AN EXPERIMENTAL ANALYSIS OF
A COMPACT GRAPH

REPRESENTATION

Daniel Blandford, Guy Blelloch, lan Kash
CMU

MOTIVATION

Graphs are diverse

We want to have a uniform way to represent them

Graphs are large and sparse

We want the uniform representation to be compact to save storage
Graphs are important data structures to operation on in many algorithms

We want the compact representation to support efficient queries and
updates

This Paper
* Proposes the graph separator based representation as a general compact, and
efficient representation for various graphs
* Shows the performance of the representation via a comprehensive set of
experiments, e.g., up to 3.5x faster comparing to adjacency arrays for DFS

GRAPH SEPARATORS

Edge separator Vertex separator

a set of edges E' C E that, when a set of vertices V' c V that, when
removed, partitions the graph into removed, partitions the graph into
two almost equal sized parts V3, /5. two almost equal sized parts V;, I/5.

Minimum Separator: the separator that minimizes the number of
edges/vertices removed

GRAPH SEPARATORS

A graph has good separators if it and its subgraphs have
minimum separators that are significantly better than
expected for a random graph of its size

REAL WORLD GRAPHS HAVE GOOD SEPARATORS

Good separators allows clean representations of graphs with a set of
separators and their associated subtrees

Social networks: people form hierarchal communities
Scholarly articles: co-authors are usually from similar research areas

VLSI circuit design: circuit components usually are laid out in 2D and have just a
few metal layers

etc.

Thus, separator-based graph representations can lead to
compact and efficient graph algorithm processing

ENCODING WITH SEPARATORS

High-Level Compression Algorithm

Generate an edge separator tree
for the graph

Label the vertices in-order across
leaves

Use an adjacency table to represent
the relabeled graph

STEPI: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

* FEach node contains a
subgraph and a separator for
that subgraph

B * The children of a node
! contain the two components
of the graph induced by the
separator

Heuristic for deciding which edge
to collapse

L , W(Eyp) — # of edges between the multivertices A, B
priotiy metric = ————
S(A)S(B)— # of vertices in multivertices A, B

STEPI: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

* FEach node contains a
subgraph and a separator for
that subgraph

* The children of a node
! contain the two components
of the graph induced by the
separator

* Split repeatedly until a single
vertex is reached

STEPI: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

* FEach node contains a
subgraph and a separator for
that subgraph

* The children of a node
contain the two components
of the graph induced by the
separator

"+ Split repeatedly until a single
vertex is reached

STEPI: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

* FEach node contains a
subgraph and a separator for
that subgraph

* The children of a node
contain the two components
of the graph induced by the
separator

"+ Split repeatedly until a single
vertex is reached

STEPI: BUILD SEPARATOR TREES

Child-flipping optimization
an optimization that allows the algorithm to better decide

which subgraph should be the left child and right child
(more details in paper)

STEP2: ASSIGN LABEL TO LEAVES

Represent Graphs with Separator Trees

* Assign labels to leaves in an
increasing order

* Adjacent labels belong to the
same subgraph, allowing more
efficient encoding of the
representation in the next
step

STEP3: CONSTRUCT ADJACENCY TABLES

For each vertex in the graph, its neighbors are stored in a difference-encoded
adjacency list.

example: vertex 0: 3, |

For vertex v, the associated list is: vy — v, v, — V4, ...

STEP3: CONSTRUCT ADJACENCY TABLES

Difference values are encoded using , a prefix code that uses
O(logd) bits to encode a difference of size d

Implemented codes:
- gamma code
- unary code for [logd]
- binary code for d — 21094l
- total: 1 + 2[logd] bits
- snip, nibble, byte codes
- 2-,4-, 8-bit version of the more general k-bit
code, which encodes integers as a sequence of
k-bit blocks
it" bit represents whether the integer is
greater than 2°
- designed as memory accesses are usually
aligned, with fetch with of 2, 4, 8 bits

STEP3: CONSTRUCT ADJACENCY TABLES

For vertex v, the associated list is: v; — v, v, — V4, ...

