
AN EXPERIMENTAL ANALYSIS OF
A COMPACT GRAPH

REPRESENTATION

Daniel Blandford, Guy Blelloch, Ian Kash

CMU

Nellie Wu

MOTIVATION

• Graphs are diverse

• We want to have a uniform way to represent them

• Graphs are large and sparse

• We want the uniform representation to be compact to save storage

• Graphs are important data structures to operation on in many algorithms

• We want the compact representation to support efficient queries and

updates

This Paper

• Proposes the graph separator based representation as a general compact, and

efficient representation for various graphs

• Shows the performance of the representation via a comprehensive set of

experiments, e.g., up to 3.5x faster comparing to adjacency arrays for DFS

GRAPH SEPARATORS

• Edge separator

• a set of edges 𝐸′ ⊂ 𝐸 that, when

removed, partitions the graph into

two almost equal sized parts 𝑉1, 𝑉2.

• Vertex separator

• a set of vertices 𝑉′ ⊂ 𝑉 that, when

removed, partitions the graph into

two almost equal sized parts 𝑉1, 𝑉2.

Minimum Separator: the separator that minimizes the number of

edges/vertices removed

GRAPH SEPARATORS

• Edge separator

• a set of edges 𝐸′ ⊂ 𝐸 that, when

removed, partitions the graph into

two almost equal sized parts 𝑉1, 𝑉2.

• Vertex separator

• a set of vertices 𝑉′ ⊂ 𝑉 that, when

removed, partitions the graph into

two almost equal sized parts 𝑉1, 𝑉2.

Minimum Separator: the separator that minimizes the number of

edges/vertices removed

A graph has good separators if it and its subgraphs have

minimum separators that are significantly better than

expected for a random graph of its size

REAL WORLD GRAPHS HAVE GOOD SEPARATORS

• Good separators allows clean representations of graphs with a set of

separators and their associated subtrees

• Social networks: people form hierarchal communities

• Scholarly articles: co-authors are usually from similar research areas

• VLSI circuit design: circuit components usually are laid out in 2D and have just a

few metal layers

• etc.

Thus, separator-based graph representations can lead to

compact and efficient graph algorithm processing

ENCODING WITH SEPARATORS

High-Level Compression Algorithm

Generate an edge separator tree

for the graph

Label the vertices in-order across

leaves

Use an adjacency table to represent

the relabeled graph

STEP1: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

• Each node contains a

subgraph and a separator for

that subgraph

• The children of a node

contain the two components

of the graph induced by the

separator

Heuristic for deciding which edge

to collapse

𝑝𝑟𝑖𝑜𝑡𝑖𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑤 𝐸𝐴𝐵
𝑠 𝐴 𝑠(𝐵)

of edges between the multivertices A, B

A B

of vertices in multivertices A, B

STEP1: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

• Each node contains a

subgraph and a separator for

that subgraph

• The children of a node

contain the two components

of the graph induced by the

separator

• Split repeatedly until a single

vertex is reached

STEP1: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

• Each node contains a

subgraph and a separator for

that subgraph

• The children of a node

contain the two components

of the graph induced by the

separator

• Split repeatedly until a single

vertex is reached

STEP1: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

• Each node contains a

subgraph and a separator for

that subgraph

• The children of a node

contain the two components

of the graph induced by the

separator

• Split repeatedly until a single

vertex is reached

STEP1: BUILD SEPARATOR TREES

Represent Graphs with Separator Trees

• Each node contains a

subgraph and a separator for

that subgraph

• The children of a node

contain the two components

of the graph induced by the

separator

• Split repeatedly until a single

vertex is reached

Child-flipping optimization

an optimization that allows the algorithm to better decide

which subgraph should be the left child and right child

(more details in paper)

STEP2: ASSIGN LABEL TO LEAVES

Represent Graphs with Separator Trees

1 2 3 4 5

6 7

8 9

• Assign labels to leaves in an

increasing order

• Adjacent labels belong to the

same subgraph, allowing more

efficient encoding of the

representation in the next

step

STEP3: CONSTRUCT ADJACENCY TABLES

• For each vertex in the graph, its neighbors are stored in a difference-encoded

adjacency list.

