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Background

® Multi-core join algorithms

o Sort-merge

o Hash-join
® \Want to understand performance of parallel data operators on new hardware
e Sort-merge claimed better, but there are new optimizations for hash-join



Sort vs. Hash

Sort Hash
e Massively Parallel Sort-Merge e Preferable on single core
Join (MPSM) e Partitioning

e SIMD data parallelism



Sort-Merge Joins



Sort-Merge Strategies: Run Generation
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Sort-Merge Strategies: Merging Sorted Runs
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Figure 2: Bitonic merge network.



Merging Larger Lists

Algorithm 1: Merging larger lists with help of bitonic
merge kernel bitonic_merge4 () (k = 4).

1 a + fetchd (in1); b + fetchd (in2);
2 repeat

3 (a,b) - bitonic_merge4 (a, b);
4 emit a to output;

5 if head (in;) < head (in,) then
6 |_ a « fetchd (in;);
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else
| a« fetchd (in2);

until eof (in1) or eof (in2);
10 {a,b) + bitonic_merged (a,b);
11 emit4 (a); emit4 (b);
12 if eof (in,) then
13 | emit rest of iny to output;

14 else
15 |_ emit rest of in; to output;




Cache-Conscious Sort-Merge

Separate sorting into phases to optimize cache access

1. In-register sorting
2. In-cachesorting
3. Out-of-cache sorting



Out-of-Cache Sorting

e Use two-way merge units
connected via FIFO queues

e Allqueues fitin CPU cache

e Avoids memory bottlenecks
even across NUMA
boundaries
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Figure 3: Multi-way merging.
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M-Way and M-Pass Sort-Merge Join

1. Threadsrange-partitions local chunks
2. Multi-way merging to obtain R’ | Tl TP -
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M-Pass: successive two-way bitonic
merging in phase 2




Massively Parallel Sort-Merge Join (MPSM)

=

Globally range-partition R

Obtain globally sorted R’

Sort S partially without prior partitioning
Merge-join run of R with all NUMA-remote runs of S

H DN

Good if S is substantially larger than R



Hash-Based Joins



Radix Partitioning

1 foreach wnput tuple t do

2 k < hash(t);

3 plk][pos[k]] = ¢; // copy t to target partition k
4 | poslk]++;

Reduce cache misses and TLB miss effects



Software-Managed Buffers

foreach input tuple t do
k < hash(¢);
buf[k|[pos|k] mod N]| = t; // copy t to buffer
pos|k|++;
if pos/k] mod N = 0 then
| copy buf[k] to p[k]; // copy buffer to part. k
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Only need to access TLB once every Nth tuple



Radix Hash Join (radix)

e Apply radix partitioning
e Break the smaller input into pieces that fit into caches
e Runcache-local hash join on individual partition pairs



No-Partitioning Hash Join (n-part)

Parallel version of hash join

Divide input relations evenly across worker threads

Build phase: Workers populate shared hash table with R tuples

Probe phase: Workers find matching join partners for S portions using
hash table



Experimental Results



Sort Phase
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AV X sortis 2.5 to 3x faster than C++ STL sort



Merge/Partition Phase
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Using Partition with Sort

e Partition-then-Sort range partitions the input

o Each partitionis individually sorted using AVX sort
e Sort-then-Merge creates cache-sized sorted runs

o Merge sorted runs via multi-way merge



throughput [M. tuples/sec]
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execution time [secs|

Sort-Merge Joins
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Sort vs. Hash
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Input Size: Radix seems better



throughput [M. output tuples/sec]
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Sort vs. Hash
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(b) 11.92 GiB X 11.92 GiB (1.6 billion 8-byte tuples)

Scalability: Both exhibit almost linear scalability



Sort vs. Hash
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Summary of Results

e Inputsizes have a big effect on performance
e Winner: hash-join (for now)



Concluding Thoughts



Strengths/Weaknesses

Strengths Weaknesses
e Develop fastest sort-merge and hash-join e Would have been nice to see evaluation of
algorithms partition sort
e Hash join buffers enable partitioning larger e Paper layout could be more clear

datain single pass



Discussion Questions

e How would you expect the results of sort with partition to compare to
sort-merge?
o How would the results compare with hash-join?
e What implications do you think future hardware developments will
have on the choice between sort-merge and hash-join?
e How do you view the fate of hash-join as hardware advancements
result in wider registers?



