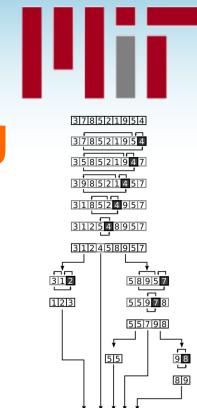
6.886: Algorithm Engineering

Julian Shun

February 18, 2020

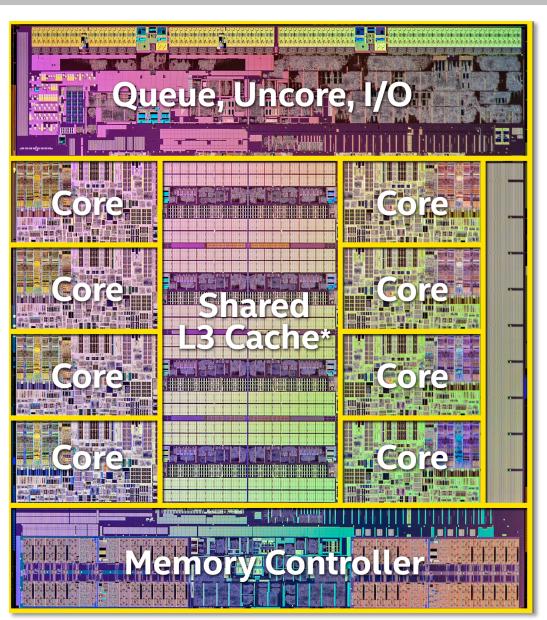
Lecture material taken from "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs and 6.172 by Charles Leiserson and Saman Amarasinghe



Announcement

 Presentation sign-up sheet posted on Piazza

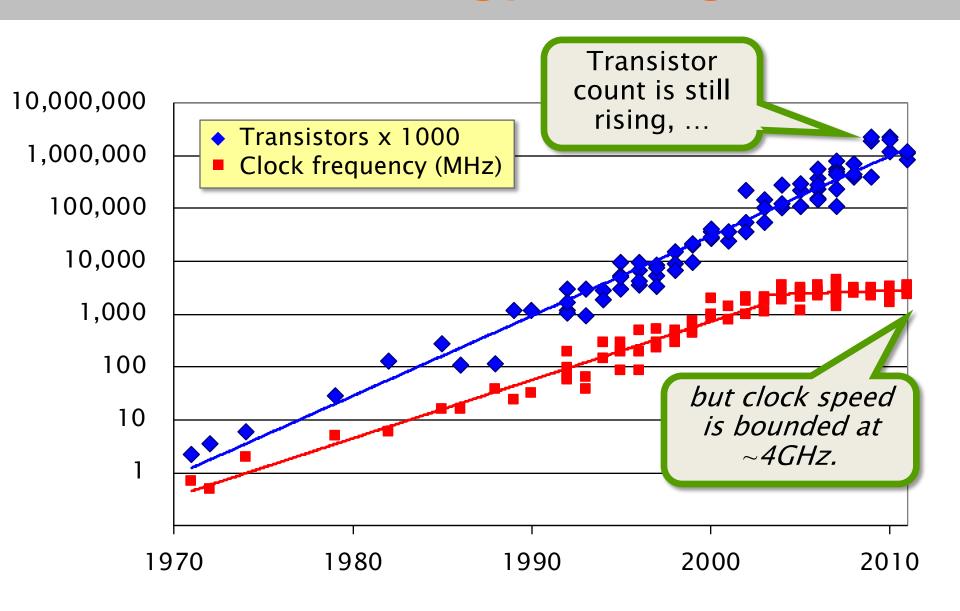
Multicore Processors



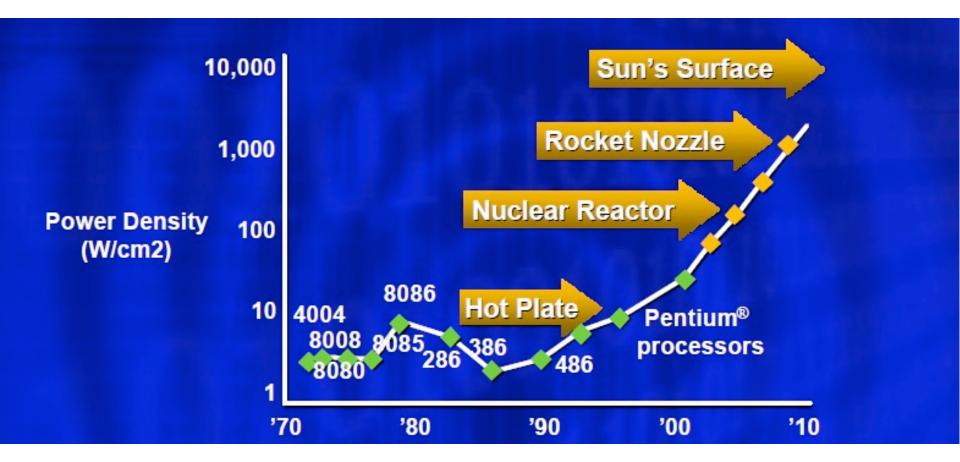
- Q Why do semiconductor vendors provide chips with multiple processor cores?
- A Because of Moore's Law and the end of the scaling of clock frequency.

