
Presenter: Tao Sun

Background
GROUPING with AGGREGATION is one of the most expensive relational database operators. The dominant cost of
AGGREGATION is, as with most relational operators, the movement of the data – from main memory to cache.

Hashing and Sorting for aggregation

HASHAGGREGATION inserts the input rows into a
hash table, using the grouping attributes as key and
aggregating the remaining attributes in-place.

SORTAGGREGATION first sorts the rows by the grouping
attributes and then aggregates the consecutive rows of
each group.

The consensus is that HASHAGGREGATION is better if the number of groups is small enough such that the output
fits into the cache, and SORTAGGREGATION is better if the number of groups is very large.

Paper Contribution

• The two approaches have exactly the same costs in terms of cache line transfers.

• Design an algorithmic framework that allows seamless switching between hashing and sorting during
execution.

• Show how to achieve very low constant factors for both the hashing and the sorting routine by tuning them
to modern hardware.

We obtain a novel relational aggregation algorithm that has very low constant factors on modern hardware. It is
cache-efficient, highly parallelizable on modern multi-core systems, and operating at a speed close to the memory
bandwidth.

Sort-based aggregation

External memory model

Bucket sort is used

• there are as many leaves in the call tree as there are
cache lines in the input: N/B .

• The tree has degree M/B since the number of
partitions is limited by the number of buffers that fit
into cache.

• If we assume that the tree is somewhat balanced, it
has a height of .

Overall cost of SORTAGGREGATION
Aggregation
Input read

Aggregation
Output Write

Input
Read and write

When K < N. the recursion actually stops earlier than for the
case where K = N. In fact, the call tree only has min(N/B ;K)
leaves, at most one for each partition,

we merge the last bucket sort pass with the final aggregation
pass. This completely eliminates one pass over the entire data.

Hash-based aggregation

If K< M, the algorithm just needs the N/B cache line transfers
for reading the input. If K > M, even only a fraction of M/K
rows can be in the cache. The overall number of cache line
transfers is therefore:

As long as the output K is small enough to fit into the cache,
HASHAGGREGATION is really fast. However as soon as the
cache cannot hold the output anymore, HASHAGGREGATION
triggers a cache miss for almost every input row, so the
number of cache line transfers explodes

A common optimization to overcome this problem is to
(recursively) partition the input by hash value and to apply
HASHAGGREGATION on each partition separately. However
the partitioning also entails costs, which are the same as
the partitioning of bucket sort.

Hashing and Sorting Comparison

Mixing Hashing and Sorting

PARTITIONING produces one run per
partition by moving every row to its
respective run.

HASHING starts with a first hash table of the size
of the cache and replaces its current hash table
with a new one whenever it is full. Every full hash
table is split into one run per partition

We can define the following two partitioning routines,
• plain partitioning by hash value called PARTITIONING (Line 1)
• a partitioning routine based on the creation of hash tables called HASHING (Line 5).
Both routines produce partitions in form of “runs”

working set of both HASHING and PARTITIONING is strictly limited to the CPU cache.

Aggregation framework

first split into runs.

each run of the input is processed by one of the two
routines selected by HASHING OR PARTITIONING

Once the entire input has been processed, the algorithm
treats all runs of the same partition as a single bucket
and recurses into the buckets one after each other.

Parallelization

Parallelable

Parallelable

Synchronization

System integration
With this approach, aggregation is split into two operators:

The first operator processes the grouping column and produces a
vector with identifiers of the groups and a mapping vector, which
maps every input row to the index of its group.

The second operator applies this mapping vector by aggregating
every input value with the current aggregate of the group as
indicated by the mapping vector and is executed once for each
aggregate column

• Require additional memory access to write and read
the mapping vector.

• Ignores cache-efficient. For large outputs. there are
often many more aggregate columns than grouping
columns, this would even have a worse impact

Disadvantages

• Both HASHING and PARTITIONING produce a
mapping vector but only for this run.

• This mapping is then applied to the corresponding
parts of the aggregate columns.

• When the corresponding runs of all columns have
been produced, the framework continues with the
processing of the rest of the input.

Improvements

Minimizing CPU costs
Hashing

We adapted the linear probing to work
within blocks, such that we can cleanly
split a table into ranges for the recursive
calls. The final insertion costs of our
implementation are below 6 ns per
element. This is roughly 4 times more than
an L1 cache access, but more than an
order of magnitude faster than out-of-
cache insertion,

Partitioning

Software write-combining (swwc) is
designed to avoid the read-before-
write overhead. It consists in
buffering one cache line per
partition, which is flushed when it
runs full using a non-temporal store
instruction that by-passes the
cache.

When to switch

• HASHINGONLY automatically does the right number of passes: If K < cache, it computes the result in cache.
• PARTITIONING is much faster than HASHING if K > cache

Use PARTITIONING until the number of groups per partition is small enough such that HASHING can do the
rest of the work in cache.

Adaptive switching strategy
The algorithm starts with HASHING. When a hash
table gets full, the algorithm determines the factor a
= n_in/ n_out, where n_in is the number of
processed rows and n_out the size of the hash table.

If a > a0 for some threshold a0, HASHING was the
better choice as the input was reduced significantly,
so the algorithm continues with HASHING. Otherwise
it switches to PARTITIONING.

Scalability
Number of cores Number of columns

Figure 6 shows the speedup of ADAPTIVE for
different numbers of groups K compared to its
respective performance on a single core. As the plot
shows, the speedup is around 16 on our 20 CPU
cores no matter K, which is as close to optimal
speedup as practical implementations usually get.

Figure 7 shows how the number of aggregate columns
affects the performance of ADAPTIVE for different output
cardinalities K. Indeed the plot indicates that the run time
per element is almost the same for any number of
columns.

Benchmark with previous work

ADAPTIVE achieves a speedup of at least
factor 2.7 for all K ≤ 221

ADAPTIVE is also as least as fast as
almost all other algorithm for other
values of K

Skew resistance

We now extend the experiments on uniform data to other data
sets in order to test the skew resistance of our ADAPTIVE
operator.

Figure 9 shows the performance of ADAPTIVE on all data sets.
The first and most important observation is that ADAPTIVE is
not slower on the other distribution than uniform. In this
sense, uniform is the hardest distribution for our operator and
skew only improves its performance. Since skew means that
some keys occur more often than others, our operator can
benefit from skew by using hashing for early aggregation of
these values.

Conclusion

In summary, our work starts with the assumption that even in the in memory setting, the movement of data is the
hard part of relational operators such as aggregation.

• We use an external memory model to show that HASHAGGREGATION and SORTAGGREGATION are equivalent in
terms of the number of cache lines transfers they incur.

• Consequently we design an algorithmic framework based on sorting by hash value that allows to combine hashing
for early aggregation and integer sorting routines depending on the locality of the data. We tune both the hashing
and the sorting to switch between the two.

• We show extensive experiments on different data sets and a comparison with several algorithms from prior work.
We are able to outperform all our competitors by up to factor 3.7.