Each adjacency list also carries metadata:

A signed bit is included in the first entry to
account for negative difference

The start of the list also stores # of entries in
the list

Helps with efficiency lookup

All adjacency lists are concatenated to form the
adjacency table for the graph

BOUNDS FOR STORAGE REQUIREMENT

Lemma (proved in a previous work)

For a class of graphs satisfying an n“(c < 1)-edge separator theorem, and labeling
based on the separator tree satisfying the bounds of separator theorem, the
adjacency table for any n-vertex member requires O(n) bits

The adjacency table storage requirement is theoretically bounded

DYNAMIC DATA STRUCTURES

* To allow insertion of new nodes, dynamic allocation of memory (to represent the
newly inserted nodes) is necessary

Fixed proportion of the
block is empty

Statically allocated adjacency list for vertex v

DYNAMIC DATA STRUCTURES

* To allow insertion of new nodes, dynamic allocation of memory (to represent the
newly inserted nodes) is necessary

Fixed proportion of the
block is empty

Statically allocated adjacency list for vertex v

8b pointer

Operation: insert data to vertex v

EXPERIMENTAL SETUP

Graphs Used in Experiments

Max

Graph Vitxs | Edges |Degree Source
auto 448695 (6629222 37 3D mesh [35]
feocean | 143437 | 819186 6 3D mesh [35]
m14b 214765 [3358036 | 40 3D mesh [35]
ibm17 185495 (4471432 150 circuit [1]
ibm18 | 210613 |4443720| 173 | circuit [1]
CA 1971281 [5533214| 12 |street map [34]
PA 1090920 | 3083796 9 street map [34]
googlel | 916428 [5105039| 6326 | web links [10]
googleO | 916428 [5105039| 456 | web links [10]
lucent | 112969 | 363278 | 423 routers [25]
scan 228298 | 640336 | 1937 routers [25]

Benchmarks

* DFS time

* time for reading and
inserting all edges

COMPARISON TO ADJACENCY ARRAY
REPRESENTATION

Machine: Pentium 4 (larger cache line size)

Array
Rand Sep
Graph T T/T1 | Space
auto 0.268s | 0.313 | 34.17 .
feocean | 0.048s | 0.312 | 37.60 Rand: vertices are ordered randomly
mldb | 0.103s | 0.388 | 34.05 Seq: vertices are ordered sequentially

ibm17 0.095s | 0.536 | 33.33
ibm18 0.113s | 0.398 | 33.52

CA 0.920s | 0.126 | 43.40
PA 0.487s | 0.137 | 43.32
lucent 0.030s | 0.266 | 41.95
scan 0.067s | 0.208 | 43.41

googlel | 0.367s | 0.226 | 37.74
googleO | 0.363s | 0.250 | 37.74
Avg 0.287 | 38.202

Table 2: Performance of our static algorithms compared to performance of an adjacency array representation.
Space is in bits per edge; time is for a DFS, normalized to the first column, which is given in seconds.

COMPARISON TO ADJACENCY ARRAY

REPRESENTATION

Machine: Pentium 4 (larger cache line size)

Array Our Structure
Rand Sep Nibble Snip Gamma DiffByte
Graph T, T/T: | Space T/T: | Space | T/T1 | Space | T/T1 | Space | T/T1 | Space
auto 0.268s | 0.313 | 34.17 0.585 | 7.42 | 0.776 | 6.99 | 1.063 | 7.18 | 0.399 | 12.33
feocean | 0.048s | 0.312 | 37.60 0.604 | 10.86 | 0.791 | 11.12 1.0 11.97 | 0.374 | 13.28
m14b 0.103s | 0.388 | 34.05 0.728 | 7.10 [0.970 | 6.55 | 1.320 | 6.68 | 0.504 | 11.97
ibm17 0.095s | 0.536 | 33.33 1.115 | 7.72 | 1.400 [7.58 | 1.968 | 7.70 | 0.747 | 12.85
ibm18 0.113s | 0.398 | 33.52 0.867 | 7.53 | 1.070 | 7.18 | 1.469 | 7.17 | 0.548 | 12.16
CA 0.920s | 0.126 | 43.40 0.243 | 10.65 | 0.293 | 10.55 | 0.333 | 11.25 | 0.167 | 14.81
PA 0.487s | 0.137 | 43.32 0.258 | 10.65 | 0.310 | 10.60 | 0.355 | 11.28 | 0.178 | 14.80
lucent 0.030s | 0.266 [41.95 0.5 11.05 | 0.566 | 10.79 | 0.700 | 11.48 | 0.333 | 14.96
scan 0.067s | 0.208 | 43.41 0.402 | 11.84 | 0.477 | 11.61 | 0.552 | 12.14 | 0.298 | 16.46
googlel | 0.367s | 0.226 | 37.74 0.405 | 839 | 0452 | 737 | 0539 | 7.19 | 0.302 | 13.39
googleO | 0.363s | 0.250 | 37.74 0.460 | 9.72 | 0.556 | 9.43 | 0.702 | 9.63 | 0.327 | 13.28
Avg 0.287 | 38.202 0.561 | 9.357 | 0.696 | 9.07 | 0.909 | 9.424 | 0.380 | 13.662

Table 2: Performance of our static algorithms compared to performance of an adjacency array representation.
Space is in bits per edge; time is for a DFS, normalized to the first column, which is given in seconds.

