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Connected Components

2

1 2

4 3

5

6

G(V, E)❖ Given a graph

n = |V | = # vertices
m = |E | = # edges

Assign vertices labels         s.t.                    iff there is a 
path from u to v in G 

L(v) L(u) = L(v)
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Applications of Connected Components
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Clustering
❖ DBSCAN
❖ k-Core Hierarchy
❖ Affinity Clustering
❖ …

Image Source: Wikipedia

Other Connectivity Problems
❖ Spanning Forest
❖ Biconnectivity
❖ Approximate Minimum Spanning Forest

https://en.wikipedia.org/wiki/DBSCAN#/media/File:DBSCAN-Illustration.svg
https://en.wikipedia.org/wiki/DBSCAN#/media/File:DBSCAN-Illustration.svg


Sequential Connectivity Algorithms
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❖ Run Breadth-First Search or Depth-First Search:

labels = [-1, ..., -1]  # initialized to a null value
for i in [0, |V|):
  if labels[i] == -1:   
    BFS(G, i)           # assign label i to visited vertices
return labels

O(n + m)❖ Algorithms run in                time



Parallel BFS for Connectivity
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Are there low-work, polylog(n) depth connectivity algorithms?

labels = [-1, ..., -1]  # initialized to a null value
for i in [0, |V|):
  if labels[i] == -1:   
    ParallelBFS(G, i)   # assign label i to visited vertices
return labels

❖ Real-world graphs can have high diameter (e.g. road networks / meshes)
❖ Graph could also have many components

O(m + n) work, O(n) depth



Parallel Connectivity Algorithms
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Random-Mate Algorithms
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Work-Efficient Algorithms

Compute LDD
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Contract and Recurse

Concurrent Union-Find
Dozens of papers on 

different approaches to 
parallel connectivity written 
over the past few decades!



Goal:
Explore the space of optimizations for parallel 

(shared-memory) graph connectivity and find the 
fastest implementation of parallel connectivity

7

ConnectIt: A Framework for Static and Incremental 
Parallel Graph Connectivity Algorithms [DHS’21]
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ConnectIt Framework
Finish Options

Union-Find
Jayanti-Tarjan
UniteRemLock
UniteRemCAS

...

FindSplit
FindHalve

FindCompress
...

Liu-Tarjan
Alg. P
Alg. E
Alg. A

Shiloach-Vishkin Label Propagation ...

Sampling Options

k-Out Sample

BFS Sample

LDD Sample

Mode

Connectivity

Incremental
Connectivity

Spanning Forest

❖ Express several hundred different multicore implementations of connectivity, 

spanning forest, and incremental connectivity (most of which are new)

❖ Obtain 2.3x average speedup over the fastest existing static multicore 

connectivity algorithms
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Motivation: Direction-Optimizing BFS
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Direction-optimization skips over 
incoming edges in dense traversals once 

the vertex has already been visited

Using direction-opt:    0.081425 
Without direction-opt:  0.715358

(on the Twitter-Sym graph, 72 cores)

Two-Phase Execution is inspired by direction optimization. 
It accelerates parallel connectivity algorithms by “skipping” 

the traversal of certain edges



Two-Phase Execution
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Finish Phase

Process all vertices
not in        using the
given finish algorithm
to compute a correct
connectivity labeling.

Sampling Phase
Compute a partial

connectivity labeling
while processing  

edges

Identify the largest
component       in the

partial labeling.
Lmax

Lmax
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ConnectIt: Connectivity Meta-Algorithm

def Connectivity(G(V,E), sample_opt, finish_opt):
  # Initialize sampling and finish algorithms
  sampling = GetSamplingAlgorithm(sample_opt)
  finish = GetFinishAlgorithm(finish_opt)

  # Initialize labels and perform sampling to
  # obtain a partial connectivity labeling.
  labels = {i -> i | i in [0, |V|)}
  labels = sampling.SampleComponents(G, labels)

  # Identify the largest (most frequent
  # component), L_max
  L_max = IdentifyFrequent(labels)

  # Compute a connectivity labeling from the partial
  # labeling using the finish algorithm.
  labels = finish.FinishComponents(G, labels, L_max)
  return labels



Two-Phase Execution: Example
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(i)

Input Graph



Two-Phase Execution: Example
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(ii)

Sampled Labels

(i)

Input Graph



Two-Phase Execution: Example
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(iii)

Finish Step on

(ii)

Sampled Labels
(i)

Input Graph



Two-Phase Execution: Example
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(ii)

Sampled Labels
(i)

Input Graph

(iii)

Finish Step on

(iv)

Output Labeling



Properties of Sampling Methods
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Connectivity Labeling

Partial Connectivity Labeling

C(u) = C(v) iff u and v are in the same component

C(u) = C(v) implies that u and v are in the same component



Properties of Sampling Methods
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A sampling method is correct if:

(1) ∀v ∈ V,  either C(v) = v or C(v) = r and C(r) = r

C = 𝖲𝖺𝗆𝗉𝗅𝗂𝗇𝗀𝖬𝖾𝗍𝗁𝗈𝖽(G)
Let

C′ = 𝖢𝗈𝗇𝗇𝖾𝖼𝗍𝗂𝗏𝗂𝗍𝗒(G[C])

G[C] formed by merging all vertices v with 
the same label into a single vertex, and only 
preserving (u,v) edges s.t. C(u) and C(v) are 

distinct (removing duplicate edges)

(2) C′ ′ = {C′ (C(v)) |v ∈ V} is a connectivity labeling



Properties of Finish Methods
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C = {i → i |∀i ∈ V}

Let

A connectivity algorithm is monotone if the algorithm updates 
the labels s.t. the updated labeling can be represented as the union 
of two trees in the previous labeling

I.e., once two vertices are in the same tree, they will always remain 
in the same tree.



Properties of Finish Methods
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(1)  Its operations are linearizable.

(2)  Every operation in the linearization order preserves monotonicity.

A connectivity algorithm operating on a labeling C is 
linearizable monotone if 

Composing a correct sampling method with a linearizable monotone 
finish algorithm yields a connectivity labeling.

Next: 
Introduce several sampling and finish methods



k-Out Sampling
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def kOutSample(G(V,E), labels, k=2):
  edges = {first edge from each vertex} U {sample k-1
           edges uniformly at random from each vertex}
  UnionFind(edges, labels)
  Fully compress the components array, in parallel
  return labels

Original scheme from Afforest connectivity algorithm (Sutton 
et al., 2018):

(1)  Select the first two edges incident to each vertex (in gen. first k)

Can yield poor results depending on how vertices in the graph 
are ordered.



k-Out Sampling
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def kOutSample(G(V,E), labels, k=2):
  edges = {first edge from each vertex} U {sample k-1
           edges uniformly at random from each vertex}
  UnionFind(edges, labels)
  Fully compress the components array, in parallel
  return labels

Theoretical motivation from Holm et al. (2019):

Suppose each vertex of an arbitrary simple graph on n vertices 
chooses k random incident edges. 

Then the expected number of edges in the original graph 
connecting different connected components in the sampled 
subgraph is O(n/k)

Implies that by processing           edges, only            edges need to be 
examined in the finish stage to compute a correct labeling.

O(nk) O(n/k)



LDD Sampling
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def LDDSample(G(V,E), labels, beta=0.2):
  labels = LDD(G, beta)
  return labels

Recall theoretical guarantees of LDD: 

(1)  Strong diameter of each cluster is O(log n/β)

(2)  Number of intercluster edges is O(βm) in expectation

In practice, after one application of LDD, the resulting clustering often 
contains a single massive cluster.



BFS Sampling
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def BFSSample(G(V,E), labels, c=5):
  for i in [0, c):
    # Run direction-optimizing BFS from random source.
    s = RandVertex()
    labels = LabelSpreadingBFS(G, s)

    # Check if BFS covered a significant fraction of the
    # vertices.
    freq = IdentifyFrequent(labels)
    if (freq makes up more than 10% of the labels) then:
      return labels

  # otherwise return identity labeling.
  return {i -> i | i in [0, |V|)}

Practical motivation: many real-world graphs contain a single massive 
(low-diameter) component which we will find with constant probability.



How do sampling strategies perform in practice?
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Min-Based and Root-Based Algorithms
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A min-based algorithm represents connectivity labelings as a 
collection of disjoint sets (similar to union-find), where all elements 
in a set are associated with the same label.

A min-based algorithm only updates the label of an element to a 
new label if the new label is smaller than the previous label.

A root-based algorithm is a special type of min-based algorithm 
which only links sets together by adding a link from the root of one 
tree to a node in another tree.



Asynchronous Union-Find: Union
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def Union(u, v, P):
  p_u = Find(u, P)
  p_v = Find(v, P)
  while (p_u != p_v):
    if (p_u == P[p_u] and 
        CAS(&P[p_u], p_u, p_v)):
      return
    p_u = Find(u, P)
    p_v = Find(v, P)

WLOG let p_u > p_v

pu

pv

u

v

CAS(&P[p_u], p_u, p_v)

(consistently link high to low or vice versa to prevent cycles)



Asynchronous Union-Find: Find and FindCompress
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def FindNaive(u, P):
  v = u
  while (v != P[v]):
    v = P[v]
  return v

def FindCompress(u, P):
  # Find the root of u's tree, r. If u
  # is the root, quit.
  r = u
  if (P[r] == r):
    return r
  while (r != P[r]):
    r = P[r]

  # Make the parent of all vertices on
  # the u to r path r (or a smaller id).
  j = P[u]
  while (j > r):
    P[u] = r
    u = j
  return r u

r

FindCompress(u, P)



