
A Randomized
Concurrent Algorithm
for Disjoint Set Union
SIDDHARTHA V. JAYANTI

ROBERT E. TARJAN

PRINCETON UNIVERSITY

a
b

!"#$%(',))

+',%+%$(',))

True

Set Union Data Type

True

+',%+%$(',)) False

Maintain " nodes in disjoint sets

-./01(2, 3) – update operation

4561410(2, 3) – query operation

Initially nodes are in singleton sets.

Applications

Finding Strongly Connected
Components

Spanning Trees

• FORTRAN compilers: COMMON and EQUIVALENCE statements

• Incremental connected components

• Finding dominators in flow graphs

• Spanning tree / forest

• Percolation

• Strongly Connected Components

• Model Checking

Road Map

• Review famous sequential algorithm

• Previous Attempt at Concurrent Data Structure

• Our Concurrent Data Structure

Implementation
[Galler and Fischer]
Set = Rooted Tree with parent pointers

Primitives:
!"#$(&, (): make *. ,-./01 = 3

or	 3. ,-./01 = *

7"#8(9): return root of :’s tree
(returns 3 in this case)

c

fg

b

da e

-, *, :, ;, /, <, =

x

yz

3, >, ?

Implementation

!"#$!$%(',)):
+ = -./0(1)
2 = -./0(3)
456+4/ (+ = 2)

789%$(',)):
+ = -./0(1)
2 = -./0(3)
.: (+ ≠ 2) <./=(+, 2)

00 0 00 0

Linking by Rank

1 1

2

ba c d e f

Link(b, c)
Link (a, b)
Link (e, f)
Link(d, e)
Link(b, e)

Find

e

d

c

b

a

f

g h

!"#$(&)
()*+(,)

Find Sequence

Find with Splitting

e

d

c

b

a

f

g h

!"#$%%$&'($&)(+)
-./0-1 .

Ackermann’s Function

• Ak(n) – highly super-exponential function

• A4(2) more than number of particles in observable universe

• α(n, d) = min{k > 0|Ak(d) > n}

• α(n, d) is practically bounded by 4

Time Complexity [Tarjan, van Leeuwen 1984]

Find with Splitting Linking by Rank Amortized Time per Operation

! "

✓ ! log "

✓ ! &'()*+, "

✓ ✓ ! - ", /0
(optimal in cell-probe model)

1 – number of operations, " – number of nodes

Computational Model

p1 p2 p3 …. pi pk-1 pk….

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Asynchronous Shared Memory Machine

Compare and Swap

Linearizability [Herlihy, Wing 1990]:

Wait-Freedom [Herlihy 1991]:
Each pi should complete operation in a bounded number of its steps.

p1

p2

p3

Time

Union(x, y)

Union(z, x)

SameSet(x, y)

Union(w, z)

SameSet(x, w)SameSet(x, y)

Union(w, y) SameSet(z, y)

SameSet(w, y)

Correctness Criteria

Work

• !" = number instructions executed by pj

• Total work

• For sequential algorithm, work = time

= ∑%&'(#%

Previous Algorithm
[Anderson and Woll, 1991]

! nodes
" operations
processes

per operation work is linear in $

Extends linking by rank algorithm

Amortized work per operation Θ & ', 1 + $?

Hard to maintain both rank and parent

Linking by ID
[Goel, Khanna, Larkin, Tarjan 2014]
• The nodes are given IDs 1,2, … , % uniformly at random

• Link winner determined by fixed ID rather than changing rank.

43 2 65 1

Link(4, 2)
Link(3, 4)
Link(6, 1)
Link(5, 6)
Link(4, 6)

Time Complexity [Goel, Khanna, Larkin, Tarjan 2014]

Find with Splitting Linking by ID Expected-amortized Time per Op

! "

✓ ! log "

✓ ! &'()*+, "

✓ ✓ ! - ", /0
(optimal in cell-probe model)

The same results in expectation!

Concurrent Link(u, v)

Link(u,	v)
if	(v	<	u)	swap(u,	v)
return CAS(1. 345678, 1, 9)

• CAS succeeds iff 1 is a root

• 9 is possibly not a root

Concurrent Find(x)

!"#$(&)
u = x

while (u not root)*
v = u.parent, w = v.parent
CAS(u.parent, v, w)
u = v

return u

w

v

u

u

Computation can be invalidated

3

21

7

54 6

p1

p2

SameSet(1, 2)

Unite(3, 7)

Root of 1 is 3
Root of 2 is 7

Difficulty with Parallelization

return false

Unite Implementation

Unite(x,y)
u = Find(x)
v = Find(y)

if (u = v), return false

if Link(u, v)*, return true

TRY AGAIN (occurs at most n times)

Unite Implementation

5

30

11

12 4

12

76

13

98 10p2

p1 Unite(5, 6)

Unite(4, 8)

Links done by !"#

SameSet Implementation

SameSet(x,y)
u = Find(x)
v = Find(y) *

if (u = v), return true

else if (u still root), return false

TRY AGAIN (occurs at most n times)

3

21

7

54 6

p1

p2

SameSet(1, 2)

Unite(3, 7)

Root of 1 is 3
Root of 2 is 7

Problem Fixed

return true

Root of 1 is 7

3 not root!

! " #, %&' + log &'
% + 1

Main Theorem

m operations , n nodes , p processors

Expected-amortized work per operation

O " #, %&' + log -

*assuming ID order and linearization order are independent

Main Theorem Part 2

m operations , n nodes , p processors

Worst-case work per operation whp

O log $

*assuming ID order and linearization order are independent

Current State-of-the-Art

• Randomized algorithm with same efficiency under no assumption

• Deterministic algorithm (only a loglog p extra overhead!)

• We think work bound is optimal, we have shown a lower bound:

! " #, %& + loglog &+
% + 1

Thanks!

Upper Bound Proof Idea

• Define d = !"#
• If d > 1, extend sequential analysis

• If d < 1

Use d > 1 argument

O(log p) height

HIGH

LOW

Lower Bound Example

• Let us consider the case ! " = ! # = ! %

• Perform &'"(&()(+, +) with each processor (random +)

• Per operation work = log %

Average
node depth
log(%)

Illustration of our Solution

Linearizability [Herlihy, Wing 1990]:
Each operation appears to take effect instantaneously at some
point between its invocation and return.

Wait-Freedom [Herlihy 1991]:
Each process completes each operation in a finite number of its own
steps.

Correctness Criteria

e

d

c

b

f

g h

Find with Compression

a

!"#$%&''()*+(-)
/012/3 0

• 2 traversals
• not local

Time Complexity [Goel, Khanna, Larkin, Tarjan 2014]

Find with Splitting Linking by
randomized ID Expected Time per Operation

! "

✓ ! log "

✓ ! &'()*+, "

✓ ✓ ! - ", /0
(optimal in cell-probe model)

The same efficiency results carry over in Expectation!

100 0 20 0

Linking by Rank

10

Linearizability [Herlihy, Wing 1990]:

Wait-Freedom: Each pi should be able to complete its operation in
a bounded number of its own steps.

p1

p2

p3

Time

Union(x, y)

Union(z, x)

SameSet(x, y)

Union(w, z)

SameSet(x, w)

s

SameSet(x, y)

Union(w, y) SameSet(z, y)

SameSet(w, y)

Correctness Criteria

Goal

Algorithm with work sub-linear in !.

Approach

• Use linking by ID instead

• Only parent pointers change in this case

