
ConnectIt: A Framework for Static and Incremental
Parallel Graph Connectivity Algorithms

1

Laxman Dhulipala
MIT (Postdoc)
https://ldhulipala.github.io/

Based on joint work with

Changwan Hong and Julian Shun (VLDB’21)

https://ldhulipala.github.io/
https://ldhulipala.github.io/

Connected Components

2

1 2

4 3

5

6

G(V, E)❖ Given a graph

n = |V | = # vertices
m = |E | = # edges

Assign vertices labels s.t. iff there is a
path from u to v in G

L(v) L(u) = L(v)

1 2

4 3

5

6

Applications of Connected Components

3

Clustering
❖ DBSCAN
❖ k-Core Hierarchy
❖ Affinity Clustering
❖ …

Image Source: Wikipedia

Other Connectivity Problems
❖ Spanning Forest
❖ Biconnectivity
❖ Approximate Minimum Spanning Forest

https://en.wikipedia.org/wiki/DBSCAN#/media/File:DBSCAN-Illustration.svg
https://en.wikipedia.org/wiki/DBSCAN#/media/File:DBSCAN-Illustration.svg

Sequential Connectivity Algorithms

4

❖ Run Breadth-First Search or Depth-First Search:

labels = [-1, ..., -1] # initialized to a null value
for i in [0, |V|):
 if labels[i] == -1:
 BFS(G, i) # assign label i to visited vertices
return labels

O(n + m)❖ Algorithms run in time

Parallel BFS for Connectivity

5

Are there low-work, polylog(n) depth connectivity algorithms?

labels = [-1, ..., -1] # initialized to a null value
for i in [0, |V|):
 if labels[i] == -1:
 ParallelBFS(G, i) # assign label i to visited vertices
return labels

❖ Real-world graphs can have high diameter (e.g. road networks / meshes)
❖ Graph could also have many components

O(m + n) work, O(n) depth

Parallel Connectivity Algorithms

6

Random-Mate Algorithms

1 2

4 3

5

7

6

8

9

flip coins
(green = heads)

1 2

4 3

5

7

6

8

9

form stars

2

3

6

8

contract

Work-Efficient Algorithms

Compute LDD

3

77

2

15

9

1

4

0

3

2

Contract and Recurse

Concurrent Union-Find
Dozens of papers on

different approaches to
parallel connectivity written
over the past few decades!

Goal:
Explore the space of optimizations for parallel

(shared-memory) graph connectivity and find the
fastest implementation of parallel connectivity

7

ConnectIt: A Framework for Static and Incremental
Parallel Graph Connectivity Algorithms [DHS’21]

8

ConnectIt Framework
Finish Options

Union-Find
Jayanti-Tarjan
UniteRemLock
UniteRemCAS

...

FindSplit
FindHalve

FindCompress
...

Liu-Tarjan
Alg. P
Alg. E
Alg. A

Shiloach-Vishkin Label Propagation ...

Sampling Options

k-Out Sample

BFS Sample

LDD Sample

Mode

Connectivity

Incremental
Connectivity

Spanning Forest

❖ Express several hundred different multicore implementations of connectivity,

spanning forest, and incremental connectivity (most of which are new)

❖ Obtain 2.3x average speedup over the fastest existing static multicore

connectivity algorithms

ConnectIt Framework
Finish Options

Union-Find
Jayanti-Tarjan
UniteRemLock
UniteRemCAS

...

FindSplit
FindHalve

FindCompress
...

Liu-Tarjan
Alg. P
Alg. E
Alg. A

Shiloach-Vishkin Label Propagation ...

Sampling Options

k-Out Sample

BFS Sample

LDD Sample

Mode

Connectivity

Incremental
Connectivity

Spanning Forest

ConnectIt Framework
Finish Options

Union-Find
Jayanti-Tarjan
UniteRemLock
UniteRemCAS

...

FindSplit
FindHalve

FindCompress
...

Liu-Tarjan
Alg. P
Alg. E
Alg. A

Shiloach-Vishkin Label Propagation ...

Sampling Options

k-Out Sample

BFS Sample

LDD Sample

Mode

Connectivity

Incremental
Connectivity

Spanning Forest

ConnectIt Framework
Finish Options

Union-Find
Jayanti-Tarjan
UniteRemLock
UniteRemCAS

...

FindSplit
FindHalve

FindCompress
...

Liu-Tarjan
Alg. P
Alg. E
Alg. A

Shiloach-Vishkin Label Propagation ...