Intel Haswell-E

Technology Scaling



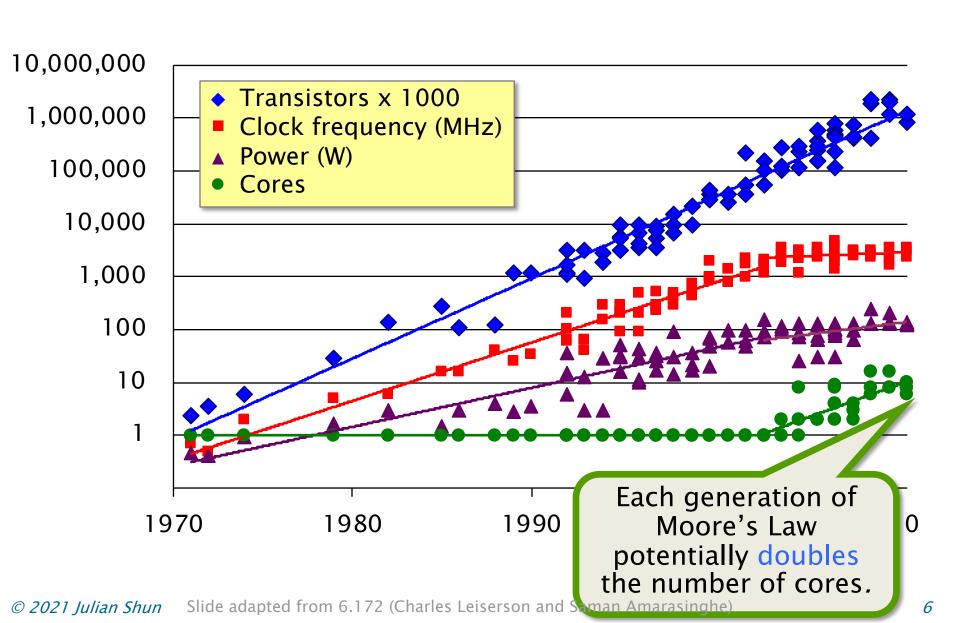
Power Density



Source: Patrick Gelsinger, Intel Developer's Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had continued its trend of scaling 25%-30% per year.

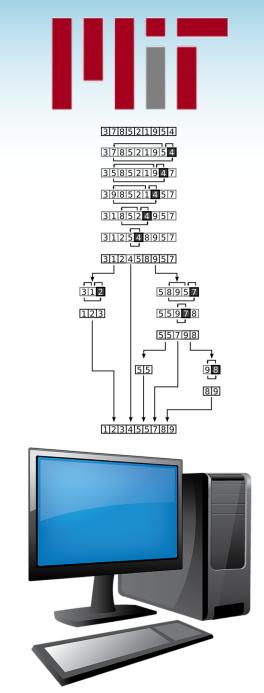
Technology Scaling



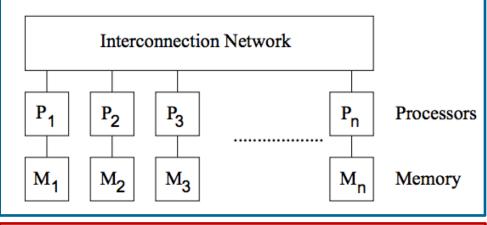
Parallel Languages

- Pthreads
- Cilk, OpenMP
- Message Passing Interface (MPI)
- CUDA, OpenCL
- Today: Shared-memory parallelism
 - Cilk and OpenMP are extensions of C/C++ that supports parallel for-loops, parallel recursive calls, etc.
 - Do not need to worry about assigning tasks to processors as these languages have a runtime scheduler
 - Cilk has a provably efficient runtime scheduler

PARALLELISM MODELS



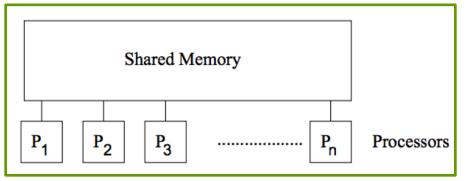
Basic multiprocessor models



Local memory machine

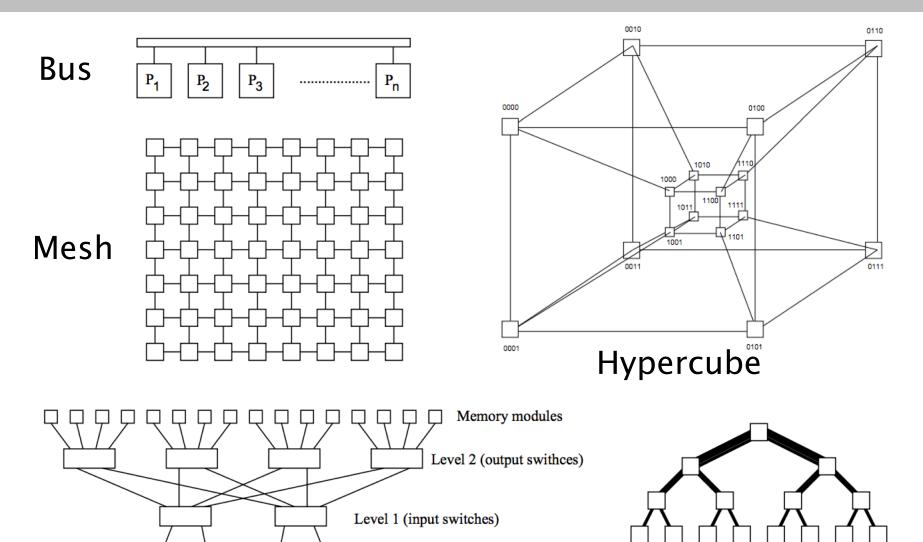


Modular memory machine



Parallel random-access Machine (PRAM)

Network topology



2-level multistage network

Processors

Fat tree

Network topology

- Algorithms for specific topologies can be complicated
 - May not perform well on other networks
- Alternative: use a model that summarizes latency and bandwidth of network
 - Postal model
 - Bulk-Synchronous Parallel (BSP) model

LogP model

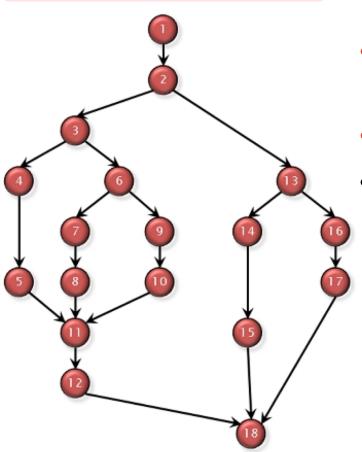
PRAM Model

- All processors can perform same local instructions as in the RAM model
- All processors operate in lock-step
- Implicit synchronization between steps
- Models for concurrent access
 - Exclusive-read exclusive-write (EREW)
 - Concurrent-read concurrent-write (CRCW)
 - How to resolve concurrent writes: arbitrary value, value from lowest-ID processor, logical OR of values, sum of values
 - Concurrent-read exclusive-write (CREW)
 - Queue-read queue-write (QRQW)
 - Allows concurrent access in time proportional to the maximal number of concurrent accesses

