A Randomized Concurrent Algorithm for Disjoint Set Union

SIDDHARTHA V. JAYANTI

ROBERT E. TARJAN

PRINCETON UNIVERSITY

Set Union Data Type

Maintain n nodes in **disjoint sets**

Unite(x, y) – update operation

SameSet(x, y) – query operation

Initially nodes are in singleton sets.

Applications

- FORTRAN compilers: COMMON and EQUIVALENCE statements
- Incremental connected components
- Finding dominators in flow graphs
- Spanning tree / forest
- Percolation
- Strongly Connected Components
- Model Checking

Finding Strongly Connected Components

• Review famous sequential algorithm

• Previous Attempt at Concurrent Data Structure

• Our Concurrent Data Structure

Implementation [Galler and Fischer]

Set = Rooted Tree with **parent** pointers

 $\{x, y, z\}$

Implementation

SameSet(x, y): u = Find(x) v = Find(y)return (u = v)

Unite(x, y): u = Find(x) v = Find(y) $if (u \neq v) Link(u, v)$

Linking by Rank

Find

Find with Splitting

Ackermann's Function

- $A_k(n)$ highly super-exponential function
- $A_4(2)$ more than number of particles in observable universe
- $\alpha(n, d) = \min\{k > 0 | A_k(d) > n\}$
- $\alpha(n, d)$ is practically bounded by 4

Time Complexity [Tarjan, van Leeuwen 1984]

Find with Splitting	Linking by Rank	Amortized Time per Operation
	\checkmark	
\checkmark		
\checkmark	\checkmark	

m – number of operations, n – number of nodes

Computational Model

Asynchronous Shared Memory Machine

Compare and Swap

1: procedure $CAS(x, x_0, x_1)$ if $x = x_0$ then 2: 3: $x \leftarrow x_1$ return true 4: else 5: return false **6**:

Correctness Criteria

Linearizability [Herlihy, Wing 1990]:

Wait-Freedom [Herlihy 1991]:

Each p_i should complete operation in a bounded number of its steps.

Work

• W_j = number instructions executed by p_j

• Total work
$$W = \sum_{j=1}^{k} W_j$$

• For sequential algorithm, work = time

Previous Algorithm [Anderson and Woll, 1991]

Extends linking by rank algorithm

- **n** nodes
- *m* operations Amortized work per operation $\Theta(\alpha(m, 1) + p)$?
- p processes

Hard to maintain **both** rank and parent

per operation work is linear in p

Linking by ID [Goel, Khanna, Larkin, Tarjan 2014]

• The nodes are given IDs 1,2, ..., n uniformly at random

• Link winner determined by **fixed ID** rather than **changing rank**.

Time Complexity [Goel, Khanna, Larkin, Tarjan 2014]

Find with Splitting	Linking by ID	Expected-amortized Time per Op
		$oldsymbol{ heta}(n)$
	\checkmark	$\boldsymbol{\Theta}(\log n)$
\checkmark		$\Theta(\log_{1+\frac{m}{n}}n)$
\checkmark	\checkmark	$\Theta\left(\alpha\left(n,\frac{m}{n} ight) ight)$ (optimal in cell-probe model)

The same results in expectation!

Concurrent Link(u, v)

Link(u, v) if (v < u) swap(u, v) return CAS(u. parent, u, v)

• CAS succeeds iff *u* is a root

• *v* is possibly not a root

Concurrent Find(x)

Find(x)

u = x

while (u not root)*
 v = u.parent, w = v.parent
 CAS(u.parent, v, w)
 u = v

return u

Difficulty with Parallelization

Computation can be invalidated

Unite Implementation

Unite(x,y)

 $\mathbf{u} = Find(\mathbf{x})$ $\mathbf{v} = Find(\mathbf{y})$

if (**u** = **v**), return false

if Link(u, v)*, return true

TRY AGAIN (occurs at most n times)

Unite Implementation

SameSet Implementation

```
SameSet(x,y)

u = Find(x)

v = Find(y) *
```

if (**u** = **v**), return **true**

```
else if (u still root), return false
```

TRY AGAIN (occurs at most n times)

Problem Fixed

Main Theorem

m operations , *n* nodes , *p* processors

Expected-amortized work per operation

$$\Theta\left(\alpha \left(n_{n} \frac{m}{n_{p}}\right) \frac{m}{n_{p}}\right) \circ g\left(\frac{n_{p}}{\log}(p)1\right)\right)$$

*assuming ID order and linearization order are independent

Main Theorem Part 2

m operations , *n* nodes , *p* processors

Worst-case work per operation whp

 $\mathbf{O}(\log n)$

*assuming ID order and linearization order are independent

Current State-of-the-Art

• Randomized algorithm with same efficiency under **no assumption**

• **Deterministic algorithm** (only a loglog p extra overhead!)

• We think work bound is **optimal**, we have shown a lower bound:

$$\mathbf{\Omega}\left(\alpha\left(n,\frac{m}{n}\right) + \operatorname{loglog}\left(\frac{np}{m} + 1\right)\right)$$

Thanks!

Upper Bound Proof Idea

• Define d = $\frac{m}{np}$

• If d < 1

• If d > 1, extend sequential analysis

Lower Bound Example

• Let us consider the case $\Theta(m) = \Theta(n) = \Theta(p)$

• Per operation work = $\log p$

Illustration of our Solution

Correctness Criteria

Linearizability [Herlihy, Wing 1990]:

Each operation appears to take effect instantaneously at some point between its invocation and return.

Wait-Freedom [Herlihy 1991]:

Each process completes each operation in a finite number of its own steps.

Find with Compression

Time Complexity [Goel, Khanna, Larkin, Tarjan 2014]

Find with Splitting	Linking by randomized ID	Expected Time per Operation
	\checkmark	
\checkmark		
\checkmark	\checkmark	

The same efficiency results carry over in Expectation!

Linking by Rank

Correctness Criteria

Linearizability [Herlihy, Wing 1990]:

Wait-Freedom: Each p_i should be able to complete its operation in a bounded number of its own steps.

Algorithm with work sub-linear in *p*.

Approach

• Use linking by ID instead

• Only parent pointers change in this case