Graph Clustering: Affinity Clustering and Higher-Order Clustering

Laxman Dhulipala MIT (Postdoc) https://ldhulipala.github.io/

Based on papers by Bateni et al. (Neurips 2017) and Yin et al. (KDD 2017)

Outline

- Clustering and Graph Clustering Overview
- * Affinity Clustering
- * Higher-Order Clustering
- * Future Directions
- Conclusion

Problem (informal): Group objects in such a way that objects in the same group (cluster) are more similar than those in other groups (clusters).

Points in ambient space

Vertices and edges in a (potentially weighted) graph

Flat and Hierarchical Clustering

Flat Clustering:

Assign objects to clusters (no structure relating clusters to other clusters)

Hierarchical Clustering:

Build a hierarchy of clusters called a dendrogram

Often want clusters to be formed by binary merges of sub-clusters

Dendrograms usually equipped with a weight (similarity) indicating how similar the two merged clusters are

Hierarchical Graph Clustering

Problem: is more similar), compute a hierarchical clustering of the graph

Given a graph with positive edge weights representing distances (smaller

Clustering

Hierarchical Agglomerative Clustering (on Graphs) using different linkage function - defined - can either work in <u>similarity</u> or <u>dissimilarity</u> setting. Generic HAC algorithm: Il dissimilarity

3 more than one cluster: While let (u,v) be the most similar (smallest-weight) edge • merge (u, v) into a new cluster · update weight, in the graph using the specified linkage function

the HAC algorithm merges two vertices Suppose forma cluseter AUB. How do ac A, B to weight edges out of this new cluster?

Functions: Linkage

Single Linkage: W(AUB, C)= $\min\left\{\omega(A,C), w(B,C)\right\}$

Complete Linkage:
$$W(A \cup B, C) =$$

max $\{W(A, C), W(B, C)\}$

Weighted Average-Linkage:
$$w(AUB, C) = (w(A, C) + w(B))$$

HAC: Ootput (unweignted aug-link)

merge weight: 1

merge weight: 2

AJ

merge weight: 4

Hierarchical Agglomerative Graph Clutering Parallelizing $\hat{0}$

51

||

Background: Boruvka's Algorithm

Cut property: Let S be any subset of vertices. The n S is in the MST.

Let S be any subset of vertices. The minimum cost edge on the boundary of

Background: Boruvka's Algorithm

def Boruvka(G(V, E, w)):

Compute the minimum edge out of each vertex. Let the set of min-weight edges be MinE.

Compute connected components on the graph induced # by only edges in MinE.

C = Components(G[V, MinE])

Contract the graph to the components of C. An edge # (u,v) in E is discarded if C(u) = C(v). For # duplicate edges (u,v) with C(u) != C(v), keep the # minimum-weight edge. GC = ContractMin(G, C)

return MinE U Boruvka(GC)

How many components can there be in C?

#vertices (deterministically) decreases by a constant factor per-round

time when there are $\leq k$ clusters for some desired # k > 0. If < k clusters, delete the edger added in the last round

if k=2, cut the weight 4 edge to get 2 clusters

K= 2

Contributions of this Paper:

Algorithmic (ontribution:
•
$$O(1)$$
 round MPC algorithm for MST for dense graphy
- $m = O(n^{1+c})$ for any constant c70
- $space-per-machine = S = O(n^{1+c})$ whip. for $0 < c < c$
- $space-per-machine = S = O(n^{1+c})$ whip. for $0 < c < c$
- $space-efficient$ with input op =
- $total$ machines = $T = O(n^{c-c})$
- tot

$$S = N = M$$

 $M = O(n^{1+c})$, and $O < E <$
live MST in one round
nachine; have to compute edges some
Borauka?
(follows from work-depte discussion)
 $O((ogn) MPC$ rounds through PRAM
Simulations.

C

MST Algorithm (Denre Graphs)

Observation: If
$$\underline{G}'=(v', E')$$
 is an arbitrary subgraph of \underline{G} and an edge $\underline{e}' \in \underline{E}' \notin \underline{MST}(\underline{G}')$ Then $\underline{e}' \notin \underline{MST}(\underline{G})$

ldea: of least 1 subgraph (and subgraph sizes $\leq S$). Then since |MST| = O(n) and $S = O(n^{(+\epsilon)})$ we will get rid of a lot of edges. Repeat until only $S = O(n^{1+\varepsilon}) edge left and solve on$

Divide Grinto subgraphs sit. each edge of Gris in

a single machine.