Work-Span model

Similar to PRAM but does not require lock-step or processor allocation

Computation graph



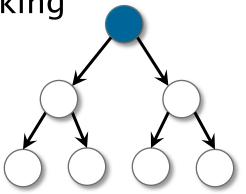
- Work = number of vertices in graph (number of operations)
- Span (Depth) = longest directed path in graph (dependence length)
- Parallelism = Work / Span
 - A work-efficient parallel algorithm has work that asymptotically matches the best sequential algorithm for the problem

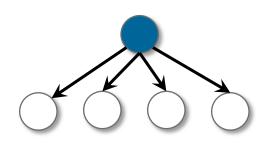
Goal: work-efficient and low (polylogarithmic) span parallel algorithms

Work-Span model

Spawning/forking tasks

Model can support either binary forking or arbitrary forking





Binary forking

Arbitrary forking

- Cilk uses binary forking, as seen in 6.172
- Converting between the two changes work by at most a constant factor and span by at most a logarithmic factor
 - Keep this in mind when reading textbooks/papers on parallel algorithms
- We will assume arbitrary forking unless specified

Work-Span model

- State what operations are supported
 - Concurrent reads/writes?
 - Resolving concurrent writes

Scheduling

 For a computation with work W and span S, on P processors a greedy scheduler achieves

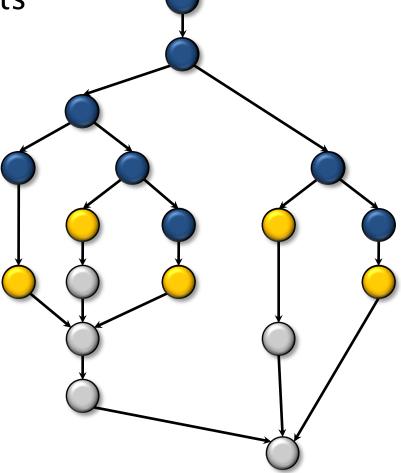
Running time $\leq W/P + S$

Work-efficiency is important since P and S are usually small

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its predecessors have executed.



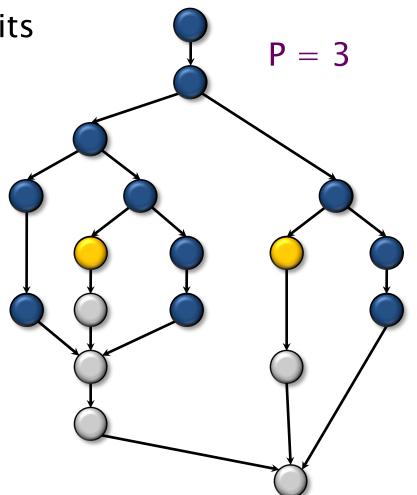
Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its predecessors have executed.

Complete step

- ≥ P tasks ready.
- Run any P.



Greedy Scheduling

IDEA: Do as much as possible on every step.

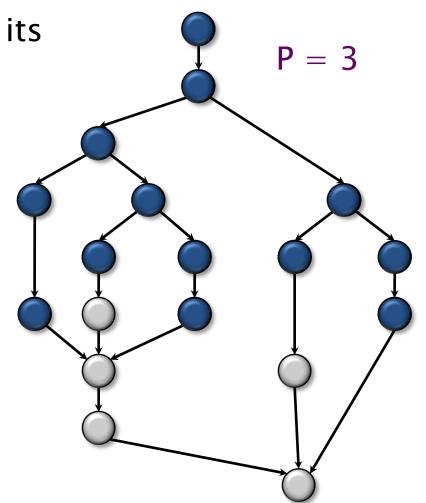
Definition. A task is ready if all its predecessors have executed.

Complete step

- ≥ P tasks ready.
- Run any P.

Incomplete step

- < P tasks ready.
- Run all of them.



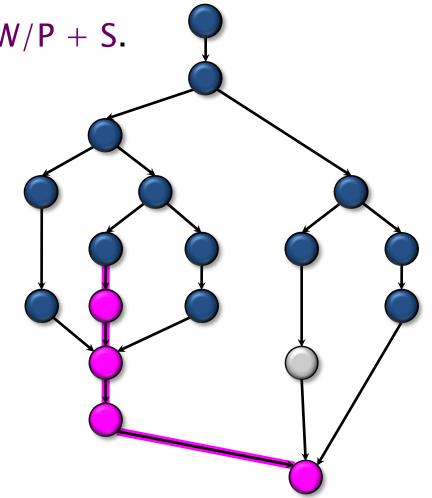
Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

Running Time $\leq W/P + S$.

Proof.

- # complete steps ≤ W/P, since each complete step performs P work.
- # incomplete steps ≤ S, since each incomplete step reduces the span of the unexecuted dag by 1.

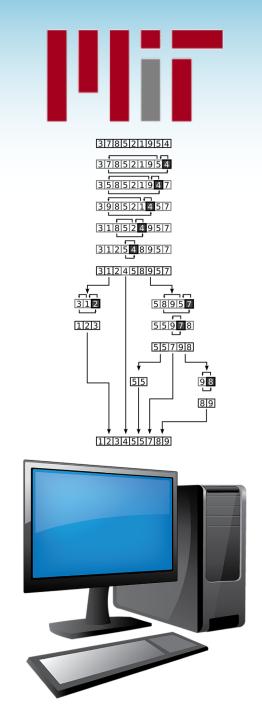


Cilk Scheduling

 For a computation with work W and span S, on P processors Cilk's work-stealing scheduler achieves

Expected running time $\leq W/P + O(S)$

PARALLEL SUM



Parallel Sum

• Definition: Given a sequence $A=[x_0, x_1,..., x_{n-1}]$, return $x_0+x_1+...+x_{n-2}+x_{n-1}$

```
What is the span?

S(n) = S(n/2) + O(1)

S(1) = O(1)

\Rightarrow S(n) = O(\log n)
```