Byte encoding is significantly faster than other proposed structures because of the machine’s byte-based instruction streams
Significant space savings compared to baseline
Always faster than Array-based rand but sometimes slower than array-based seq

BLOCK SIZE SENSITIVITY (DYNAMIC)

* Large blocks are inefficient since they contain unused space
* Small blocks can be inefficient since they require proportionally more space for
pointers to other blocks

Memory Block Size

v

3 4 8 12 16 20

Graph T Space | T'/Ty | Space | T/Ty | Space | T/Ty | Space | T/T1 | Space | T/T1 | Space
auto 0.318s | 11.60 | 0.874 | 10.51 | 0.723 | 9.86 | 0.613 | 10.36 | 0.540 | 9.35 | 0.534 | 11.07
feocean | 0.044s | 14.66 | 0.863 | 13.79 | 0.704 | 12.97 | 0.681 [17.25 | 0.727 | 22.94 | 0.750 | 28.63
ml4b 0.146s [11.11 | 0.876 | 10.07 | 0.684 | 9.41 | 0.630 | 10.00 | 0.554 | 8.92 | 0.554 | 10.46
ibm17 0.285s | 1295 | 0.849 | 11.59 | 0.614 | 10.44 | 0.529 | 10.53 | 0.491 | 10.95 | 0.459 | 11.39
ibm18 0.236s | 12.41 | 0.847 | 11.14 | 0.635 | 10.12 | 0.563 | 10.36 | 0.521 | 10.97 0.5 11.64

CA 0.212s | 10.62 | 0.943 | 1242 | 0.952 | 23.52 1.0 35.10 | 1.018 | 46.68 | 1.066 | 58.26
PA 0.119s | 10.69 | 0941 | 1241 | 0.949 | 23.35 1.0 34.85 | 1.025 | 46.35 | 1.058 | 57.85
lucent 0.018s | 13.67 | 0.888 | 14.79 | 0.833 | 22.55 | 0.833 | 31.64 | 0.833 | 41.22 [0.888 | 51.09
scan 0.034s | 15.23 | 0.941 | 16.86 | 0.852 | 26.39 | 0.852 | 37.06 | 0.852 | 48.08 [0.882 | 59.34

googlel 0.230s | 11.91 | 0.895 | 12.04 | 0.752 | 15.71 | 0.730 | 20.53 | 0.730 | 25.78 | 0.726 | 31.21
googleO | 0.278s | 13.62 | 0.863 | 13.28 | 0.694 | 15.65 | 0.658 | 19.52 | 0.640 | 24.24 | 0.676 | 29.66
Avg 12.58 | 0.889 | 12.62 | 0.763 | 16.36 | 0.735 | 21.56 | 0.721 | 26.86 | 0.736 | 32.T8

Table 3: Performance of our dynamic algorithm using nibble codes with various block sizes. For each size we give
the space needed in bits per edge (assuming enough blocks to leave the secondary hash table 80% full) and the
time needed to perform a DFS. Times are normalized to the first column, which is given in seconds. .

Storage Space and Processing Time Tradeoff

COMPARISON TO LINKED LIST (DYNAMIC)

Significant space savings

Separator-based representations are insensitive to vertex order, so faster than
linked list random, but slower than linked list linear

Linked List Our Structure
Random Vtx Order Sep Vtx Order Space Opt Time Opt
Rand | Trans Lin Rand | Trans Lin Block | Time Block | Time
Graph T T/ |\ T/ | T/Ty | T/Ty | T/T | Space | Size | T/T) | Space Size | T/T1 | Space
auto 1.160s | 0.512 | 0.260 | 0.862 | 0.196 | 0.093 | 68.33 16 0.148 9.35 20 0.087 | 13.31
feocean 0.136s | 0.617 | 0.389 | 0.801 0.176 | 0.147 75.21 8 0.227 12.97 10 0.117 14.71
ml4db 0.565s | 0.442 | 0.215 | 0.884 | 0.184 | 0.090 68.09 16 0.143 8.92 20 0.086 13.53
ibmlT 0.735s | 0.571 | 0.152 | 0.904 | 0.357 | 0.091 | 66.66 12 0.205 | 10.53 20 0.118 | 14.52
ibm18& 0.730s | 0.524 | 0.179 | 0.890 | 0.276 | 0.080 67.03 10 0.190 10.13 20 0.108 14.97
CA 1.240s | 0.770 [0.705 | 0.616 | 0.107 [0.101 86.80 3 0.170 10.62 5] 0.108 15.65
PA 0.660s | 0.780 | 0.701 | 0.625 | 0.112 | 0.109 R86.64 3 0.180 10.69 5 0.115 15.64
lucent 0.063s | 0.634 | 0.492 | 0.730 | 0.190 | 0.142 | 83.90 3 0.285 | 13.67 6 0.174 | 20.49
scan 0.117s | 0.735 | 0.555 | 0.700 | 0.188 | 0.128 R86.82 3 0.290 15.23 3] 0.170 28.19
googlel 0.975s | 0.615 | 0.376 | 0.774 | 0.164 | 0.096 75.49 4 0.211 12.04 16 0.125 28.78
googleO | 0.960s | 0.651 | 0.398 | 0.786 | 0.162 | 0.108 | 75.49 5 0.231 | 13.54 16 0.123 | 26.61
Avg 0.623 0.402 | 0.779 0.192 | 0.108 | 76.405 0.207 11.608 0.121 18.763

