
1

Compiling Graph Applications for GPUs
with GraphIt

Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib Kamil,
Julian Shun, Saman Amarasinghe

2

CPU vs. GPU

• CPU is designed to execute one thread fast
• GPU is designed to execute many (slower) threads in parallel, achieving

higher throughput

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

3

GPU Architecture

• GPU has multiple streaming multiprocessors (SMs)
• For example, Tesla V100 has 80 SMs

• Work in GPUs is organized into thread blocks
(CTAs), and dynamically assigned to SMs

• Each SM has its own data cache, which can be
partitioned between L1 cache and shared memory
• 128KB on Tesla V100

• There is global DRAM (16 or 32 GB on V100) and
a global L2 cache (6144 KB on V100)

Source: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

4

GPU Architecture

• Each SM schedules warps (groups of 32
threads) to execute the same computation
together
• Tesla V100 has 4 warp schedulers and

instruction units, and can execute 4 warps
at a time

• Each instruction unit has its own cores for
arithmetic, and L0 instruction cache

Source: http://www.gipsa-lab.grenoble-inp.fr/thematic-school/gpu2017/presentations/GIPSA-Lab-GPU2017-G-Roth.pdf

7

Graph Optimization Tradeoff Space

Optimizations

Graphs

HardwareAlgorithms

8

• Decouple Algorithm from Optimization
• Algorithm language: What to compute
• Scheduling (optimization) language: How to compute

• Scheduling representation
• Easy to use for users to try different combinations of optimizations without

changing the algorithm

GraphIt – A Domain-Specific Language for Graph Analytics

9

GraphIt – A Domain-Specific Language for Graph Analytics

Algorithm Language Optimization Representation
• Scheduling Language
• Schedule Representation

(e.g., Graph Iteration Space)

Autotuner

10

Hardware Variations?

Vertices
Processed

18 18 18 18

- Massive parallelism
- Coalesced memory accesses

GPU

SSSP on road graphs

1 1 31
Vertices
Processed

- Limited parallelism
- Large number of iterations

CPU

PageRank on social networks

• No existing framework for generating both CPU and GPU code prior to
GraphIt

11

• GraphIt currently has backends for multicore CPUs and GPUs
• First framework to support code generation for both CPUs and

GPUs with the same algorithm specification

GraphIt Backend Support

Algorithm

CPU
schedule

GPU
schedule

CPU
Backend

GPU
Backend

C++ Code CUDA Code

Midend
optimizations

GraphIt

17

Key GPU Optimizations

Load
Balancing???

Vertex Subset
Representation??

Vertex Subset
Deduplication??

Direction
Optimization???

Kernel
Fusion???

Edge Blocking

18

GPU Scheduling Language

• Load Balancing Strategy
• Iteration direction
• Representation of output frontier
• Deduplication of output frontier

• Fusing multiple CUDA kernels
• Graph partitioning for cache utilization
• Runtime combinations of above

configLoadBalance(CM|WM|TWC|TWCE|EB|VB|STRICT)

configDirection(PUSH|PULL)
configFrontierCreation(FUSED|UNFUSED, BITMAP|

BOOLMAP)

configDeduplication(ENABLED|DISABLE,

BITMAP|BOOLMAP|MONOTONIC_COUNTERS)

configKernelFusion(ENABLED|DISABLED)

configEdgeBlocking(ENABLED|DISABLED)

HybridGPUSchedule

19

Comparison of Optimizations with Other Frameworks

Optimization Gunrock GSWITCH SEP-Graph GraphIt

Load Balancing
VERTEX BASED, EDGE
BASED, TWC

CM, WM, TWC, STRICT VERTEX BASED
ETWC, TWC, STRICT, CM,
WM, VERTEX BASED, EDGE
BASED

Edge Blocking Not supported Not supported Not supported Supported

Vertex Set Creation Fused/Unfused Fused/Unfused Fused
Sparse Queue / Bitmap /
Boolean Array

Direction Optimization Push/Pull/Hybrid Push/Pull/Hybrid Push/Pull/Hybrid Push/Pull/Hybrid

Deduplication Supported Not supported Supported Supported

Vertex Ordering Supported Supported Supported Supported

Kernel Fusion Supported Not supported Supported Supported

Total combinations 48 32 16 576

20

• Edge-based Thread Warps CTAs load-balancing (ETWC)
• First, equally partitions vertices across CTAs
• Then, partitions edges of a vertex into low, medium, high bins

to be processed by a thread, warp, and entire CTA, respectively
• Trades off load balance for reducing load balancing overhead

New Optimization: ETWC Load Balancing

Times (ms) of ETWC on breadth-first search,
compared with existing strategies TWC and CM.

Fastest time is bolded.

21

• Edge blocking (EB)
• Tiles edges into subgraphs such that the random accesses for each

subgraph fit in L2 cache
• Process each subgraph one at a time

New Optimization: Edge Blocking

Times (ms) and speedup of
Edge blocking (EB) on PageRank

22

• Whole program analysis / transformations

GraphIt Compilation

Parser
Apply
Expr
Lower

SSGLower
Vertex
Property
Analyzer

…
Algorithm

Schedule

23

• Do we really need to allocate and free on every round?
• We should reuse the memory that was allocated for frontier
• Is it always safe to do so?

• What if the old frontier is used again?

Example: Frontier Reuse Analysis

Liveness Analysis!

while (frontier.getVertexSetSize() != 0) {
cudaMalloc(output, ...);
ApplyModified<<<, >>>(frontier, output, …);
...
cudaFree(frontier);
frontier = output;

}

...
while (frontier.getVertexSetSize() != 0)

output = edges.from(frontier).to(toFilter).
applyModified(updateEdge, parent);

delete frontier;
frontier = output;

end
...