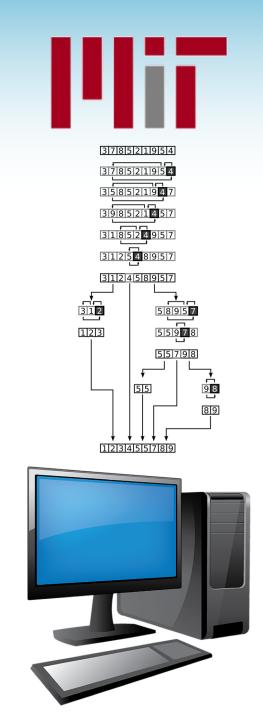
```
What is the work?

W(n) = W(n/2) + O(n)

W(1) = O(1)

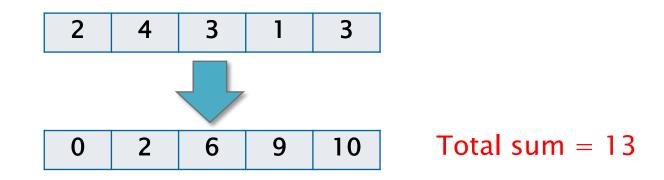
\rightarrow W(n) = O(n)
```

PREFIX SUM



Prefix Sum

• Definition: Given a sequence $A=[x_0, x_1, ..., x_{n-1}]$, return a sequence where each location stores the sum of everything before it in A, $[0, x_0, x_0+x_1, ..., x_0+x_1+...+x_{n-2}]$, as well as the total sum $x_0+x_1+...+x_{n-2}+x_{n-1}$



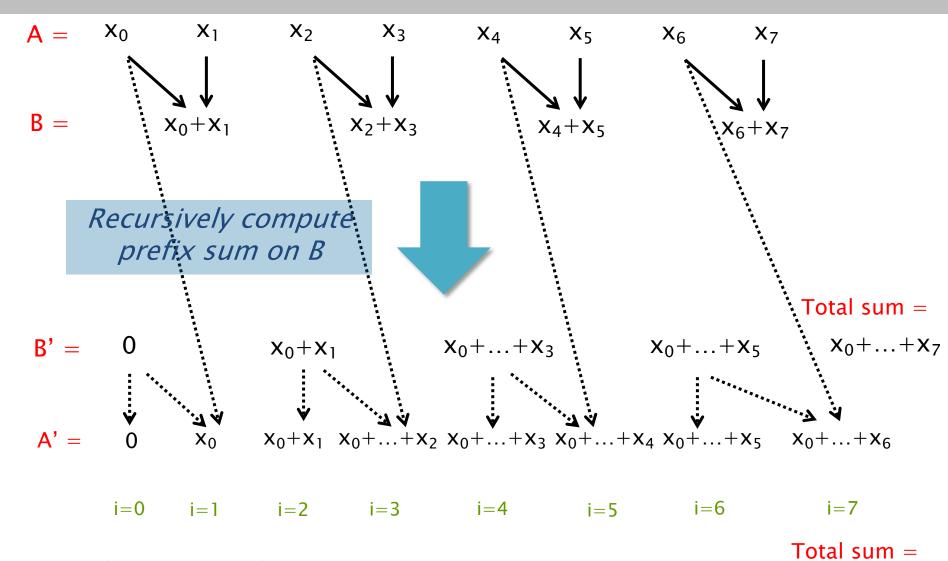
 Can be generalized to any associative binary operator (e.g., ×, min, max)

Sequential Prefix Sum

```
Input: array A of length n
Output: array A' and total sum
cumulativeSum = 0;
for i=0 to n-1:
 A'[i] = cumulativeSum;
  cumulativeSum += A[i];
return A' and cumulativeSum
```

- What is the work of this algorithm?
 - O(n)
- Can we execute iterations in parallel?
 - Loop carried dependence: value of cumulativeSum depends on previous iterations

Parallel Prefix Sum



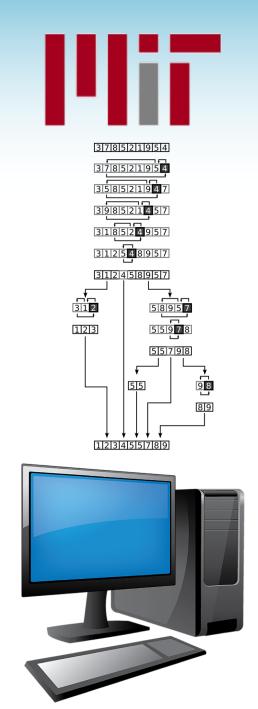
for even values of i: A'[i] = B'[i/2]for odd values of i: A'[i] = B'[(i-1)/2] + A[i-1]

 $x_0 + ... + x_7$

Parallel Prefix Sum

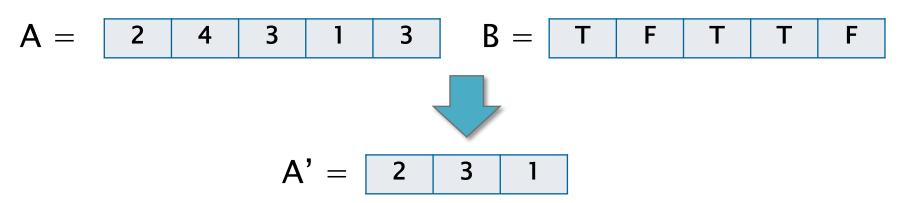
```
Input: array A of length n (assume n is a power of 2)
Output: array A' and total sum
                                   What is the span?
                                   S(n) = S(n/2) + O(1)
PrefixSum(A, n):
                                   S(1) = O(1)
 if n == 1: return ([0], A[0])
                                   \rightarrow S(n) = O(log n)
 for i=0 to n/2-1 in parallel:
                                   What is the work?
   B[i] = A[2i] + A[2i+1]
                                   W(n) = W(n/2) + O(n)
 (B', sum) = PrefixSum(B, n/2) w(1) = O(1)
                                   \rightarrow W(n) = O(n)
 for i=0 to n-1 in parallel:
   if (i mod 2) == 0: A'[i] = B'[i/2]
   else: A'[i] = B'[(i-1)/2] + A[i-1]
 return (A', sum)
```

FILTER



Filter

- Definition: Given a sequence $A=[x_0, x_1, ..., x_{n-1}]$ and a Boolean array of flags $B[b_0, b_1, ..., b_{n-1}]$, output an array A' containing just the elements A[i] where B[i] = true (maintaining relative order)
- Example:



Can you implement filter using prefix sum?

