
Multi-Core, Main-Memory Joins: 
Sort vs. Hash Revisited

Authors: Cargi Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer Ozsu
Presenter: Terryn Brunelle



Background

● Multi-core join algorithms

○ Sort-merge

○ Hash-join

● Want to understand performance of parallel data operators on new hardware

● Sort-merge claimed better, but there are new optimizations for hash-join



Sort vs. Hash

Sort

● Massively Parallel Sort-Merge 

Join (MPSM)

● SIMD data parallelism

Hash

● Preferable on single core

● Partitioning 



Sort-Merge Joins



Sort-Merge Strategies: Run Generation



Sort-Merge Strategies: Merging Sorted Runs



Merging Larger Lists



Cache-Conscious Sort-Merge

Separate sorting into phases to optimize cache access

1. In-register sorting

2. In-cache sorting

3. Out-of-cache sorting



Out-of-Cache Sorting

● Use two-way merge units 

connected via FIFO queues

● All queues fit in CPU cache 

● Avoids memory bottlenecks 

even across NUMA 

boundaries



M-Way and M-Pass Sort-Merge Join
1. Threads range-partitions local chunks
2. Multi-way merging to obtain R’ 

(globally sorted copy of R)
3. Same as 1 but for S
4. Obtain S’ from S in same way as 2
5. Single-pass merge join to find 

matching pairs

M-Pass: successive two-way bitonic 
merging in phase 2



Massively Parallel Sort-Merge Join (MPSM)

1. Globally range-partition R

2. Obtain globally sorted R’

3. Sort S partially without prior partitioning

4. Merge-join run of R with all NUMA-remote runs of S

Good if S is substantially larger than R



Hash-Based Joins



Radix Partitioning

Reduce cache misses and TLB miss effects



Software-Managed Buffers

Only need to access TLB once every Nth tuple



Radix Hash Join (radix)

● Apply radix partitioning

● Break the smaller input into pieces that fit into caches

● Run cache-local hash join on individual partition pairs



No-Partitioning Hash Join (n-part)

● Parallel version of hash join

● Divide input relations evenly across worker threads

● Build phase: Workers populate shared hash table with R tuples

● Probe phase: Workers find matching join partners for S portions using 

hash table



Experimental Results



Sort Phase

AVX sort is 2.5 to 3x faster than C++ STL sort



Merge/Partition Phase



Using Partition with Sort

● Partition-then-Sort  range partitions the input

○ Each partition is individually sorted using AVX sort

● Sort-then-Merge creates cache-sized sorted runs

○ Merge sorted runs via multi-way merge



Using Partition with Sort



Sort-Merge Joins



Sort vs. Hash

Input Size: Radix seems better



Sort vs. Hash

Scalability: Both exhibit almost linear scalability



Sort vs. Hash



● Input sizes have a big effect on performance

● Winner: hash-join (for now)

Summary of Results



Concluding Thoughts



Strengths/Weaknesses

Strengths

● Develop fastest sort-merge and hash-join 

algorithms

● Hash join buffers enable partitioning larger 

data in single pass

Weaknesses

● Would have been nice to see evaluation of 

partition sort

● Paper layout could be more clear



Discussion Questions

● How would you expect the results of sort with partition to  compare to 
sort-merge?  
○ How would the results compare with hash-join?

● What implications do you think future hardware developments will 
have on the choice between sort-merge and hash-join?

● How do you view the fate of hash-join as hardware advancements 
result in wider registers?