Sampling Options

k-Out Sample

BFS Sample

LDD Sample

Mode

Connectivity

Incremental
Connectivity

Spanning Forest

Motivation: Direction-Optimizing BFS

9

1

4

3

2

8

7

5

Direction-optimization skips over
incoming edges in dense traversals once

the vertex has already been visited

Using direction-opt: 0.081425
Without direction-opt: 0.715358

(on the Twitter-Sym graph, 72 cores)

Two-Phase Execution is inspired by direction optimization.
It accelerates parallel connectivity algorithms by “skipping”

the traversal of certain edges

Two-Phase Execution

10

Finish Phase

Process all vertices
not in using the
given finish algorithm
to compute a correct
connectivity labeling.

Sampling Phase
Compute a partial

connectivity labeling
while processing

edges

Identify the largest
component in the

partial labeling.
Lmax

Lmax

11

ConnectIt: Connectivity Meta-Algorithm

def Connectivity(G(V,E), sample_opt, finish_opt):
 # Initialize sampling and finish algorithms
 sampling = GetSamplingAlgorithm(sample_opt)
 finish = GetFinishAlgorithm(finish_opt)

 # Initialize labels and perform sampling to
 # obtain a partial connectivity labeling.
 labels = {i -> i | i in [0, |V|)}
 labels = sampling.SampleComponents(G, labels)

 # Identify the largest (most frequent
 # component), L_max
 L_max = IdentifyFrequent(labels)

 # Compute a connectivity labeling from the partial
 # labeling using the finish algorithm.
 labels = finish.FinishComponents(G, labels, L_max)
 return labels

Two-Phase Execution: Example

12

(i)

Input Graph

Two-Phase Execution: Example

13

(ii)

Sampled Labels

(i)

Input Graph

Two-Phase Execution: Example

14

(iii)

Finish Step on

(ii)

Sampled Labels
(i)

Input Graph

Two-Phase Execution: Example

15

(ii)

Sampled Labels
(i)

Input Graph

(iii)

Finish Step on

(iv)

Output Labeling

Properties of Sampling Methods

16

Connectivity Labeling

Partial Connectivity Labeling

C(u) = C(v) iff u and v are in the same component

C(u) = C(v) implies that u and v are in the same component

Properties of Sampling Methods

17

A sampling method is correct if:

(1) ∀v ∈ V, either C(v) = v or C(v) = r and C(r) = r

C = 𝖲𝖺𝗆𝗉𝗅𝗂𝗇𝗀𝖬𝖾𝗍𝗁𝗈𝖽(G)
Let

C′ = 𝖢𝗈𝗇𝗇𝖾𝖼𝗍𝗂𝗏𝗂𝗍𝗒(G[C])

G[C] formed by merging all vertices v with
the same label into a single vertex, and only
preserving (u,v) edges s.t. C(u) and C(v) are

distinct (removing duplicate edges)

(2) C′ ′ = {C′ (C(v)) |v ∈ V} is a connectivity labeling

Properties of Finish Methods

18

C = {i → i |∀i ∈ V}

Let

A connectivity algorithm is monotone if the algorithm updates
the labels s.t. the updated labeling can be represented as the union
of two trees in the previous labeling

I.e., once two vertices are in the same tree, they will always remain
in the same tree.

Properties of Finish Methods

19

(1) Its operations are linearizable.

(2) Every operation in the linearization order preserves monotonicity.

A connectivity algorithm operating on a labeling C is
linearizable monotone if

Composing a correct sampling method with a linearizable monotone
finish algorithm yields a connectivity labeling.

Next:
Introduce several sampling and finish methods

k-Out Sampling

20

def kOutSample(G(V,E), labels, k=2):
 edges = {first edge from each vertex} U {sample k-1
 edges uniformly at random from each vertex}
 UnionFind(edges, labels)
 Fully compress the components array, in parallel
 return labels

Original scheme from Afforest connectivity algorithm (Sutton
et al., 2018):

(1) Select the first two edges incident to each vertex (in gen. first k)

Can yield poor results depending on how vertices in the graph
are ordered.

k-Out Sampling

21

def kOutSample(G(V,E), labels, k=2):
 edges = {first edge from each vertex} U {sample k-1
 edges uniformly at random from each vertex}
 UnionFind(edges, labels)
 Fully compress the components array, in parallel
 return labels

Theoretical motivation from Holm et al. (2019):

Suppose each vertex of an arbitrary simple graph on n vertices
chooses k random incident edges.

