/e	clk)	
EP64	Di Reg	rp Sch spatcl jister	nedule h Unit File ('	r (32 t (32 th 16,384	hread/ read/c	ik)			FP64		Di: Reg	rp Sch spatcl ister	nedule h Unit File ('	r (32 t (32 th 16,384	hread read/e	clk)	
FP64	Di	rp Sch spatcl	nedule h Unit File (' FP32	r (32 t (32 th	hread/ read/c	ik)			FP64		Di	p Sch spatcl ister INT	nedule h Unit	r (32 t (32 th 16,384 FP32	hread read/e	clk)	
	Di Reg	rp Sch spatcl jister INT	File (FP32	r (32 th (32 th 16,38 FP32	hread/ read/c	ik)					Dis Reg	rp Sch spatcl ister	File (* File (*	r (32 th (32 th 16,384 FP32 FP32	hread read/e	clk)	
FP64	Di Reç INT	rp Sch spatcl jister INT INT	nedule h Unit File (' FP32 FP32 FP32	r (32 th (32 th 16,38 FP32 FP32	hread/ read/c 4 x 32	lk) -bit)	TENSOR		FP64	•	Dis Reg INT INT	rp Sch spatcl ister INT INT	File (* FP32	r (32 th (32 th 16,384 FP32 FP32 FP32	hread read/ 4 x 32	2-bit)	TENSO
FP64 FP64	Di Reg INT INT	rp Sch spatcl jister INT INT INT	File (* File (* FP32 FP32 FP32 FP32	r (32 th (32 th 16,38 FP32 FP32 FP32	hread/ read/c 4 x 32	lk) -bit) SOR	TENSOR		FP64 FP64	•	Dis Reg INT INT INT	rp Sch spatcl ister INT INT	hedule h Unit File (* FP32 FP32 FP32	r (32 t (32 th 16,384 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN	clk)	TENSOF
FP64 FP64 FP64	Di Reg INT INT INT	rp Sch spatcl jister INT INT INT INT	File (FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,38 FP32 FP32 FP32 FP32	hread/ read/c 4 x 32	lk) -bit) SOR			FP64 FP64 FP64		Dis Reg INT INT INT INT	p Sch spatcl ister INT INT INT	File (* File (* FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64	Di Reg INT INT INT INT	rp Sch spatcl jister INT INT INT INT	File (FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,38 FP32 FP32 FP32 FP32 FP32 FP32	hread/ read/c 4 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64		Dis Reg INT INT INT INT	p Sch spatcl ister INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64 FP64	Di Reg INT INT INT INT INT	INT INT INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,38- FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread/ read/c 4 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64 FP64		Reg INT INT INT INT INT INT	p Sch spatcl ister INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 t (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64 FP64 FP64	Di Reg INT INT INT INT INT INT	INT INT INT INT INT INT INT	File (FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,38- FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread/ read/c 4 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64 FP64 FP64 FP64		Dis Reg INT INT INT INT INT INT	P Sch spatcl ister INT INT INT INT INT	File (' FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 t (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN	2-bit)	TENSOF CORE
FP64 FP64 FP64 FP64 FP64 FP64 FP64 LD/LD/LD/	Di Reg INT INT INT INT INT INT INT INT	INT INT INT INT INT INT INT INT INT INT	File (FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 t (32 th 16,38 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	tread/c 4 x 32	Ik) -bit) SOR RE	CORE	che	FP64 FP64 FP64 FP64 FP64 FP64 LD/ ST	: : : : :	Dii Reg INT INT INT INT INT INT LOY	P Sch spatcl ister INT INT INT INT INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 t (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/ 4 x 32 TEN CC	2-bit) SSOR DRE	CORE

Graph Optimization Tradeoff Space

- Decouple Algorithm from Optimization
 - Algorithm language: What to compute
 - Scheduling (optimization) language: How to compute
- Scheduling representation
 - Easy to use for users to try different combinations of optimizations without changing the algorithm

GraphIt – A Domain-Specific Language for Graph Analytics


Algorithm Language

Optimization Representation

- Scheduling Language
- Schedule Representation (e.g., Graph Iteration Space)

Autotuner

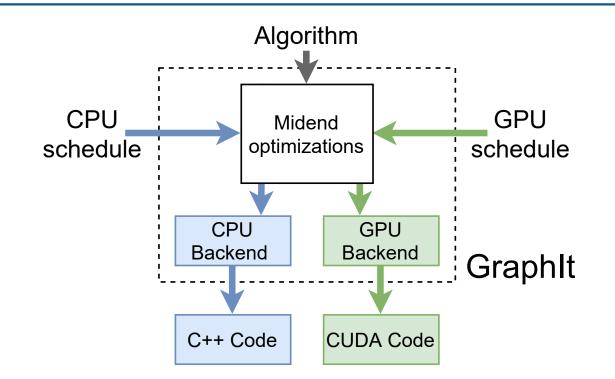
Hardware Variations?