Filter Implementation

$$A = \begin{bmatrix} 2 & 4 & 3 & 1 & 3 \end{bmatrix}$$

```
//Assume B'[n] = total sum
parallel-for i=0 to n-1:
    if(B'[i] != B'[i+1]):
        A'[B'[i]] = A[i];
```

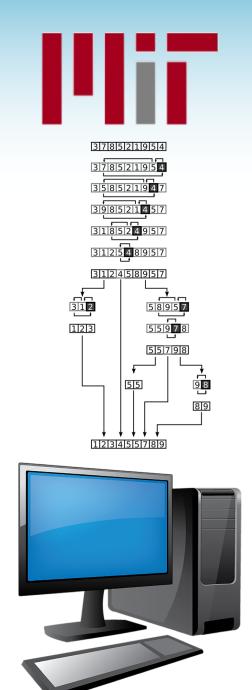

Total sum = 3

Prefix sum

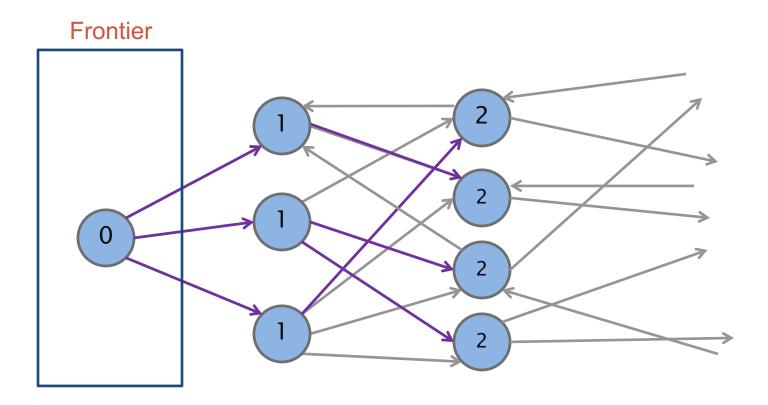
Allocate array of size 3

$$A' = 2 \quad 3 \quad 1$$

PARALLEL BREADTH-FIRST SEARCH



Parallel BFS Algorithm



- Can process each frontier in parallel
 - Parallelize over both the vertices and their outgoing edges

Parallel BFS Code

```
frontierSize = 5
BFS(Offsets, Edges, source) {
                                                                       3
  parent, frontier, frontierNext, and degrees are array
  parallel_for(int i=0; i<n; i++) parent[i] = -1;
                                                                           Prefix sum
 frontier[0] = source, frontierSize = 1, parent[source] = source;
 while(frontierSize > 0) {
                                                                              9
                                                                       6
                                                                                   10
                                                          0
   parallel_for(int i=0; i<frontierSize; i++)
         degrees[i] = Offsets[frontier[i]+1] - Offsets[frontier[i]];
   perform prefix sum on degrees array
   parallel_for(int i=0; i<frontierSize; i++) {
         v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
         for(int j=0; j<d; j++) { //can be parallel
                  ngh = Edges[Offsets[v]+j];
                  if(parent[ngh] == -1 \&\& compare-and-swap(\&parent[ngh], -1, v)) 
                    frontierNext[index+j] = ngh;
                  } else { frontierNext[index+j] = -1; }
   filter out 1-1" from frontier Next, store in frontier, and update frontier size to be
         the size of frontier fall done using prefix sum)
                                                                      frontierSize4
      r∂4tier 🗣
                  24
                         9
                               15
                                     89
                                           25
                                                  90
                                                        99
                                                               4
© 2021 Julian Shun
```

BFS Work-Span Analysis

- Number of iterations <= diameter Δ of graph
- Each iteration takes O(log m) span for prefix sum and filter (assuming inner loop is parallelized)

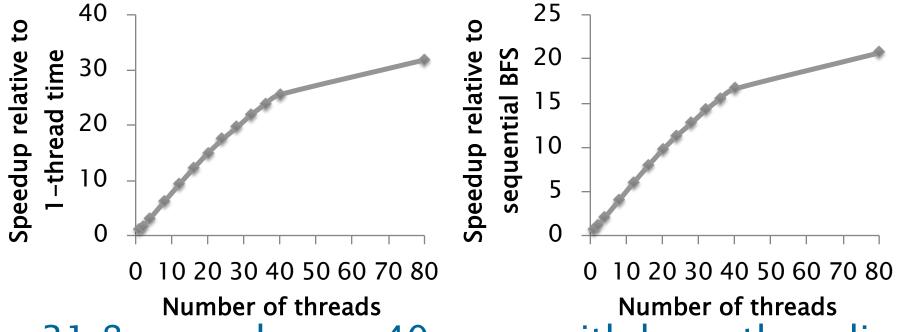
Span = $O(\Delta \log m)$

- Sum of frontier sizes = n
- Each edge traversed once -> m total visits
- Work of prefix sum on each iteration is proportional to frontier size $-> \Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed -> Θ(m) total

Work = $\Theta(n+m)$

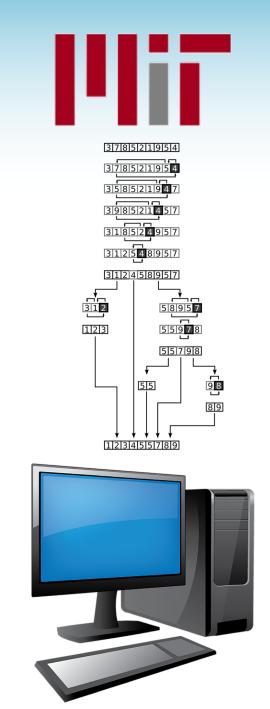
Performance of Parallel BFS

- Random graph with $n=10^7$ and $m=10^8$
 - 10 edges per vertex
- 40-core machine with 2-way hyperthreading



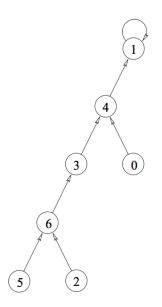
- 31.8x speedup on 40 cores with hyperthreading
- Sequential BFS is 54% faster than parallel BFS on 1 thread

POINTER JUMPING AND LIST RANKING



Pointer Jumping

 Have every node in linked list or rooted tree point to the end (root)



(a) The input tree P = [4, 1, 6, 4, 1, 6, 3].