Then the expected number of edges in the original graph
connecting different connected components in the sampled
subgraph is O(n/k)

Implies that by processing edges, only edges need to be
examined in the finish stage to compute a correct labeling.

O(nk) O(n/k)

LDD Sampling

22

def LDDSample(G(V,E), labels, beta=0.2):
 labels = LDD(G, beta)
 return labels

Recall theoretical guarantees of LDD:

(1) Strong diameter of each cluster is O(log n/β)

(2) Number of intercluster edges is O(βm) in expectation

In practice, after one application of LDD, the resulting clustering often
contains a single massive cluster.

BFS Sampling

23

def BFSSample(G(V,E), labels, c=5):
 for i in [0, c):
 # Run direction-optimizing BFS from random source.
 s = RandVertex()
 labels = LabelSpreadingBFS(G, s)

 # Check if BFS covered a significant fraction of the
 # vertices.
 freq = IdentifyFrequent(labels)
 if (freq makes up more than 10% of the labels) then:
 return labels

 # otherwise return identity labeling.
 return {i -> i | i in [0, |V|)}

Practical motivation: many real-world graphs contain a single massive
(low-diameter) component which we will find with constant probability.

How do sampling strategies perform in practice?

24

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

ko
ut bf
s

ld
d

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

of
T
ot

al
E
dg

es

LJ OK RO TW FR CW HL14 HL12

Edges in Largest CC. X Y

Min-Based and Root-Based Algorithms

25

A min-based algorithm represents connectivity labelings as a
collection of disjoint sets (similar to union-find), where all elements
in a set are associated with the same label.

A min-based algorithm only updates the label of an element to a
new label if the new label is smaller than the previous label.

A root-based algorithm is a special type of min-based algorithm
which only links sets together by adding a link from the root of one
tree to a node in another tree.

Asynchronous Union-Find: Union

26

def Union(u, v, P):
 p_u = Find(u, P)
 p_v = Find(v, P)
 while (p_u != p_v):
 if (p_u == P[p_u] and
 CAS(&P[p_u], p_u, p_v)):
 return
 p_u = Find(u, P)
 p_v = Find(v, P)

WLOG let p_u > p_v

pu

pv

u

v

CAS(&P[p_u], p_u, p_v)

(consistently link high to low or vice versa to prevent cycles)

Asynchronous Union-Find: Find and FindCompress

27

def FindNaive(u, P):
 v = u
 while (v != P[v]):
 v = P[v]
 return v

def FindCompress(u, P):
 # Find the root of u's tree, r. If u
 # is the root, quit.
 r = u
 if (P[r] == r):
 return r
 while (r != P[r]):
 r = P[r]

 # Make the parent of all vertices on
 # the u to r path r (or a smaller id).
 j = P[u]
 while (j > r):
 P[u] = r
 u = j
 return r u

r

FindCompress(u, P)

Asynchronous Union-Find: Splitting and Halving

28

def FindAtomicSplit(u, P):
 v = P[u] # parent(u)
 w = P[v] # grandparent(u)
 while (v != w):
 CAS(&P[u], v, w)
 u = v
 return v

def FindAtomicHalve(u, P):
 v = P[u] # parent(u)
 w = P[v] # grandparent(u)
 while (v != w):
 CAS(&P[u], v, w)
 u = P[u]
 return v

u

x

v

w

r

u

x

v

w

r

Concurrent Rem’s Algorithm

29

def Union(u, v, P):
 r_u = u, r_v = v
 while (P[r_u] != P[r_v]):
 # WLOG let P[r_u] > P[r_v].
 if (r_u == P[r_u] and
 CAS(&P[r_u], r_u, P[r_v])):
 # Success: linked the two trees.
 if (CompressOpt != FindNaive):
 Compress(u, P)
 Compress(v, P)
 return
 else:
 # Otherwise shorten path using splice.
 r_u = Splice(r_u, r_v, P)

Concurrent Rem’s Algorithm: Splice Options

30

def HalveAtomicOne(u, x, P):
 v = P[u] # parent
 w = P[v] # grandparent
 if (u != w):
 CAS(&P[u], v, w)
 return w

def SplitAtomicOne(u, x, P):
 v = P[u] # parent
 w = P[v] # grandparent
 if (u != w):
 CAS(&P[u], v, w)
 return v

def SpliceAtomic(u, x, P):
 p_u = P[u]
 # Try to make u's parent x's parent which
 # could be a node in the other tree.
 CAS(&P[u], p_u, P[x])
 return p_u