GPU

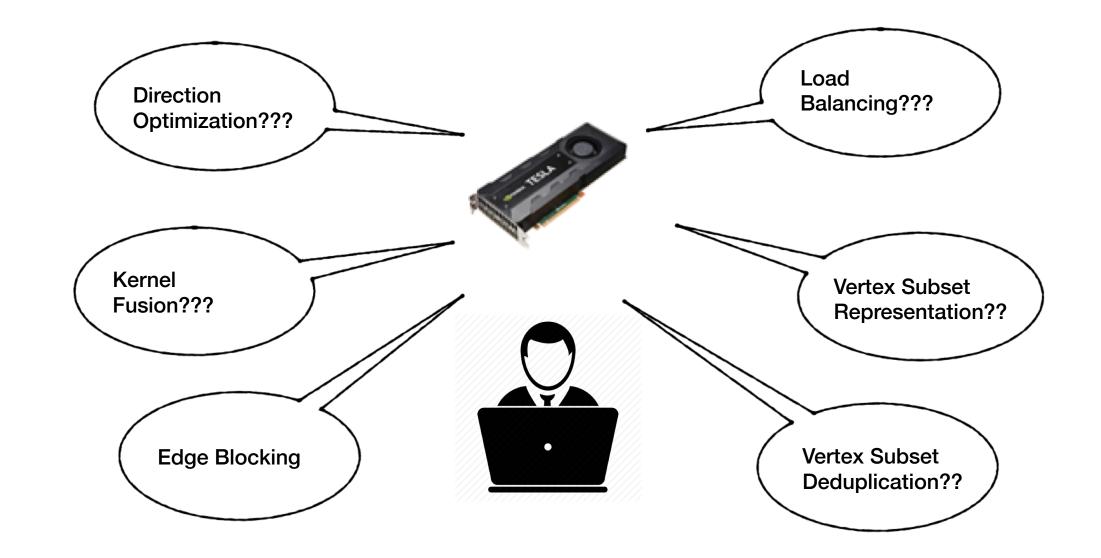
- Massive parallelism

- Coalesced memory accesses

CPU


Limited parallelism

- Large number of iterations


 No existing framework for generating both CPU and GPU code prior to GraphIt

GraphIt Backend Support

- GraphIt currently has backends for multicore CPUs and GPUs
- First framework to support code generation for both CPUs and GPUs with the same algorithm specification

Key GPU Optimizations

- Load Balancing Strategy
- Iteration direction
- Representation of output frontier
- Deduplication of output frontier
- Fusing multiple CUDA kernels
- Graph partitioning for cache utilization
- Runtime combinations of above

configLoadBalance (CM | WM | TWC | TWCE | EB | VB | STRICT)

configDirection(PUSH|PULL)

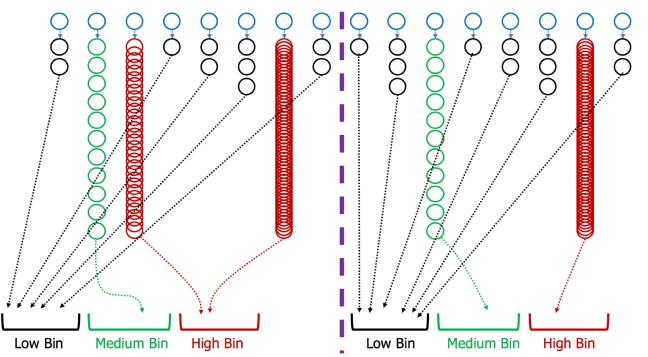
configFrontierCreation(FUSED|UNFUSED, BITMAP|
BOOLMAP)

configDeduplication (ENABLED | DISABLE,

BITMAP | BOOLMAP | MONOTONIC_COUNTERS)

configKernelFusion (ENABLED | DISABLED)

configEdgeBlocking(ENABLED|DISABLED)