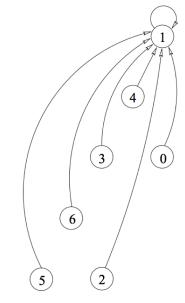
```
for j=0 to ceil(log n)-1:

parallel-for i=0 to n-1:

temp = P[P[i]];

parallel-for i=0 to n-1:

P[i] = temp;
```



(b) (c) The final tree P = [1, 1, 1, 1, 1, 1, 1]. The terration of

What is the work and span?

$$W = O(n log n)$$

 $S = O(log n)$

List Ranking

 Have every node in linked list determine its distance to the end

```
parallel-for i=0 to n-1:
  if P[i] == i then rank[i] = 0
  else rank[i] = 1
for j=0 to ceil(log n)-1:
  temp, temp2;
  parallel-for i=0 to n-1:
       temp = rank[P[i]];
       temp2 = P[P[i]];
  parallel-for i=0 to n-1:
        rank[i] = rank[i] + temp;
        P[i] = temp2;
```

Work-Span Analysis

```
parallel-for i=0 to n-1:
  if P[i] == i then rank[i] = 0
  else rank[i] = 1
for j=0 to ceil(log n)-1:
  temp, temp2;
  parallel-for i=0 to n-1:
       temp = rank[P[i]];
       temp2 = P[P[i]];
  parallel-for i=0 to n-1:
       rank[i] = rank[i] + temp;
       P[i] = temp2;
```

What is the work and span?

```
W = O(n log n)

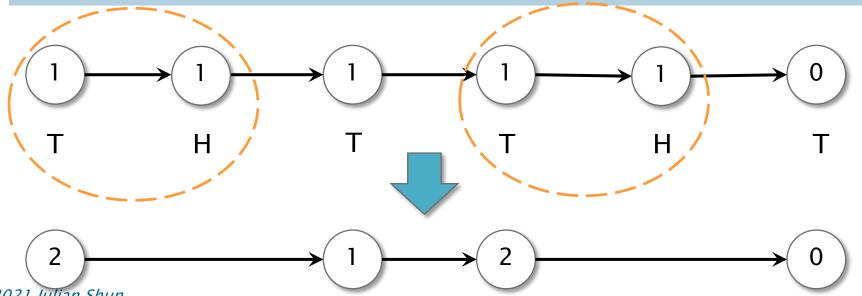
S = O(log n)
```

Sequential algorithm only requires O(n) work

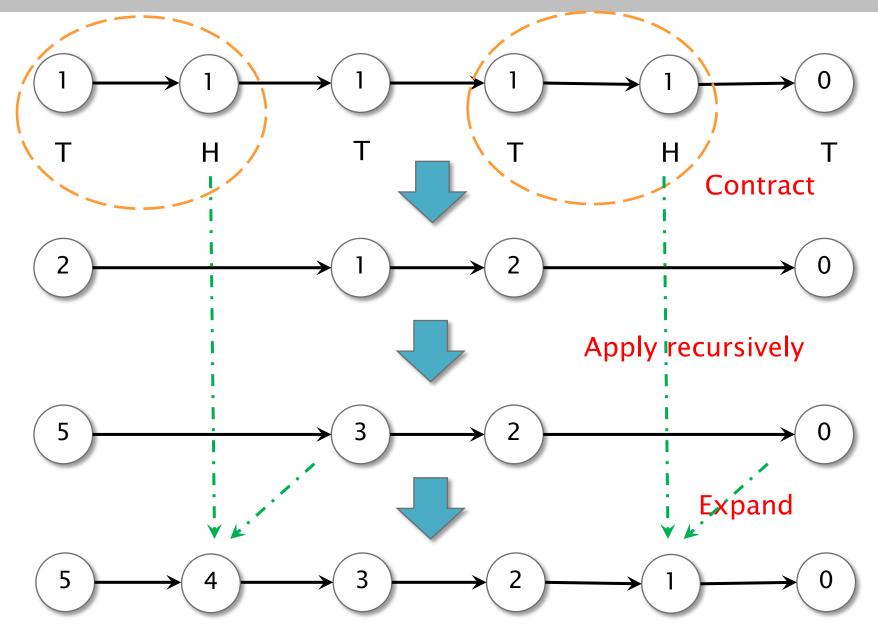
Work-Efficient List Ranking

ListRanking(list P)

- If list has two or fewer nodes, then return //base case
- 2. Every node flips a fair coin
- 3. For each vertex u (except the last vertex), if u flipped Tails and P[u] flipped Heads then u will be paired with P[u] A. rank[u] = rank[u]+rank[P[u]] B. P[u] = P[P[u]]
- 4. Recursively call ListRanking on smaller list
- 5. Insert contracted nodes v back into list with rank[v] = rank[v] + rank[P[v]]