Concurrent Rem’s Algorithm: Splice Options

31

def Union(u, v, P):
 r_u = u, r_v = v
 while (P[r_u] != P[r_v]):
 # WLOG let P[r_u] > P[r_v].
 if (r_u == P[r_u] and
 CAS(&P[r_u], r_u, P[r_v])):
 # Success: linked the two trees.
 if (CompressOpt != FindNaive):
 Compress(u, P)
 Compress(v, P)
 return
 else:
 # Otherwise shorten path using splice.
 r_u = Splice(r_u, r_v, P)

def SpliceAtomic(u, x, P):
 p_u = P[u]
 # Try to make u's parent x's parent which
 # could be a node in the other tree.
 CAS(&P[u], p_u, P[x])
 return p_u

vu
rvpu

ru

vu
rv

r′ v

Other Min-Based Algorithms

32

Union-Find Algorithms

Jayanti-Tarjan (two-try split)

UF-Early

UF-Hooks

UF-Rem-Lock

Liu-Tarjan Algorithms

Family of min-based algorithms based
on shortcutting

Shiloach-Vishkin

Label Propagation

Experiments

33

Dell PowerEdge R930

❖ 72-cores, 2-way hyper-threaded*
❖ 1TB of main memory
❖ Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Graph Data
❖ Run on a collection of large real-

world graphs, including largest
publicly available graph (HL12)

Union-Find Comparison

34

UF
-J
TB

UF
-R

em
-C

AS
;S
pl
ice

At
om

ic

UF
-R

em
-C

AS
;S
pl
itA

to
m
icO

ne

UF
-R

em
-C

AS
;H

al
ve
At

om
icO

ne

UF
-R

em
-L
oc

k;
Sp

lic
eA

to
m
ic

UF
-R

em
-L
oc

k;
Sp

lit
At

om
icO

ne

UF
-R

em
-L
oc

k;
Ha

lve
At

om
icO

ne

UF
-E
ar
ly

UF
-H

oo
ks

UF
-A

sy
nc

FindTwoTrySplit

FindCompress

FindHalve

FindSplit

FindNaive

4.2

1.3 1.3 1.9 1.9 6.6 1.6 1.7

1.2 1.3 1.4 1.8 1.8 1.8 6.5 1.4 3.3

1.3 1.4 1.4 1.7 1.7 1.7 6.3 1.4 3.3

5.9 1 1 1 1.5 1.5 1.5 4.8 1.5 3.3

UF-Rem-CAS with splice/split/halve and
no additional compression reliably
performs the best across all inputs

Comparison on WebDataCommons Hyperlink2012

35

• Fastest ConnectIt algorithm for
HL2012 is 3.65—41.5x faster than
existing distributed memory results
while using orders of magnitude
fewer resources

• Running time without sampling on
HL2012 of our fastest algorithm is
13.9 seconds (1.69x speedup using
k-Out Sampling)

Comparing No-Sampling with Sampling

36

• UF-Rem-CAS is consistently the fastest
finish algorithm across all settings

• No significant difference between using
SplitAtomicOne / HalveAtomicOne /
SpliceAtomic

• Union-Find algorithms essentially always
the fastest

• Sampling does not help much on very
sparse graphs (avg degree in RO = 2.41)

Algorithm Recommendations

37

Is G extremely
sparse?

No Sampling
UF-Rem-CAS* Does G have

high diameter?

KOut Sample
UF-Rem-CAS*

BFS/LDD Sample
UF-Rem-CAS*

*Apply UF-Rem-CAS using one
of {SpliceAtomic, HalveAtomicOne,
SplitAtomicOne} with FindNaive.

NoYes

?

Diam. unknown or Diam. ?

NoYes

• Tuning recommendations based on studying sampling performance on
both real-world and synthetic networks (see paper)

38

Summary: ConnectIt

ConnectIt: framework for static and incremental parallel graph connectivity

• Simple to generate new combinations of sampling and finish algorithms
• Our fastest implementations of connectivity significantly outperform

state-of-the-art parallel solutions
• Solutions for connectivity extend to parallel spanning forest and

incremental connectivity

github.com/paralg/gbbs

Code available as part of GBBS:

https://github.com/paralg/gbbs
https://github.com/paralg/gbbs

