
Simple Linear Work
Suffix Array
Construction

Juha Karkkainen and Peter Sanders

Max-Planck-Institut fur Informatik

{juha,sanders}@mpi-sb.mpg.de.

Presented by

sualeh asif

sualeh@mit.edu 1

outline

1. motivation
2. a primer on suffix arrays
3. the skew algorithm: a linear work algorithm
4. the skew algorithm in other models
5. questions

bonus: future of suffix arrays and fast implementations

2

1. motivation

3

motivating problem

The Longest Common Substring problem:

4

Find the greatest
common
substring
between two
strings S, T.

motivating problem

The Longest Common Substring problem:

- easy if we can efficiently maintain all substrings

5

motivating problem

The Longest Common Substring problem:

- easy if we can efficiently maintain all substrings
- we can just check for collisions of similar substrings

- motivates us to have an easily searchable list.

6

motivating problem

The Longest Common Substring problem:

- easy if we can efficiently maintain all substrings
- we can just check for collisions of similar substrings

- motivates us to have an easily searchable list.
- keep it sorted to allow for easy searches.

7

motivating problem

The Longest Common Substring problem:

- easy if we can efficiently maintain all substrings
- we can just check for collisions of similar substrings

- motivates us to have an easily searchable list.
- keep it sorted to allow for easy searches.
- boom! we have a suffix array

8

motivating problem

The Longest Common Substring problem:

- easy if we can efficiently maintain all substrings
- we can just check for collisions of similar substrings

- motivates us to have an easily searchable list.
- keep it sorted to allow for easy searches.
- boom! we have a suffix array

9

(note: suffix trees and suffix arrays are interchangeable for applications)

motivating applications

10

application 1: bioinformatics

motivating applications

11

application 1: bioinformatics
application 2: text processing

motivating applications

12

application 1: bioinformatics
application 2: text processing
application 3: data compression

motivating applications

13

application 1: bioinformatics
application 2: text processing
application 3: data compression
application 4: clustering

motivating applications

14

application 1: bioinformatics
application 2: text processing
application 3: data compression
application 4: clustering
application 5: … basically anything with strings

motivating applications

15

application 1: bioinformatics
application 2: text processing
application 3: data compression
application 4: clustering
application 6: oh and coding interviews :)

2. a primer on suffix arrays

16

2. a primer on suffix arrays

17

(side note: these are different from suffix trees)

a motivating example

lets consider the suffixes of our favorite word:

18

a motivating example

lets consider the suffixes of our favorite word:

19

(transition to live work on the ipad)

M I S S I S S I P P I

a simple algorithm

- Just do a depth-first traversal of the suffix tree:

20

a simple algorithm

- Just do a depth-first traversal of the suffix tree:
- this is linear work!

(with a fast suffix tree algorithm)

21

a simple algorithm

- Just do a depth-first traversal of the suffix tree:
- this is linear work!

(with a fast suffix tree algorithm)
- cons:

- memory :(
- we have to construct a full tree

- tricky parallelism

22

a longer look at the simple algorithm

- linear work suffix tree construction:

23

a longer look at the simple algorithm

- linear work suffix tree construction:

24

Algorithm 1: Farach’s linear-time suffix tree construction:

1. Construct the suffix tree of the suffixes starting at odd
positions. This is done by reduction to the suffix tree
construction of a string of half the length, which is solved
recursively.
2. Construct the suffix tree of the remaining suffixes using the
result of the first step.
3. Merge the two suffix trees into one.

a longer look at the simple algorithm

- linear work suffix tree construction:

25

Algorithm 1: Farach’s linear-time suffix tree construction:

1. Construct the suffix tree of the suffixes starting at odd
positions. This is done by reduction to the suffix tree
construction of a string of half the length, which is solved
recursively.
2. Construct the suffix tree of the remaining suffixes using the
result of the first step.
3. Merge the two suffix trees into one.

IDEA: use a similar merging based approach with 3 buckets

3. the skew algorithm

26

goal: a linear time algorithm

27

goal: accomplished :)

28

4. the skew algorithm in other models

29

Important interesting models

30

Important interesting models

31

model 1: external memory

Important interesting models

32

model 1: external memory
model 2: cache model

Important interesting models

33

model 1: external memory
model 2: cache model
model 3: BSP

Important interesting models

34

model 1: external memory
model 2: cache model
model 3: BSP
model 4: EREW-PRAM

5. questions

35

bonus. future of suffix arrays
and fast implementations

36

bonus. future of suffix arrays
and fast implementations

37

things that happen after this paper

1. Li, Li & Huo gave an in-place linear work algorithm

38

things that happen after this paper

1. Li, Li & Huo gave an in-place linear work algorithm
2. first fast in-practice algorithm: Nong, Zhang & Chin (2009)

a. <100 Lines of Code
b. can be used to construct LC array
c. fast careful implementation by Yuta Mori

https://sites.google.com/site/yuta256/sais

39

https://sites.google.com/site/yuta256/sais

things that happen after this paper

1. Li, Li & Huo gave an in-place linear work algorithm
2. first fast in-practice algorithm: Nong, Zhang & Chin (2009)

a. <100 Lines of Code
b. can be used to construct LC array
c. fast careful implementation by Yuta Mori

https://sites.google.com/site/yuta256/sais
3. the work has been extended to Generalized Suffix Arrays
4. Other approaches: Prefix Doubling, Induced Copying

