Multi-Core, Main-Memory Joins:
Sort vs. Hash Revisited

Authors: Cargi Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer Ozsu
Presenter: Terryn Brunelle

Background

® Multi-core join algorithms

o Sort-merge

o Hash-join
® \Want to understand performance of parallel data operators on new hardware
e Sort-merge claimed better, but there are new optimizations for hash-join

Sort vs. Hash

Sort Hash
e Massively Parallel Sort-Merge e Preferable on single core
Join (MPSM) e Partitioning

e SIMD data parallelism

Sort-Merge Joins

Sort-Merge Strategies: Run Generation
3
6
3}
9

T
1 1
.611I

Figure 1: Even-
odd network for
four inputs.

S W ot ©
© O Ot W

Sort-Merge Strategies: Merging Sorted Runs

'-8 ai 4 T I out1
2| az * la outo
5| as o I outs |,
A ay, —e outs |9
o b4 % o I outs ?QD:
Q2 b3 & T outg
5| b2 - ¢ I outr
21 b 23 l outs

Figure 2: Bitonic merge network.

Merging Larger Lists

Algorithm 1: Merging larger lists with help of bitonic
merge kernel bitonic_merge4 () (k = 4).

1 a + fetchd (in1); b + fetchd (in2);
2 repeat

3 (a,b) - bitonic_merge4 (a, b);
4 emit a to output;

5 if head (in;) < head (in,) then
6 |_ a « fetchd (in;);

T

8

9

else
| a« fetchd (in2);

until eof (in1) or eof (in2);
10 {a,b) + bitonic_merged (a,b);
11 emit4 (a); emit4 (b);
12 if eof (in,) then
13 | emit rest of iny to output;

14 else
15 |_ emit rest of in; to output;

Cache-Conscious Sort-Merge

Separate sorting into phases to optimize cache access

1. In-register sorting
2. In-cachesorting
3. Out-of-cache sorting

Out-of-Cache Sorting

e Use two-way merge units
connected via FIFO queues

e Allqueues fitin CPU cache

e Avoids memory bottlenecks
even across NUMA
boundaries

Ao s

|
|
|
\

merge | | merge | | merge | | merge
N N
R a merge merge =
> ~ < \ / p % e
oN merge ’

Figure 3: Multi-way merging.

e

_-~one thread

M-Way and M-Pass Sort-Merge Join

1. Threadsrange-partitions local chunks
2. Multi-way merging to obtain R’ | Tl TP -

| 7\ I A " VAN TEA\N I

(globally sorted copy of R) Docal con] it ool corf] 1} [local sort] 1 [Jocalzomt] |

3. Sameas 1butfor$S [IIE "IN TN e

4. Obtain S’ from S in same way as 2 \ p !
5. Single-pass merge join to find | T .

matching pairs

M-Pass: successive two-way bitonic
merging in phase 2

Massively Parallel Sort-Merge Join (MPSM)

=

Globally range-partition R

Obtain globally sorted R’

Sort S partially without prior partitioning
Merge-join run of R with all NUMA-remote runs of S

H DN

Good if S is substantially larger than R

Hash-Based Joins

Radix Partitioning

1 foreach wnput tuple t do

2 k < hash(t);

3 plk][pos[k]] = ¢; // copy t to target partition k
4 | poslk]++;

Reduce cache misses and TLB miss effects

Software-Managed Buffers

foreach input tuple t do
k < hash(¢);
buf[k|[pos|k] mod N]| = t; // copy t to buffer
pos|k|++;
if pos/k] mod N = 0 then
| copy buf[k] to p[k]; // copy buffer to part. k

S b W N

Only need to access TLB once every Nth tuple

Radix Hash Join (radix)

e Apply radix partitioning
e Break the smaller input into pieces that fit into caches
e Runcache-local hash join on individual partition pairs

No-Partitioning Hash Join (n-part)

Parallel version of hash join

Divide input relations evenly across worker threads

Build phase: Workers populate shared hash table with R tuples

Probe phase: Workers find matching join partners for S portions using
hash table

Experimental Results

Sort Phase

oy R | —e— AVX sort —m— C++ STL sort
3

£ 307

a,

2 25+¢

-

ﬁ_ 20 " o,
5 =
& 27 g
Y] o
3 107t .M—Hﬂ_. 3
o}

= 3

% 54 2

+ 1

S 0

64 128 256
number of tuples in R (in 2%9)

AV X sortis 2.5 to 3x faster than C++ STL sort

Merge/Partition Phase

throughput [M. tuples/sec]

180 +
160 T
140 +
120 +
100 +
80 +
60 +
40 +
20 1

—@— m-way merge —H— radir part. —4— sw-managed buf.