MST Algorithm (Dense Graphs Algorithm 1 MST of Dense Graphs **Input**: A weighted graph G **Output**: The minimum spanning tree of G 1: function $MST(G = (V, E), \epsilon)$, S 2: $c \leftarrow \log_n (m/n)$ \triangleright Since G is 3: while $|E| > O(n^{1+\epsilon})$ do // while not yet solvable \triangleright Since G is

- REDUCEEDGES(G, c) 4:
- $c \leftarrow (c \epsilon)/2$ 5: Move all the edges to one machine and find MST of G 6:
- 7: function REDUCEEDGES(G = (V, E), c)

8:
$$k \leftarrow n^{(c-\epsilon)/2}$$

- Independently and u.a.r. partition V into k subsets $\{V\}$ 9:
- Independently and u.a.r. partition V into k subsets $\{U\}$ 10:
- Let $G_{i,j}$ be a subgraph of G with vertex set $V_i \cup U_j$ 11: where $v \in V_i$ and $u \in U_j$.
- for any $i, j \in \{1, ..., k\}$ do 12:
- Send all the edges of $G_{i,j}$ to the same machine and 13:
- Remove an edge e from E(G), if $e \in G_{i,j}$ and it 14:

MST on Nucutical & n-1

[Lemma: Alg. 1 correctly finds the MST in
Correctness: each call to Reduce Edges
randomly partitions vertices into

$$V = \{V_1, ..., V_k\}$$

 $U = \{U_1, ..., V_k\}$
And for each (i, j) pair $\in \{1..., k\}$
finds MST (U_i, j) , discarding any
edges in $U_{i,j} \notin MST (U_{i,j})$ -

Γlog (</ε)]+1 rounds

Algorithm 1 MST of Dense Graphs **Input**: A weighted graph G **Output**: The minimum spanning tree of G1: function $MST(G = (V, E), \epsilon)$ \triangleright Since G is assumed to be dense we know c > 0. $c \leftarrow \log_n \left(m/n \right)$ 2: while $|E| > O(n^{1+\epsilon})$ do 3: REDUCEEDGES(G, c)4: $c \leftarrow (c - \epsilon)/2$ 5: Move all the edges to one machine and find MST of G in there. 6: 7: function REDUCEEDGES(G = (V, E), c) $k \leftarrow n^{(c-\epsilon)/2}$ 8: Independently and u.a.r. partition V into k subsets $\{V_1, \ldots, V_k\}$. 9: Independently and u.a.r. partition V into k subsets $\{U_1, \ldots, U_k\}$. 10: Let $G_{i,j}$ be a subgraph of G with vertex set $V_i \cup U_j$ containing any edge $(v, u) \in E(G)$ 11: where $v \in V_i$ and $u \in U_j$. for any $i, j \in \{1, ..., k\}$ do 12: Send all the edges of $G_{i,j}$ to the same machine and find its MST in there. 13: Remove an edge e from E(G), if $e \in G_{i,j}$ and it is not in MST of $G_{i,j}$. 14:

-> none of the discarded edges are gat of MST(L)

Kound Complexity

· Let c, = value of c in r-th iter. • Let $k_r = n^{(c_r - \epsilon)/2}$

• For each (i, j) let $T_{i, j} = M \mathcal{T} ((i, j))$. Notice that $\frac{9}{10}$. IT are kept in next round. → MST on n' vertices has ≤ n-1 edges. Next, conceptually charge each edge & T., to a vertex in T.,

Claim: each vertex in li,j charged at most once

Algorithm 1 MST of Dense Graphs **Input**: A weighted graph G **Output**: The minimum spanning tree of G1: function $MST(G = (V, E), \epsilon)$ $c \leftarrow \log_n \left(m/n \right)$ \triangleright Since G is assumed to be dense we know c > 0. while $|E| > O(n^{1+\epsilon})$ do REDUCEEDGES(G, c)5: $c \leftarrow (c - \epsilon)/2$ Move all the edges to one machine and find MST of G in there. 6: 7: function REDUCEEDGES(G = (V, E), c) $k \leftarrow n^{(c-\epsilon)/2}$ Independently and u.a.r. partition V into k subsets $\{V_1, \ldots, V_k\}$. Independently and u.a.r. partition V into k subsets $\{U_1, \ldots, U_k\}$. Let $G_{i,j}$ be a subgraph of G with vertex set $V_i \cup U_j$ containing any edge $(v, u) \in E(G)$ where $v \in V_i$ and $u \in U_i$. for any $i, j \in \{1, ..., k\}$ do Send all the edges of $G_{i,j}$ to the same machine and find its MST in there. 13: Remove an edge e from E(G), if $e \in G_{i,j}$ and it is not in MST of $G_{i,j}$. 14:

root tree

Round Lomplexity:

• Let $c_r = value of c in r-th iter.$ • Let $k_r = n$ • Let each $a_{i,j}$ let $T_{i,j} = M f (a_{i,j})$. · Each vertex in $\omega_{i,j}$ charged at most once. Consider V E V; (WLOG). V appears in a., 2, ..., h., . Therefore kr times => kr n is an upper bound for # edges at end of r-th round. =) $k_r \cdot n = n$ and $c_r < \frac{c}{2^r}$, $\left[\log(c/\epsilon)\right] < \frac{c}{2^{\lceil \log(c/\epsilon) \rceil}} \leq \epsilon$

 $C_{0} = C_{1}, C_{r} = (C_{r-1} - \epsilon)/2$

Innut	· A weighted graph C
	. A weighted graph G
Outp	ut: The minimum spanning tree of G
1: f ı	unction $MST(G = (V, E), \epsilon)$
2:	$c \leftarrow \log_n (m/n)$ \triangleright Since G is assumed to be dense we know $c > 0$
3:	while $ E > O(n^{1+\epsilon})$ do
4:	REDUCEEDGES(G, c)
5:	$c \leftarrow (c - \epsilon)/2$
6:	Move all the edges to one machine and find MST of G in there.
7: f u	unction REDUCEEDGES($G = (V, E), c$)
8:	$k \leftarrow n^{(c-\epsilon)/2}$
9:	Independently and u.a.r. partition V into k subsets $\{V_1, \ldots, V_k\}$.
10:	Independently and u.a.r. partition V into k subsets $\{U_1, \ldots, U_k\}$.
11:	Let $G_{i,i}$ be a subgraph of G with vertex set $V_i \cup U_i$ containing any edge $(v, u) \in E(G)$
W	where $v \in V_i$ and $u \in U_i$.
12:	for any $i, j \in \{1,, k\}$ do
13:	Send all the edges of $G_{i,j}$ to the same machine and find its MST in there.
14:	Remove an edge e from $E(G)$, if $e \in G_i$, and it is not in MST of G_i .

=> O(n^{It E}) edges after [log[^c/_k]] rounds.

Round 1

(EREW/CRUW) PRAM prolimine fix pram MPC

$$O(loplogn)$$

 $O(1)$ rounds

MST Algorithm (Sperre Graphs)
Let
$$h(V, E, w)$$
 be given. $n = |V|$, $m = |E|$ (no requirements on m)
Algorithm: (proceed in roundr)
(i) each vertex finds its best edge (most similar edge) // O(i) rounds
(z) graph is contracted along the selected edges // ?? rounds
(z) solvable using connectivity or we discussed before but requires $\Omega(\log n)$ rounds.
(z) solvable using connectivity or we discussed before but requires $\Omega(\log n)$ rounds.
(very out that we can solve (z) in O(i) rounds asing
a distributed hash table (04T)

MST Algorithm (Sparse Graphs) Let G(V, E, w) be given. $\gamma = |V|, m = |E|$ (no requirements on m) Algorithm: (proceed in rounds) (1) each vertex finds its best ed. (2) graph is contracted along the Searcher - Each loop of two gives a vnig - Perfirming all queries takes OC

xperiments

First, now do une compare fue different clusterings?

Definition 4 (Rand index [40]). Given a set $V = \{v_1, \ldots, v_n\}$ of n points and two clusterings $X = \{X_1, \ldots, X_r\}$ and $Y = \{Y_1, \ldots, Y_s\}$ of V. Define the following.

• a: the number of pairs in V that are in the same cluster in X and in the same cluster in Y. • b: the number of pairs in V that are in different clusters in X and in different clusters in Y. the Rand index r(X,Y) is defined to be $(a+b)/\binom{n}{2}$. By having the ground truth clustering T of a data set, we define the Rand index score of a clustering X, to be r(X, T).

E.g.
$$i[-n=4, V=\{v_1, v_2\}, X=\{v_1, v_2\}, X=\{v_1, v_4\}, \{v_2, v_3\}, T=\{v_1, v_4, v_2\}, \{v_3\}, T=\{v_1, v_4, v_2\}, \{v_3\}$$

- w- highert score ir used.

Scalability

Table 1: Statistics about datasets used. (Numbers for ImageGraph are approximate.) The fifth column shows the relative running time of affinity clustering, and the last column is the speedup obtained by a ten-fold increase in parallelism.

Dataset	# nodes	# edges	max degree	running time	speedup 7	increa	2	W
LiveJournal	4,846,609	7,861,383,690	444,522	1.0	4.3		See	
Orkut	3,072,441	42,687,055,644	893,056	2.4	9.2	10%.		
Friendster	65,608,366	1,092,793,541,014	2,151,462	54	5.9	4	DX	SP
ImageGraph	2×10^{10}	10^{12}	14000	142	4.1			

- Construct weighted graphs by setting and discarding O-weight edges. - a procedure basically connects a verte

- > use maximum spanning tree (similarity) version of affinity.

Hierarchical Clustering using MST

Compute MST