Allocations and freeing on GPUs are costly unlike CPUs

24

• Disjoint live ranges allows memory to be reused

Example: Frontier Reuse Analysis

...
while (frontier.getVertexSetSize() != 0)

output = edges.from(frontier)…applyModified(…);
delete frontier;
frontier = output;

end
...

Live Range of frontier

Live Range of output

• Constructs live ranges for each Vertexsubset variable (used to represent frontiers)

25

Experimental Evaluation

• Compare to 3 state-of-the-art frameworks (Gunrock [Wang et al. 2017],
GSWITCH [Meng et al. 2019], SEP-graph [Wang et al. 2019])

• 5 algorithms: breadth-first search, single-source shortest paths (Delta-
stepping), connected components, betweenness centrality, and PageRank

• 9 datasets: social networks, Web graphs, and road networks

• 2 generations of NVIDIA GPUs: Pascal and Volta

26

State of the Art and GraphIt on Titan Xp (Pascal) GPU

Slowdowns relative to the fastest implementation

35 BF6 CC 6663 BC
GUaSKIW

2
.

7W
L-

6I
H
2

IC
86

CE
CA

1 1 1 1 1

1 1 1 1 1.42

1 1.27 1 1 1.07

1 1.06 1 1 1

1 1 1 1 1

1.96 1 1 1 3.34

1 1 1 1.37 1

1 1 1 1.18 1

1 1 1 1.03 1

35 BF6 CC 6663 BC
GunURFk

2
.

7W
L-

6I
H
2

IC
86

CE
CA

4.28 1.1 1.14 10.4 8.16

1.46 1.9 2.31 4.11

2.3 1.3 1.46 4.78 3.26

1.75 1.59 5.06 5.36

3.23 1.08 3.11 4.06 2.38

1.42 1.49 7.45 1.93 4.48

1.67 6.04 3.6 122 3.27

1.79 1.78 103 2.64

2.19 3.38 5.41 3.59

35 BF6 CC 6663 BC
G6WI7CH

2
.

7W
L-

6I
H
2

IC
86

CE
CA

8.26 1.11 1.21 5.84 1.45

2.71 1.07 2.04 1

1 1.13 3.18 1

3.32 1 2.82 2.03

1.22 1.51 2.58 6.51

1 6.62 1.36 2.23 1

1.21 1.64 1.51 2.81 1.87

1.59 1.71 1 2.25 1.39

1.09 1.68 1.77 1.69 1.64

35 BF6 CC 6663 BC
6E3-JUaSK

2
.

7W
L-

6I
H
2

IC
86

CE
CA

3.66 4.61

1.9 2.07

3.16 3.16

4.94 3.35

2.52 5.04

5.16 4.25

1.15 1

1.24 1

1.12 1

27

State of the Art and GraphIt on V-100 (Volta) GPU

Slowdowns relative to the fastest implementation

35 BF6 CC 6663 BC
GUaSKIW

2
.

7W
L-

6I
H
2

IC
86

CE
CA

1 1 1 1 1

1 1.39 1 1 1.61

1 1 1 1 1.26

1 1.13 1 1 1

1 1.03 1.08 1 1.85

1 1 5 3.93 1

1.16 1 1 1.32 1

1.03 1.81 1 1.32 1

1 1.08 1 1.08 1

35 BF6 CC 6663 BC
GunURFk

2
.

7W
L-

6I
H
2

IC
86

CE
CA

2.61 1.1 6.05 10.7

1.09 1.28 1.64 8.95

2.04 1.35 3.29 5.22

1.32 7.73 4.49 7.11

1.52 1.04 2.07 4.77

1.19 1.39 1 1.59

1 10.4 4.13 2.99

1 6.63 3.35 2.97

1.23 7.33 3.43 2.64

35 BF6 CC 6663 BC
G6WI7CH

2
.

7W
L-

6I
H
2

IC
86

CE
CA

4.15 1 1.08 3.98 1.03

2.63 1 1.02 2.15 1

1.73 1.14 1.41 1.95 1

3.27 1 1.67 2.83 1.4

2.03 1 1 1.48 1

3.33 4.5 1 8.28 1.85

1.2 2.51 1.44 2.04 1.62

1.14 1.76 1.41 1.73 1.58

1.32 1.8 2.08 1.67 1.44

35 BF6 CC 6663 BC
6E3-JUaSK

2
.

7W
L-

6I
H
2

IC
86

CE
CA

3.79 3.29

3.6 1.91

3.58 2.58

5.77 2.84

3.01 2.87

4.36 13.7

1.31 1

1 1

1 1

GraphIt achieves a speedup of up to 5.11x due to searching through a much larger space of optimizations

28

• Lines of code for each algorithm in each framework

Programmability

Algorithm Gunrock GSWITCH SEP-Graph GraphIt
(Algorithm+Schedule)

Breadth First
Search 2189 164 481 66

PageRank 2207 159 - 61

Connected
Components 3014 160 - 62

Betweenness
Centrality 1792 280 - 128

SSSP with Delta
Stepping 1438 203 473 50

29

• Compared GPU implementations with CPU implementations in GraphIt on a

24-core machine

• PageRank, BFS, betweenness centrality, and connected components were faster

on the GPU

• Delta-Stepping on road graphs was faster on the CPU

• CPUs can process much larger graphs

• It is critical to be able to choose between CPU and GPU for each application!

CPU vs. GPU

30

• GraphIt DSL and compiler to generate high-performance CPU and

GPU code from the same high-level algorithm representation

• New GPU-specific scheduling language options and optimizations

• The GPU algorithms from GraphIt outperform state-of-the-art GPU

frameworks while requiring fewer lines of code

• Open source: https://graphit-lang.org

Summary

https://graphit-lang.org/