HybridGPUSchedule

Comparison of Optimizations with Other Frameworks

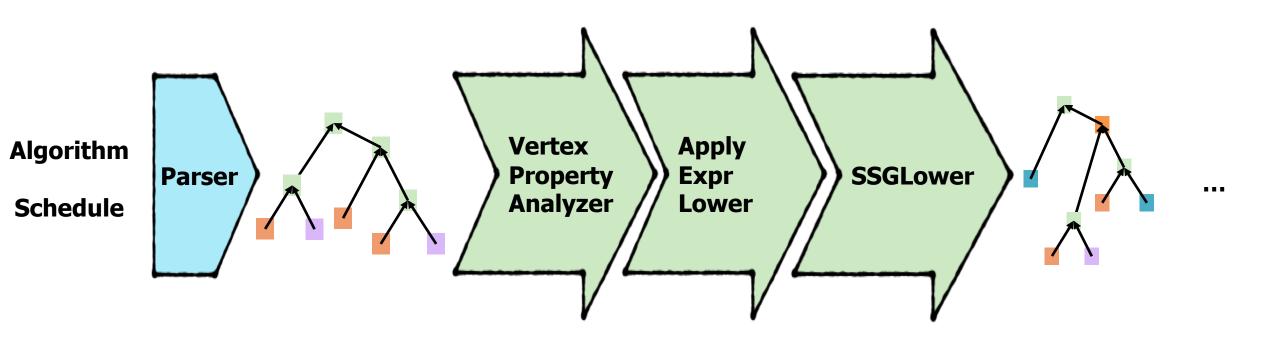
Optimization	Gunrock	GSWITCH	SEP-Graph	GraphIt
Load Balancing	VERTEX BASED, EDGE BASED, TWC	CM, WM, TWC, STRICT	VERTEX BASED	ETWC, TWC, STRICT, CM, WM, VERTEX BASED, EDGE BASED
Edge Blocking	Not supported	Not supported	Not supported	Supported
Vertex Set Creation	Fused/Unfused	Fused/Unfused	Fused	Sparse Queue / Bitmap / Boolean Array
Direction Optimization	Push/Pull/Hybrid	Push/Pull/Hybrid	Push/Pull/Hybrid	Push/Pull/Hybrid
Deduplication	Supported	Not supported	Supported	Supported
Vertex Ordering	Supported	Supported	Supported	Supported
Kernel Fusion	Supported	Not supported	Supported	Supported
Total combinations	48	32	16	576

New Optimization: ETWC Load Balancing


- Edge-based Thread Warps CTAs load-balancing (ETWC)
 - First, equally partitions vertices across CTAs
 - Then, partitions edges of a vertex into low, medium, high bins to be processed by a thread, warp, and entire CTA, respectively
 - Trades off load balance for reducing load balancing overhead

Graph	ETWC	TWC	СМ
OK	43.58	40.69	42.24
TW	106.11	107.57	116.06
LJ	19.72	20.03	18.42
SW	226.35	230.00	230.03
HW	4.94	5.79	8.17
IC	11.38	11.50	22.16
RU	136.64	255.89	168.90
RC	91.20	162.54	109.89
RN	13.10	25.77	16.25

Times (ms) of ETWC on breadth-first search, compared with existing strategies TWC and CM. Fastest time is **bolded**.


- Edge blocking (EB)
 - Tiles edges into subgraphs such that the random accesses for each subgraph fit in L2 cache
 - Process each subgraph one at a time

Graph	Without	With	Speedup
	EB	EB	
ОК	41.75	14.18	2.94x
TW	88.25	77.86	1.13x
LJ	15.67	7.68	2.04x
SW	144.88	102.11	1.41x
HW	7.01	7.02	0.99x
IC	18.24	19.55	0.93x
RU	8.35	6.32	1.35x
RC	8.39	5.56	1.50x
RN	0.44	0.43	1.02x

Times (ms) and speedup of Edge blocking (EB) on PageRank

GraphIt Compilation

• Whole program analysis / transformations

```
while (frontier.getVertexSetSize() != 0)
    output = edges.from(frontier).to(toFilter).
        applyModified(updateEdge, parent);
    delete frontier;
    frontier = output;
    end
...
```

```
while (frontier.getVertexSetSize() != 0) {
    cudaMalloc(output, ...);
    ApplyModified<<<, >>>(frontier, output, ...);
    ...
    cudaFree(frontier);
    frontier = output;
}
```

Allocations and freeing on GPUs are costly unlike CPUs

- Do we really need to allocate and free on every round?
- We should reuse the memory that was allocated for frontier
- Is it always safe to do so?
 - What if the old frontier is used again?