Table 4: The performance of our dynamic algorithms compared to linked lists. For each graph we give the space-
and time-optimal block size. Space is in bits per edge; time is for a DFS, normalized to the first column, which

is given in seconds.

MORE ALGORITHMS RUNNING ON DIFFERENT

MACHINES

Read Find Insert

Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.099 0.744 0.121 | 0.571 28.274 3.589 76.405
ListOrdr 0.322 | 0.096 0.740 0.119 | 0.711 28.318 0.864 76.405
LEDARand | 2.453 | 1.855 2.876 2.062 | 16.802 | 21.808 16.877 432.636
LEDAOrdr 1.119 | 0.478 2.268 0.519 | 7.570 20.780 7.657 432.636
DynSpace 0.633 | 0.440 0.933 0.324 | 14.666 | 23.901 15.538 11.608
DynTime 0.367 | 0.233 0.650 0.222 | 9.725 15.607 10.183 18.763
CachedSpace | 0.622 | 0.431 0.935 0.324 | 2.433 28.660 8.975 13.34
CachedTime | 0.368 | 0.240 0.690 0.246 | 2.234 19.849 6.600 19.073
ArrayRand 0.945 | 0.095 0.638 0.092 — — — 38.202
ArrayOrdr 0.263 | 0.092 0.641 0.092 — — — 38.202
Byte 0.279 | 0.197 0.693 0.205 — — — 12.501
Nibble 0.513 | 0.399 0.873 0.340 — — — 9.357
Snip 0.635 | 0.562 1.044 0.447 — — — 9.07
Gamma 0.825 | 0.710 1.188 0.521 — — — 9.424

Table 5: Summary of space and normalized times for various operations on the Pentium 4.

Read Find Insert

Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.631 0.995 0.508 | 1.609 17.719 3.391 76.405
ListOrdr 0.710 | 0.626 0.977 | 0.516 | 1.551 17.837 1.632 76.405
LEDARand | 3.163 | 2.649 3.038 2,518 | 17.543 | 19.342 17.880 432.636
LEDAOrdr 2.751 | 2.168 2.878 1.726 | 11.846 | 19.365 11.783 432.636
DynSpace 0.626 | 0.503 0.715 0.433 | 17.791 | 22.520 18.423 11.608
DynTime 0.422 | 0.342 0.531 0.335 | 13.415 | 16.926 13.866 17.900
CachedSpace | 0.614 | 0.498 0.723 0.429 | 2.616 25.380 7.788 13.36
CachedTime | 0.430 | 0.355 0.558 0.360 | 2.597 20.601 6.569 17.150
ArrayRand 0.729 | 0.319 0.643 0.298 — — — 38.202
ArrayOrdr 0.429 | 0.319 0.639 0.302 — — — 38.202
Byte 0.330 | 0.262 0.501 0.280 — — — 12.501
Nibble 0.488 | 0.411 0.646 0.387 — — — 9.357
Snip 0.684 | 0.625 0.856 0.538 — — — 9.07
Gamma 0.854 | 0.764 1.016 0.640 — — — 9.424

Table 6: Summary of space and normalized times for various operations on the Pentium III.

Machines
* Pentium 3 processor
* 0.1GHz bus
 |IGB RAM
* 32 byte cache line
* Pentium 4 processor
* 0.8GHz bus
 |IGB RAM

* |28 byte cache line

SUMMARY

Strength
The paper clearly motivates the separator-based representation.

The proposed 3-step compression algorithm is easy-to-understand. And the modularity
for building adjacency lists based on various encodings to better adapt to the underlying
hardware platform allows flexible software-hardware codesign.

An extensive set of datasets are used in the evaluation section to show that the
representation is indeed compact for various classes of graphs.

Weakness

The work is pretty incremental, as it is mostly based on a previously proposed separator-
based representation. Most of the new work is just related to run more experiments.

The experiment only considers DFS, sequential traversal, and insertion. It would be more
convincing if more algorithms are evaluated.

The table-based result presentation is really hard to read and find insights.

The representation is only useful if the algorithm allows free labeling of vertices.