Work-Efficient List Ranking



Work-Span Analysis

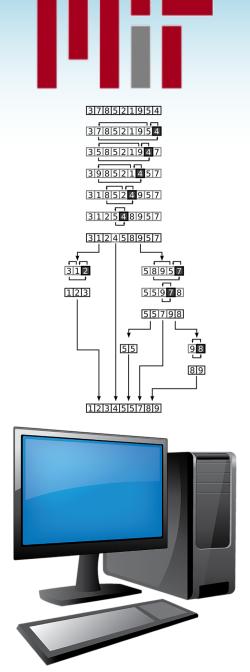
- Number of pairs per round is (n-1)/4 in expectation
 - For all nodes u except for the last node, probability of u flipping Tails and P[u] flipping Heads is 1/4
 - Linearity of expectations gives (n-1)/4 pairs overall
- Each round takes linear work and O(1) span
- Expected work: $W(n) \le W(7n/8) + O(n)$
- Expected span: $S(n) \leq S(7n/8) + O(1)$

$$W = O(n)$$

 $S = O(log n)$

 Can show span with high probability with Chernoff bound

CONNECTED COMPONENTS

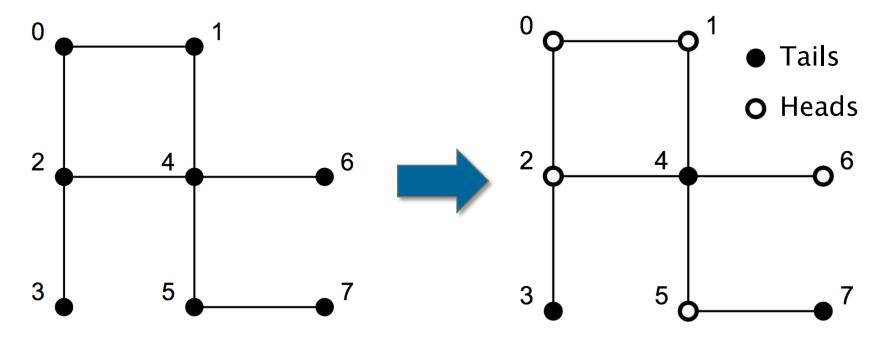


Connected Components

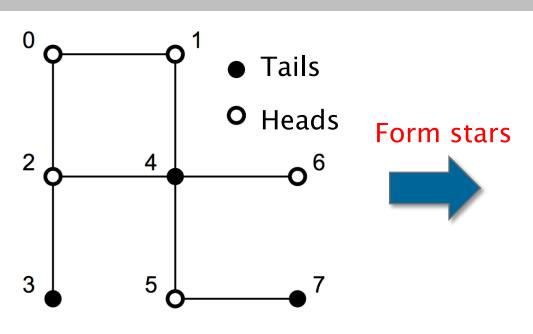
- Given an undirected graph, label all vertices such that L(u) = L(v) if and only if there is a path between u and v
- BFS span is proportional to diameter
 - Works well for graphs with small diameter
- Today we will see a randomized algorithm that takes O((n+m)log n) work and O(log n) span
 - Deterministic version in paper
 - We will study a work-efficient parallel algorithm next week

Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it

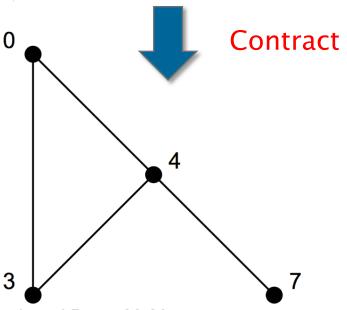


Random Mate



Repeat until each component has a single vertex

Expand vertices back in reverse order with label of neighbor



Random Mate Algorithm

```
CC_Random_Mate(L, E)
if(|E| = 0) Return L //base case
else
```

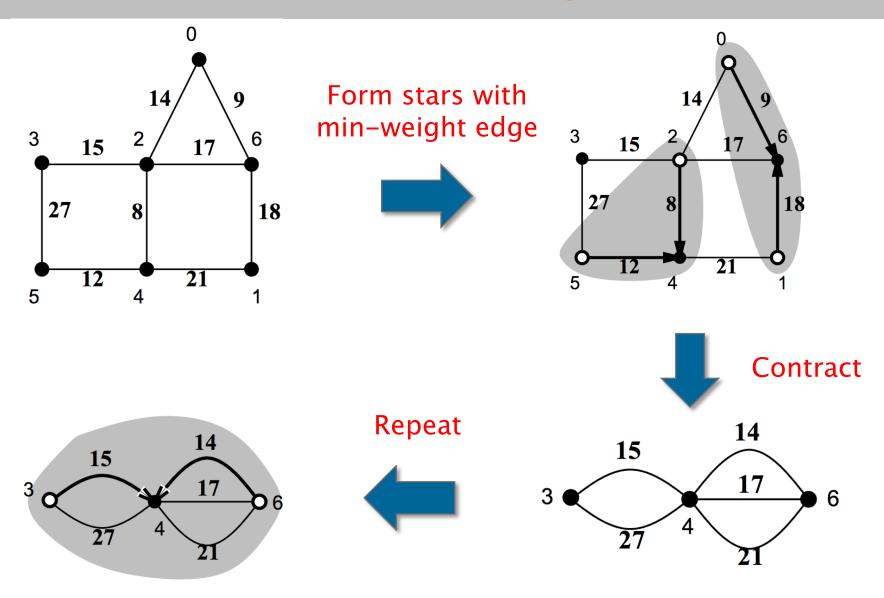
- 1. Flip coins for all vertices
- 2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set L(v) = w
- 3. $E' = \{ (L(u),L(v)) \mid (u,v) \in E \text{ and } L(u) \neq L(v) \}$
- 4. $L' = CC_Random_Mate(L, E')$
- 5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor that v hooked to in Step 2
- 6. Return L'
- Each iteration requires O(m+n) work and O(1) span
 - Assumes we do not pack vertices and edges
- Each iteration eliminates 1/4 of the vertices in expectation

$$W = O((m+n)\log n)$$
 w.h.p. $S = O(\log n)$ w.h.p.