For vertex v, the associated list is: 𝑣1 − 𝑣, 𝑣2 − 𝑣1, …

example: vertex 0: 3, 1

STEP3: CONSTRUCT ADJACENCY TABLES

• Difference values are encoded using logarithmic code, a prefix code that uses

O(logd) bits to encode a difference of size d

Implemented codes:

- gamma code

- unary code for ⌈𝑙𝑜𝑔𝑑⌉
- binary code for 𝑑 − 2⌈𝑙𝑜𝑔𝑑⌉

- total: 1 + 2⌈𝑙𝑜𝑔𝑑⌉ bits

- snip, nibble, byte codes

- 2-, 4-, 8-bit version of the more general k-bit

code, which encodes integers as a sequence of

k-bit blocks

- 𝑖𝑡ℎ bit represents whether the integer is

greater than 2𝑖

- designed as memory accesses are usually

aligned, with fetch with of 2, 4, 8 bits

STEP3: CONSTRUCT ADJACENCY TABLES

• Each adjacency list also carries metadata:

• A signed bit is included in the first entry to

account for negative difference

• The start of the list also stores # of entries in

the list

• Helps with efficiency lookup

• All adjacency lists are concatenated to form the

adjacency table for the graph

For vertex v, the associated list is: 𝑣1 − 𝑣, 𝑣2 − 𝑣1, …

BOUNDS FOR STORAGE REQUIREMENT

• Lemma (proved in a previous work)

• For a class of graphs satisfying an 𝑛𝑐(𝑐 < 1)-edge separator theorem, and labeling

based on the separator tree satisfying the bounds of separator theorem, the

adjacency table for any n-vertex member requires O(n) bits

The adjacency table storage requirement is theoretically bounded

DYNAMIC DATA STRUCTURES

• To allow insertion of new nodes, dynamic allocation of memory (to represent the

newly inserted nodes) is necessary

Statically allocated adjacency list for vertex v

Pool of unused memory blocks

b0
b0

b0
b0

b0
b0

Fixed proportion of the

block is empty

DYNAMIC DATA STRUCTURES

• To allow insertion of new nodes, dynamic allocation of memory (to represent the

newly inserted nodes) is necessary

Statically allocated adjacency list for vertex v

Pool of unused memory blocks

b0
b0

b0
b0

b0
b0

Operation: insert data to vertex v

8b pointer

Fixed proportion of the

block is empty

Memory reallocation is

needed periodically

EXPERIMENTAL SETUP

Graphs Used in Experiments Benchmarks

• DFS time

• time for reading and

inserting all edges

COMPARISON TO ADJACENCY ARRAY
REPRESENTATION

Machine: Pentium 4 (larger cache line size)

Rand: vertices are ordered randomly

Seq: vertices are ordered sequentially

COMPARISON TO ADJACENCY ARRAY
REPRESENTATION

Machine: Pentium 4 (larger cache line size)

• Byte encoding is significantly faster than other proposed structures because of the machine’s byte-based instruction streams

• Significant space savings compared to baseline

• Always faster than Array-based rand but sometimes slower than array-based seq

BLOCK SIZE SENSITIVITY (DYNAMIC)

• Large blocks are inefficient since they contain unused space

• Small blocks can be inefficient since they require proportionally more space for

pointers to other blocks

Memory Block Size

Storage Space and Processing Time Tradeoff

COMPARISON TO LINKED LIST (DYNAMIC)

• Significant space savings

• Separator-based representations are insensitive to vertex order, so faster than
linked list random, but slower than linked list linear

MORE ALGORITHMS RUNNING ON DIFFERENT
MACHINES

Machines

• Pentium 3 processor

• 0.1GHz bus

• 1GB RAM

• 32 byte cache line

• Pentium 4 processor

• 0.8GHz bus

• 1GB RAM

• 128 byte cache line

Allows much better performance when

the application has spatial locality

SUMMARY

• Strength

• The paper clearly motivates the separator-based representation.

• The proposed 3-step compression algorithm is easy-to-understand. And the modularity

for building adjacency lists based on various encodings to better adapt to the underlying

hardware platform allows flexible software-hardware codesign.

• An extensive set of datasets are used in the evaluation section to show that the

representation is indeed compact for various classes of graphs.

• Weakness

• The work is pretty incremental, as it is mostly based on a previously proposed separator-

based representation. Most of the new work is just related to run more experiments.

• The experiment only considers DFS, sequential traversal, and insertion. It would be more

convincing if more algorithms are evaluated.

• The table-based result presentation is really hard to read and find insights.

• The representation is only useful if the algorithm allows free labeling of vertices.