Liveness Analysis!

Example: Frontier Reuse Analysis

• Constructs live ranges for each Vertexsubset variable (used to represent frontiers)

```
while (frontier.getVertexSetSize() != 0)
    output = edges.from(frontier)...applyModified(...);
    delete frontier;
    frontier = output;
end
....
```

• Disjoint live ranges allows memory to be reused

- Compare to 3 state-of-the-art frameworks (Gunrock [Wang et al. 2017], GSWITCH [Meng et al. 2019], SEP-graph [Wang et al. 2019])
- 5 algorithms: breadth-first search, single-source shortest paths (Deltastepping), connected components, betweenness centrality, and PageRank
- 9 datasets: social networks, Web graphs, and road networks
- 2 generations of NVIDIA GPUs: Pascal and Volta

State of the Art and GraphIt on Titan Xp (Pascal) GPU

Slowdowns relative to the fastest implementation

ЮК	1	1	1	1	1	ОК	4.28	1.1	1.14	10.4	8.16	ОК	8.26	1.11	1.21	5.84	1.45	УО	3.66		4.61	
ΤW	1	1	1	1	1.42	ΤW	1.46		1.9	2.31	4.11	ΤW	2.71	1.07		2.04	1	ΤW	1.9		2.07	
Ĺ	1	1.27	1	1	1.07	Г	2.3	1.3	1.46	4.78	3.26	Г		1	1.13	3.18	1	Ļ	3.16		3.16	
SI	1	1.06	1	1	1	SI	1.75		1.59	5.06	5.36	SI	3.32	1		2.82	2.03	SI	4.94		3.35	
ОН	1	1	1	1	1	ОН	3.23	1.08	3.11	4.06	2.38	ЮН		1.22	1.51	2.58	6.51	ЮН	2.52		5.04	
Q	1.96	1	1	1	3.34	<u>v</u>	1.42	1.49	7.45	1.93	4.48	Q	1	6.62	1.36	2.23	1	<u>ں</u>	5.16		4.25	
US	1	1	1	1.37	1	US	1.67	6.04	3.6	122	3.27	US	1.21	1.64	1.51	2.81	1.87	US	1.15		1	
CE	1	1	1	1.18	1	CE	1.79		1.78	103	2.64	CE	1.59	1.71	1	2.25	1.39	CE	1.24		1	
CA	1	1	1	1.03	1	CA	2.19		3.38	5.41	3.59	CA	1.09	1.68	1.77	1.69	1.64	CA	1.12		1	
	PR	BFS	cc Graph	SSSP It	BC	-	PR	^{bfs}	cc unroc	sssp :k	BC	•	PR	BFS	cc SWIT(sssp CH	BC		PR BFS	сс E P-gra	sssp aph	BC

State of the Art and GraphIt on V-100 (Volta) GPU

Slowdowns relative to the fastest implementation

GraphIt achieves a speedup of up to 5.11x due to searching through a much larger space of optimizations

• Lines of code for each algorithm in each framework

Algorithm	Gunrock	GSWITCH	SEP-Graph	GraphIt (Algorithm+Schedule)
Breadth First Search	2189	164	481	66
PageRank	2207	159	-	61
Connected Components	3014	160	-	62
Betweenness Centrality	1792	280	-	128
SSSP with Delta Stepping	1438	203	473	50

CPU vs. GPU

- Compared GPU implementations with CPU implementations in GraphIt on a 24-core machine
 - PageRank, BFS, betweenness centrality, and connected components were faster on the GPU
 - Delta-Stepping on road graphs was faster on the CPU
 - CPUs can process much larger graphs
- It is critical to be able to choose between CPU and GPU for each application!

- GraphIt DSL and compiler to generate high-performance CPU and GPU code from the same high-level algorithm representation
- New GPU-specific scheduling language options and optimizations
- The GPU algorithms from GraphIt outperform state-of-the-art GPU frameworks while requiring fewer lines of code
- Open source: https://graphit-lang.org