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Set Union Data Type

Maintain n nodes in disjoint sets
Unite(x,y) — update operation
SameSet(x,y) — query operation

Initially nodes are in singleton sets.

SameSet(a, b)

False

Unite(a, b)

True

SameSet(a, b)

True




Applications

FORTRAN compilers: COMMON and EQUIVALENCE statements

Incremental connected components

Spanning Trees

Finding dominators in flow graphs
Spanning tree / forest
Percolation

Strongly Connected Components

Model Checking

Finding Strongly Connected
Components




Road Map

* Review famous sequential algorithm

* Previous Attempt at Concurrent Data Structure

e Qur Concurrent Data Structure




Implementation

|Galler and Fischer]
Set = Rooted Tree with parent pointers ta,b,c,d,e, f,g}

x,y,z}

Primitives:

Link(b,x): make b.parent = x
or x.parent = b

Find(c): return root of ¢’s tree
(returns x in this case)




Implementation

SameSet(x,y):
u = Find(x)
v = Find(y)
return (u = v)

Unite(x,y):
u = Find(x)
v = Find(y)

if (u #v)Link(u,v)




Linking by Rank
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Find

Find(a)
return e

Find Sequence




Find with Splitting

SplittingFind(a)
returne




Ackermann’s Function

* A (n)— highly super-exponential function
* A,(2) more than number of particles in observable universe
* a(n, d) =min{k>0|A,(d) > n}

* a(n, d) is practically bounded by 4




Time Comp\exity [Tarjan, van Leeuwen 1984]

Find with Splitting | Linking by Rank Amortized Time per Operation

m — number of operations, n — number of nodes



Computational Model

Asynchronous Shared Memory Machine

L Shared Memory }

vemory | | Memory | | memory | memory | mamory || Mamery




Compare and Swap

1: procedure CAS(z,xq, 1)
2: if x = x¢ then

3: r < X1

4: return true

5: else

0:

return false




Correctness Criteria
Linearizability [Herlihy, Wing 1990]:

Union(x, y) SameSet(w, y) Union(w, z)
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Wait-Freedom [Herlihy 1991]:

Each p, should complete operation in a bounded number of its steps.




Work

* W; = number instructions executed by p;

e Totalwork W = Z?zl Wi

* For sequential algorithm, work = time




Previous Algorithm
[Anderson and Woll, 1991]

Extends linking by rank algorithm
n nodes

m operations  Amortized work per operation @(a(m, 1) + p)?
P processes

Hard to maintain both rank and parent

per operation work is linear in p




Linking by ID

[Goel, Khanna, Larkin, Tarjan 2014]
* The nodes are given IDs 1,2, ..., n uniformly at random

* Link winner determined by fixed ID rather than changing rank.

Link(4, 2)
Link(3, 4)

Link(6, 1)

N o o e v




Time Com p\exfcy [Goel, Khanna, Larkin, Tarjan 2014]

Find with Splitting Linking by Expected-amortized Time per Op

o(n)

O(logn)

6(logl+% n)

(optimal in cell-probe model)

in expectation!



Concurrent Link(u, v)

Link(u, v)
if (v<u)swap(u, v)
return CAS(u. parent, u, v)

e CAS succeeds iff u is a root

* vV is possibly not a root




Concurrent Find(x)

Find(x)

s

while (u not root) *
V = u.parent, w = v.parent

CAS(u.parent, v, w)
u=v

return u




Difficulty with Parallelization

Computation can be invalidated

Root of 1is 3 a

SameSet(1,2) Rootof2is7
return false e a e °
Unite(3, 7)



Unite Implementation

Unite(x,y)
u = Find(x)
v = Find(y)
if (u=v), return false

if Link(u, v)*, return true

TRY AGAIN (occurs at most n times)




Unite Implementation

Links done by CAS n
p, Unite(s, 6) o
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SameSet Implementation

SameSet(x,y)
u = Find(x)
v = Find(y) *
if (u=v), return true

else if (u still root), return false

TRY AGAIN (occurs at most n times)




Problem Fixed

Rootof1lis 3 6

SameSet(1, 2) Rootof2is7
3 not root!
return true e a ° °
Unite(3, 7)
(2
D



Main Theorem

m operations , n nodes , p processors

Expected-amortized work per operation

o{ o) 2 os 3co0)

*assuming ID order and linearization order are independent




Main Theorem Part 2

m operations , n nodes, p processors
Worst-case work per operation whp
O(logn)

*assuming ID order and linearization order are independent




Current State-of-the-Art

 Randomized algorithm with same efficiency under no assumption
e Deterministic algorithm (only a loglog p extra overhead!)

 We think work bound is optimal, we have shown a lower bound:

ﬂ(a( %) + loglog (“2 + 1))
DT




Thanks!




Upper Bound Proof Idea

e Defined= =
np

* |fd>1, extend sequential analysis

e Ifd<1

Use d > 1 argument

HIGH

/ LOW \ O(log p) height




Lower Bound Example

* Let us consider the case ©(m) =0(n) = 6(p)

* Perform SameSet(x,x) with each processor (random x)

Average
node depth

* Per operation work =logp log(p)




Illustration of our Solution

Shared Memory




Correctness Criteria

Linearizability [Herlihy, Wing 1990]:

Each operation appears to take effect instantaneously at some
point between its invocation and return.

Wait-Freedom [Herlihy 1991]:

Each process completes each operation in a finite number of its own
steps.




Find with Compression

CompressFina(a) ¢
OSNRO
O ©

o

a e 2 traversals
* not local

returne




Time Com p\eX|ty [Goel, Khanna, Larkin, Tarjan 2014]

Linking by

Find with Splitting | ' =~ /15

Expected Time per Operation

in Expectation!



Linking by Rank

e
Foo d o




Correctness Criteria
Linearizability [Herlihy, Wing 1990]:

Union(x, y) SameSet(w, y) Union(w, z)
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Wait-Freedom: Each p. should be able to complete its operation in
a bounded number of its own steps.




Goal

Algorithm with work sub-linear in p.




Approach

e Use linking by ID instead

* Only parent pointers change in this case