Asynchronous Union-Find: Splitting and Halving
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def FindAtomicSplit(u, P):
  v = P[u]  # parent(u)
  w = P[v]  # grandparent(u)
  while (v != w):
    CAS(&P[u], v, w)
    u = v
  return v

def FindAtomicHalve(u, P):
  v = P[u]  # parent(u)
  w = P[v]  # grandparent(u)
  while (v != w):
    CAS(&P[u], v, w)
    u = P[u]
  return v

u

x

v

w

r

u

x

v

w

r



Concurrent Rem’s Algorithm
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def Union(u, v, P):
  r_u = u, r_v = v
  while (P[r_u] != P[r_v]):
    # WLOG let P[r_u] > P[r_v].
    if (r_u == P[r_u] and
        CAS(&P[r_u], r_u, P[r_v])):
      # Success: linked the two trees.
      if (CompressOpt != FindNaive):
        Compress(u, P)
        Compress(v, P)
      return
    else:
      # Otherwise shorten path using splice.
      r_u = Splice(r_u, r_v, P)



Concurrent Rem’s Algorithm: Splice Options
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def HalveAtomicOne(u, x, P):
  v = P[u]  # parent
  w = P[v]  # grandparent
  if (u != w):
    CAS(&P[u], v, w)
  return w

def SplitAtomicOne(u, x, P):
  v = P[u]  # parent
  w = P[v]  # grandparent
  if (u != w):
    CAS(&P[u], v, w)
  return v

def SpliceAtomic(u, x, P):
  p_u = P[u]
  # Try to make u's parent x's parent which
  # could be a node in the other tree.
  CAS(&P[u], p_u, P[x])
  return p_u



Concurrent Rem’s Algorithm: Splice Options
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def Union(u, v, P):
  r_u = u, r_v = v
  while (P[r_u] != P[r_v]):
    # WLOG let P[r_u] > P[r_v].
    if (r_u == P[r_u] and
        CAS(&P[r_u], r_u, P[r_v])):
      # Success: linked the two trees.
      if (CompressOpt != FindNaive):
        Compress(u, P)
        Compress(v, P)
      return
    else:
      # Otherwise shorten path using splice.
      r_u = Splice(r_u, r_v, P)

def SpliceAtomic(u, x, P):
  p_u = P[u]
  # Try to make u's parent x's parent which
  # could be a node in the other tree.
  CAS(&P[u], p_u, P[x])
  return p_u

vu
rvpu

ru

vu
rv

r′ v



Other Min-Based Algorithms
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Union-Find Algorithms

Jayanti-Tarjan (two-try split)

UF-Early

UF-Hooks

UF-Rem-Lock

Liu-Tarjan Algorithms

Family of min-based algorithms based 
on shortcutting

Shiloach-Vishkin

Label Propagation



Experiments
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Dell PowerEdge R930

❖ 72-cores, 2-way hyper-threaded*
❖ 1TB of main memory
❖ Cost: about 20k USD

* (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)

Graph Data
❖ Run on a collection of large real-

world graphs, including largest 
publicly available graph (HL12)



Union-Find Comparison
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UF-Rem-CAS with splice/split/halve and 
no additional compression reliably 
performs the best across all inputs



Comparison on WebDataCommons Hyperlink2012
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• Fastest ConnectIt algorithm for 
HL2012 is 3.65—41.5x faster than 
existing distributed memory results 
while using orders of magnitude 
fewer resources

• Running time without sampling on 
HL2012 of our fastest algorithm is 
13.9 seconds (1.69x speedup using 
k-Out Sampling)



Comparing No-Sampling with Sampling
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• UF-Rem-CAS is consistently the fastest 
finish algorithm across all settings

• No significant difference between using 
SplitAtomicOne / HalveAtomicOne / 
SpliceAtomic

• Union-Find algorithms essentially always 
the fastest

• Sampling does not help much on very 
sparse graphs (avg degree in RO = 2.41)



Algorithm Recommendations
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Is G extremely
sparse?

No Sampling
UF-Rem-CAS* Does G have

high diameter?

KOut Sample
UF-Rem-CAS*

BFS/LDD Sample
UF-Rem-CAS*

*Apply UF-Rem-CAS using one
of {SpliceAtomic, HalveAtomicOne,
SplitAtomicOne} with FindNaive.

NoYes

?

Diam. unknown or Diam. ?

NoYes

• Tuning recommendations based on studying sampling performance on 
both real-world and synthetic networks (see paper)
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Summary: ConnectIt

ConnectIt: framework for static and incremental parallel graph connectivity

• Simple to generate new combinations of sampling and finish algorithms 
• Our fastest implementations of connectivity significantly outperform 

state-of-the-art parallel solutions
• Solutions for connectivity extend to parallel spanning forest and 

incremental connectivity

github.com/paralg/gbbs

Code available as part of GBBS:

https://github.com/paralg/gbbs
https://github.com/paralg/gbbs

