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Background 
GROUPING with AGGREGATION is one of the most expensive relational database operators. The dominant cost of 
AGGREGATION is, as with most relational operators, the movement of the data – from main memory to cache. 



Hashing and Sorting for aggregation

HASHAGGREGATION inserts the input rows into a 
hash table, using the grouping attributes as key and
aggregating the remaining attributes in-place. 

SORTAGGREGATION first sorts the rows by the grouping 
attributes and then aggregates the consecutive rows of 
each group. 

The consensus is that HASHAGGREGATION is better if the number of groups is small enough such that the output
fits into the cache, and SORTAGGREGATION is better if the number of groups is very large.



Paper Contribution

• The two approaches have  exactly the same costs in terms of cache line transfers.

• Design an algorithmic framework that allows seamless switching between hashing and sorting during 
execution. 

• Show how to achieve very low constant factors for both the hashing and the sorting routine by tuning them 
to modern hardware. 

We obtain a novel relational aggregation algorithm that has very low constant factors on modern hardware. It is 
cache-efficient, highly parallelizable on modern multi-core systems, and operating at a speed close to the memory
bandwidth. 



Sort-based aggregation

External memory model

Bucket sort is used

• there are as many leaves in the call tree as there are 
cache lines in the input: N/B .

• The tree has degree M/B since the number of 
partitions is limited by the number of buffers that fit 
into cache. 

• If we assume that the tree is somewhat balanced, it 
has a height of              . 

Overall cost of SORTAGGREGATION
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When K < N. the  recursion actually stops earlier than for the 
case where K = N.  In fact, the call tree only has min( N/B ;K) 
leaves, at most one for each partition, 

we merge the last bucket sort pass with the final aggregation 
pass. This completely eliminates one pass over the entire data. 



Hash-based aggregation

If K< M, the algorithm just needs the N/B cache line transfers 
for reading the input. If K > M, even  only a fraction of M/K 
rows can be in the cache. The overall number of cache line 
transfers is therefore:

As long as the output K is small enough to fit into the cache, 
HASHAGGREGATION is really fast. However as soon as the 
cache cannot hold the output anymore, HASHAGGREGATION 
triggers a cache miss for almost every input row, so the 
number of cache line transfers explodes

A common optimization to overcome this problem is to 
(recursively) partition the input by hash value and to apply 
HASHAGGREGATION on each partition separately. However 
the partitioning also entails costs, which are the same as 
the partitioning of bucket sort.



Hashing and Sorting Comparison



Mixing Hashing and Sorting

PARTITIONING produces one run per 
partition by moving every row to its 
respective run.

HASHING starts with a first hash table of the size 
of the cache and replaces its current hash table 
with a new one whenever it is full. Every full hash 
table is split into one run per partition

We can define the following two partitioning routines, 
• plain partitioning by hash value called PARTITIONING (Line 1)
• a partitioning routine based on the creation of hash tables called HASHING (Line 5). 
Both routines  produce partitions in form of “runs”

working set of both HASHING and PARTITIONING is strictly limited to the CPU cache. 



Aggregation framework

first split into runs. 

each run of the input is processed by one of the two 
routines selected by HASHING OR PARTITIONING 

Once the entire input has been processed, the algorithm
treats all runs of the same partition as a single bucket 
and recurses into the buckets one after each other. 



Parallelization 

Parallelable 

Parallelable 

Synchronization 



System integration 
With this approach, aggregation is split into two operators: 

The first operator processes the grouping column and produces a 
vector with identifiers of the groups and a mapping vector, which 
maps every input row to the index of its group. 

The second operator applies this mapping vector by aggregating 
every input value with the current aggregate of the group as 
indicated by the mapping vector and is executed once for each 
aggregate column

• Require additional memory access to write and read 
the mapping vector. 

• Ignores cache-efficient.   For large outputs. there are 
often many more aggregate columns than grouping 
columns, this would even have a worse impact

Disadvantages

• Both HASHING and PARTITIONING produce a 
mapping vector but only for this run. 

• This mapping is then applied to the corresponding 
parts of the aggregate columns. 

• When the corresponding runs of all columns have 
been produced, the framework continues with the 
processing of the rest of the input.

Improvements



Minimizing CPU costs 
Hashing

We adapted the linear probing to work 
within blocks, such that we can cleanly 
split a table into ranges for the recursive 
calls. The final insertion costs of our 
implementation are below 6 ns per 
element. This is roughly 4 times more than 
an L1 cache access, but more than an 
order of magnitude faster than out-of-
cache insertion, 

Partitioning

Software write-combining (swwc) is 
designed to avoid the read-before-
write overhead. It consists in 
buffering one cache line per 
partition, which is flushed when it 
runs full using a non-temporal store 
instruction that by-passes the 
cache.



When to switch

• HASHINGONLY automatically does the right number of passes: If K < cache, it computes the result in cache.
• PARTITIONING is much faster than HASHING if K > cache

Use PARTITIONING until the number of groups per partition is small enough such that HASHING can do the 
rest of the work in cache. 



Adaptive switching strategy
The algorithm starts with HASHING. When a hash 
table gets full, the algorithm determines the factor a 
= n_in/ n_out, where n_in is the number of 
processed rows and n_out the size of the hash table. 

If a > a0 for some threshold a0, HASHING was the 
better choice as the input was reduced significantly, 
so the algorithm continues with HASHING. Otherwise 
it switches to PARTITIONING. 



Scalability
Number of cores Number of columns

Figure 6 shows the speedup of ADAPTIVE for 
different numbers of groups K compared to its 
respective performance on a single core. As the plot 
shows, the speedup is around 16 on our 20 CPU 
cores no matter K, which is as close to optimal 
speedup as practical implementations usually get. 

Figure 7 shows how the number of aggregate columns 
affects the performance of ADAPTIVE for different output 
cardinalities K. Indeed the plot indicates that the run time 
per element is almost the same for any number of 
columns.



Benchmark with previous work

ADAPTIVE achieves a speedup of at least 
factor 2.7 for all K ≤ 221

ADAPTIVE is also as least as fast as 
almost all other algorithm for other 
values of K



Skew resistance

We now extend the experiments on uniform data to other data 
sets in order to test the skew resistance of our ADAPTIVE 
operator. 

Figure 9 shows the performance of ADAPTIVE on all data sets.
The first and most important observation is that ADAPTIVE is 
not slower on the other distribution than uniform. In this 
sense, uniform is the hardest distribution for our operator and 
skew only improves its performance. Since skew means that 
some keys occur more often than others, our operator can 
benefit from skew by using hashing for early aggregation of 
these values.



Conclusion

In summary, our work starts with the assumption that even in the in memory setting, the movement of data is the 
hard part of relational operators such as aggregation. 

• We use an external memory model to show that HASHAGGREGATION and SORTAGGREGATION are equivalent in 
terms of the number of cache lines transfers they incur.

• Consequently we design an algorithmic framework based on sorting by hash value that allows to combine hashing 
for early aggregation and integer sorting routines depending on the locality of the data. We tune both the hashing 
and the sorting to switch between the two. 

• We show extensive experiments on different data sets and a comparison with several algorithms from prior work. 
We are able to outperform all our competitors by up to factor 3.7. 