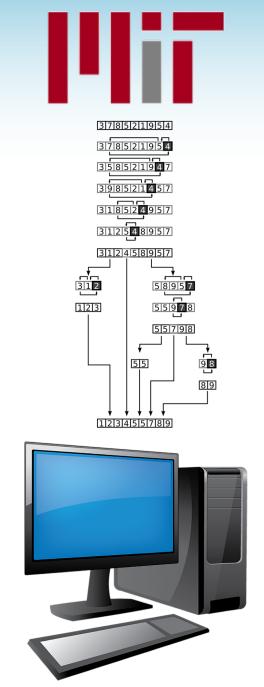
(Minimum) Spanning Forest

- Spanning Forest: Keep track of edges used for hooking
 - Edges will only hook two components that are not yet connected
- Minimum Spanning Forest:
 - For each "Heads" vertex v, instead of picking an arbitrary neighbor to hook to, pick neighbor w where (v, w) is the minimum weight edge incident to v
 - Can find this edge using priority concurrent write

Minimum Spanning Forest



PARALLEL BELLMAN-FORD



Bellman-Ford Algorithm

```
Bellman-Ford(G, source):
    ShortestPaths = \{\infty, \infty, ..., \infty\}
                                      //size n; stores shortest path distances
    ShortestPaths[source] = 0
    for i=1 to n-1:
                                                         concurrent write
parallel for each vertex v in G:
    parallel for each w in neighbors(v):
              writeMin(&ShortestPaths[w], ShortestPaths[v] + weight(v,w))
        if no shortest paths changed:
             return ShortestPaths
    report "negative cycle"
```

- What is the work and span assuming writeMin has unit cost?
- Work = O(mn)
- Span = O(n)

QUICKSORT



Parallel Quicksort

```
static void quicksort(int64_t *left, int64_t *right)
{
  int64_t *p;
  if (left == right) return;
  p = partition(left, right);
  cilk_spawn quicksort(left, p);
  quicksort(p + 1, right);
  cilk_sync;
}
```

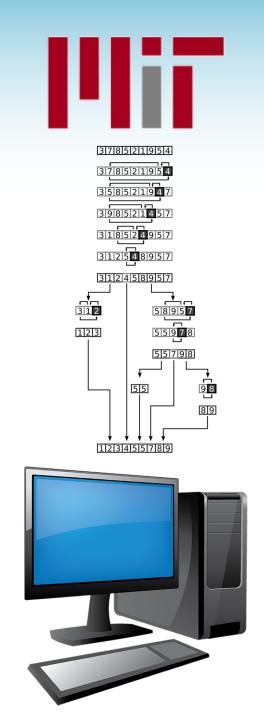
- Partition picks random pivot p and splits elements into left and right subarrays
- Partition can be implemented using prefix sum in linear work and logarithmic span
- Overall work is O(n log n)
- What is the span?

Parallel Quicksort Span



- Pivot is chosen uniformly at random
- 1/2 chance that pivot falls in middle range, in which case sub-problem size is at most 3n/4
- Expected span:
 - $S(n) \le (1/2) S(3n/4) + O(\log n)$ = $O(\log^2 n)$
- Can get high probability bound with Chernoff bound

RADIX SORT



Radix Sort

Consider 1-bit digits

```
Radix_sort(A, b) //b is the number of bits of A
   For i from 0 to b-1: //sort by i'th most significant bit
          Flags = \{ (a >> i) \mod 2 \mid a \in A \}
          NotFlags = \{ !(a >> i) \mod 2 \mid a \in A \}
          (sum_0, R_0) = prefixSum(NotFlags)
          (sum_1, R_1) = prefixSum(Flags)
          Parallel-for j = 0 to |A|-1:
                   if(Flags[j] = 0): A'[R_0[j]] = A[j]
                   else: A'[R_1[j]+sum_0] = A[j]
         A = A'
        A =
                   2
                       6
                            5
                                    3
                                4
                                                                                2
                                                                            2
                                                           0
                   0
    Flags =
                       0
                                                R_1 =
                                                R_0 =
                                                           0
                                                                                3
                                                               0
NotFlags =
                                    0
                                                sum_0 = 3
                   6
                                    3
                                5
       A' =
                       4
```

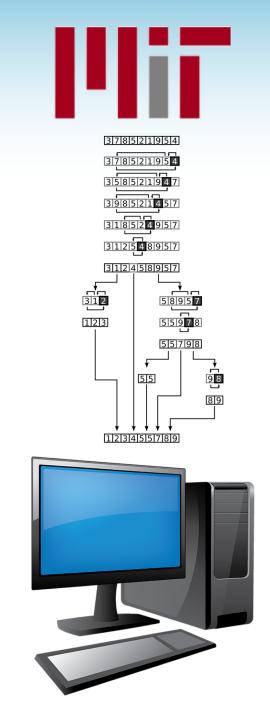
Each iteration is stable

Work-Span Analysis

```
\label{eq:rate} \begin{array}{l} \text{Radix\_sort}(A,\,b) \text{ $//$b$ is the number of bits of A} \\ \text{For i from 0 to b-1:} \\ \text{Flags} = \{ \text{ $(a >> i)$ mod 2 } | \text{ $a \in A$} \} \\ \text{NotFlags} = \{ \text{!}(a >> i) \text{ mod 2 } | \text{ $a \in A$} \} \\ \text{(sum}_0,\,R_0) = \text{prefixSum}(\text{NotFlags}) \\ \text{(sum}_1,\,R_1) = \text{prefixSum}(\text{Flags}) \\ \text{Parallel-for $j = 0$ to $|A|-1$:} \\ \text{if}(\text{Flags}[j] = 0): \quad \text{A'}[R_0[j]] = \text{A}[j] \\ \text{else:} \quad \text{A'}[R_1[j] + \text{sum}_0] = \text{A}[j] \\ \text{A} = \text{A'} \end{array}
```

- Each iteration requires O(n) work and O(log n) span
- Overall work = O(bn)
- Overall span = $O(b \log n)$

REMOVING DUPLICATES



Removing Duplicates with Hashing

 Given an array A of n elements, output the elements in A excluding duplicates

Construct a table T of size m, where m is the next prime after 2n = 0

While (|A| > 0)

- 1. Parallel-for each element j in A try to insert j into T at location (hash(A[j],i) mod m) //if the location was empty at the beginning of round i, and there are concurrent writes then an arbitrary one succeeds
- 2. Filter out elements j in A such that T[(hash(A[j],i) mod m)] = A[j]
- 3. i = i+1
- Use a new hash function on each round
- Claim: Every round, the number of elements decreases by a factor of 2 in expectation

W = O(n) expected $S = O(log^2n)$ w.h.p.