
Combining Data Duplication and 
Graph Reordering to Accelerate 

Parallel Graph Processing
Vignesh Balaji and Brandon Lucia

CMU

Published at HPDC’19

Presented by Victor Ying

6.886 – May 6, 2021



The problem

• Consider algorithms that traverse (some or all) edges on each round 
to propagate values from source to destination vertices.

• We want to use the cache hierarchy effectively.

• We want to reduce contention (cache-line ping-ponging) and 
overheads associated with atomic memory operations.



Prior work: Switching direction of edge 
traversal (see Feb. 23 lecture)
• Traversing edges from sources to destinations is called push (a.k.a. 

top-down).

• Switching to pull (a.k.a. bottom-up) solves the problem of atomics & 
contention, but is not work efficient.



Solution attempt #1: Naïve Duplication

• Assumes that the updates are associative and commutative. Think of 
doing a parallel reduction.

• Duplicate all destination vertex data so that each thread performs 
updates on its local copy. No need for atomics!

• Also known as “privatization”.

• Problem: Enormous memory overhead



Solution attempt #2: Selective Duplication 
(HubDup)
• Observation for some real-world graphs:

• Most nodes have low degree, negligible contention.
• A small fraction of nodes are “hubs”: these are updated many times.

• So privatize only the vertex data associated with hubs!

• Expensive overheads: lookup in a an extra data structure when visiting 
each vertex to figure out if it’s a “hub” to index into the tread-local copies.



Ultimate solution:
RADAR = HubDup + degree sorting
• Observation for some real-world graphs:

• Most nodes have low degree, negligible contention.
• A small fraction of nodes are “hubs”: these are updated many times.

• So privatize only the vertex data associated with hubs!

• Preprocess the graph with X hubs such that:
• Hubs have vertex IDs 0 … X-1. Non hubs have IDs X, …, N-1



RADAR’s degree sorting improves cache 
capacity efficiency too!







Conclusions

• RADAR (hub duplication + degree-based vertex partitioning) reduces the overheads of 
cache-line ping-ponging and atomics for power-law graphs

• This is an alternative to direction-switching (push-pull), sometimes one is better than the 
other.

• Note: the graph must be preprocessed to do the degree-based sorting/partitioning: this 
overhead is non-trivial if you’re not going to run many rounds of computation on the 
same graph.

• Note: vertices need not be strictly degree-sorted. After partitioning into hubs and non-
hubs, you could use another reordering heuristic to reorder the hubs among themselves.

• See also on hardware support to do an even better version of this, without needing 
degree-based sorting/partitioning:
• Anurag Mukkara, Nathan Beckmann, Daniel Sanchez. “PHI: Architectural Support for 

Synchronization- and Bandwidth-Efficient Commutative Scatter Updates,” in MICRO-52, October 
2019.