40

https://sites.google.com/site/yuta256/sais

41

6. open discussion

a motivating example

MISSISSIPPI

a motivating example

MISSISSIPPI
suffixes

a motivating example

MISSISSIPPI
suffixes
Mississippi
ississippis
ssissippis
sissippis
issippis
ssippis

I sippis
ppis
ppis
pit
is

a motivating example

MISSISSIPPI a string s
suffixes S Sfi nsuffixes

Mississippi
ississippis
ssissippis
sissippis
issippis
ssippis

I sippis
ppis
pp is
pit
is

a motivating example

MISSISSIPPI a string s

suffixes i suffixes Si Slim

Mississippi o

ississippis
I

ssissippis 2

sissippis 3

issippis
4

ssippis
5

I sippis
6

ppi
7

I ppi
8

pit 9
is 10

I 11

a motivating example

MISSISSIPPI a strings
suffixes i suffixes Si Slim

Mississippi o

ississippis
I

ssissippis 2

sissippis 3

issippis
4

ssippis
5

I sippis
6

f ff I
sort pit 9

bys o is 10
11

a motivating example

MISSISSIPPI
suffixes i i

Mississippi o 11

ississippis
l

ssissippis 2

sissippis 3

issippis
4

ssippis
5
6

sippis y
i f iff s

pit 9
sort
bys o is 10

11

a motivating example

MISSISSIPPI
suffixes i i

Mississippi o 11

ississippis
I is

ssissippis 2 ippis

sissippis 3 issippis

issippis
4 ississippis

ssippis
5
6

sippis y
i f iff s

pit 9
sort
bys o is 10

11

a motivating example

MISSISSIPPI
suffixes i i

Mississippi o 11

ississippis
I is

ssissippis 2 ippis

sissippis 3 issippis

issippis
4 ississippis

ssippis
5 mississippi
6 pissipp y ppi

i f iff s

pit 9
sort
bys o is 10

11

a motivating example

MISSISSIPPI
suffixes i i

0 11
Mississippi is 10

ississippis
l

ippis 7

ssissippis 2 y
sissippis 3 siiPIiippi I

issippis
4 o

ssippis
5 mississippi
6 pissipp y ppi

8

f iff s ssiipgifppis b
pit 9 5sort ssippis

bys 03 is 10 gsissippis 2
11

a motivating example

MISSISSIPPI
suffixes i i

0 11
Mississippi is 10

ississippis
l

ippis 7

ssissippis 2 y
sissippis 3 siiPIiippi I

issippis
4 o

ssippis
5 mississippi
6 pissipp y ppi

8

f iff s ssiipgifppis b
pit 9 5sort ssippis

bys 03 is 10 gsissippis 2
11

a motivating example

MISSISSIPPI SA 197,141,019,816,3 2

S xes i i

Mississippi O 9 Yo

ississippis
l

ippis 7

ssissippis 2 y
sissippis 3 ios ippi I

issippis
4 o

ssippis
5 mississippi
6 pissipp y ppi

8

i f iff s ssiipgifppis
63

pit 9 5sort ssippis
bys 03 is 10 ssissippis 2

11

The skew algorithm

The skew algorithm
Notation

String
s

a b a att b

s a b scat scat SEBI SEBI

sCa b sky scatD scbyg

The skew algorithm
Notation

String
s Is numbered from 0

a b a att b

s a b scat scat SEBI SEBI

Sfa b sla slaty scbyg

Alphabet E fl n

Sli C E for i CCoin

Goal construct suffix array SA

The skew algorithm
Notation

String
s Is numbered from 0

a b a att b

s a b scat scat SEBI SEBI

Sfa b sla slaty scbyg

Alphabet E fl n

Sli C for i C o n

assume neo mod 3 for simplicity

The skew algorithm
plan fix the problems with Farach's

argument

D
2

3

The skew algorithm
Plan fix the problems with Farach's

argument
1 Construct SA for indices i to mod 2

Use step 1 to construct SAOfor 1 0 mod2

Merge
SA merge SAO

SA

The skew algorithm
plan fix the problems with Farach's

argument
1 Construct SA for indices i to mod 2

Use step 1 to construct SAOfor 1 0 mod2

Merge
SA merge SAO

SA

sadly this
doesn't work

The skew algorithm
plan fix the problems with Farach's

argument z

1 Construct SA iz for indicies i to mod 2
3

Use step 1 to construct SAOfor i om.DZ

Merge
SA merge SAO SAD

This works

The skew algorithm
plan fix the problems with Farach's

argument z

1 Construct SA iz for indicies i to mod 2
3

Use step 1 to construct SAOfor i om.DZ

Merge
SA merge SAO SAD

Intuition just enough spaceThis works
for colliding first
characters to be
quickly verified inmerge