4 8 16 32 64 128 256 512 1024 2048
merge fan-in/partitioning fan-out

Using Partition with Sort

e Partition-then-Sort range partitions the input

o Each partitionis individually sorted using AVX sort
e Sort-then-Merge creates cache-sized sorted runs

o Merge sorted runs via multi-way merge

throughput [M. tuples/sec]

Using Partition with Sort

700 T+
600 +
500 T+
400 +
300 +
200 +
100 +

D Partition-Then-Sort

. Sort-Then-Merge

64M

128M

256M 512M 768M
input size [M tuples]

1024M

throughput [M tuples/sec]

4000
3500
3000
2500
2000
1500
1000

500

I:] partitioning . multi-way merge

I

64M

128M

256M 512M 768M
input size [M tuples]

1024M

execution time [secs|

Sort-Merge Joins

50 T
40 T
30 T
20 T
10 T

0
a5
U m-way 5 2
B m-pass i
B mpsm (scalar)
3 =
35 ©
L © =)
o =2
b= ~
o 0 N :
8 % 2
0 > <+ o 0
- 8 5 A A -
jle]
1.6B 3.2B 6.4B 12.8B

S relation size in billion tuples

cycles per output tuple

M partition [Jsort [merge M mjoin

N
o
T

15+
104

[RN
—+—t

tput

315M /s

A

7.6cy

22.9¢]
J S
0
& i
) 13.6cy |
0
[} ——
L]
% —
mpsm m-pass

m-way

Sort vs. Hash

700 +
600 +
500 +
400 T
300 + a5 8- g 3

200 1

100 T —@— m-way — sort join —@— radix — hash join

throughput [M. output tuples/sec]

128 384 640 896 1152 1408 1664 1920
million tuples in R and S

Input Size: Radix seems better

throughput [M. output tuples/sec]

600 +
500 +
400 +
300 +
200 +
100 +

(a) 977 MiB X 977 MiB (128 million 8-byte tuples)

Sort vs. Hash

—@— radiz — hash join —B— m-way — sort joi'n,4

350 +
300 +
250 +
200 +
150 +
100 +

14 8 16 24 32 40 48 56 64
number of threads

throughput [M. output tuples/sec]

—8— radix — hash join —8B— m-way — sort join

ot

o O
|

T

4 8 16 24 32 40 48 56 64
number of threads

(b) 11.92 GiB X 11.92 GiB (1.6 billion 8-byte tuples)

Scalability: Both exhibit almost linear scalability

Sort vs. Hash

M partition [Jsort [merge M mjoin M build [Jprobe

15236ms
2L 22+ 1145ms
% al — 12992ms
£ 18+
+~
5 +
g 141
= 1
o
5 10+
Q.‘ +
g O
S 1
& 2t
mway mpsm n-part rdzx mway mpsm n-part rdzx
128M X 128M 1.6BX1.6B

algorithms / workloads in number of tuples

Summary of Results

e Inputsizes have a big effect on performance
e Winner: hash-join (for now)

Concluding Thoughts

Strengths/Weaknesses

Strengths Weaknesses
e Develop fastest sort-merge and hash-join e Would have been nice to see evaluation of
algorithms partition sort
e Hash join buffers enable partitioning larger e Paper layout could be more clear

datain single pass

Discussion Questions

e How would you expect the results of sort with partition to compare to
sort-merge?
o How would the results compare with hash-join?
e What implications do you think future hardware developments will
have on the choice between sort-merge and hash-join?
e How do you view the fate of hash-join as hardware advancements
result in wider registers?