The skew algorithm

go
get iifor

2 construct SAo for
indices 1 0mod3

3 SA merge SAO SA

PlanThe skew algorithm D construct Sartor
indicies i to mod3

Step Construct SAR for its0 491119,91

60523 SA merge SAO SA

The skew algorithm construct SAztor

step consma sarin of Is
Let I z 1,2 4,5

Consider triples
1 sci it 2 I i C I a

The skew algorithm construct SAztor

steticonsina sarin of
Let I z 1,2 4,5

Consider triples
1 sci it 2 i CI.AZ

ple mississippi
n T

I z
1,2 4,5 7,8 10

T
g
iss iss ipp i mississippi

ssi ssi ppi mississippi

The skew algorithm construct SAztor

steticonsina sarin of ILet I z 1,2 4,5

Consider triples
1 sci it 2 i CI.AZ

ple mississippi
n T

I z
1,2 4,5 7,8 10

T
g
iss iss ipp i mississippi

ssi ssi ppi mississippi

PlanThe skew algorithm D construct Sartor
indicies i to mod3

Step Construct SAR for its0 491119,91

6052Let I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 i C I a

Radix sort on T to sort triples

Assign each triple
a unique name

PlanThe skew algorithm D construct Sartor
indicies i to mod3

Step Construct SAR for its 4.9hs.liIetEAoom.fo

Let I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 i C I a

Radix sort on T to sort triples

Assigneachtriplea.unique.name

SortedT
iss.iss.ipp.iY g
ssi ssi ppi ppi

ssi
ssi

PlanThe skew algorithm 1 construct Sartor
indicies i to mod3

Step Construct SAR for sf49LIEEstEAoom.fo
Let I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 i C I a

Radix sort on T to sort triples

Assigneachtripka.unique.name
o

c I

sorted
iss issipp is
ssi ssi ppi ppi c 3

I Ssi c 44

S 3 3,2 1,5 5,4 Ssi

PlanThe skew algorithm D construct Sartor
indicies i to mod3

Step Construct SAR for its0 491119,91

6052Let I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 i C I a

Radix sort on T to sort triples

Assign each triple
a unique name

it sorted T is not unique recurse on s z togetSA

PlanThe skew algorithm 1 construct Sartor
indicies i to mod3

Step Construct SAR for its 4.9hs.liIetEAoom.fo

Let I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 i C I a

Radix sort on T to sort triples

Assign each triple
a unique name

it sorted T is not unique recurse on s z togetSA

S 3,3 2,1 5,5 4 SATE 312,110,6 5,4

The skew algorithm construct SAztor

step consma sarin if
Let I z 1,2 4,5

Consider triples
1 sci it 2 I i C I a
Radix sort on T to sort triples

Assign each triple
a unique name

it sorted T is not unique recurse on s z togetSA

S 3,3 2,1 5,5 4 SA
z
312,110,6 5,4

r

PlanThe skew algorithm D construct Sartor
indicies i to mod3

Step Construct SAR for its 4.9hs.li

IetisAoom.eo5yLet I z 1,2 4,5 3 SA merge SAO SA

Consider triples
1 sci it 2 I i C I a
Radix sort on T to sort triples

Assign each triple
a unique name

it sorted T is not unique recurse on s z togetSA

fix up SAR from triples original
SA 341.0 6,5 4 197,4 I 8,5 2

The skew algorithm construct SAztor

steep construct saotorif

The skew algorithm construct SAztor

steep construct saotor if

I
Easy

we want to sort

The skew algorithm construct SAztor

step construct show if

Easy

we want to sort go Ss So I
equivalently sort so S Csos Sy

The skew algorithm construct SAztor

step construct Saori

Easy

we want to sort go Ss So I
equivalently sort so S Csos Sy

4 9
example Mississippi because Sas

601 M

sortfgfgfE.si
Esso 9.9.93

SGT p
i

The skew algorithm construct SAztor

stetesimergesaoisan

The skew algorithm construct SAztor

is merge saoisan
Also not bad
Do a merge step from say merge sort

Need to compare Si Sj

The skew algorithm construct SAztor

is merge saoisan i
Also not bad
Do a merge step from say merge sort

Need to compare Si Sj

go

J
we know from Sao

The skew algorithm construct SAztor

is merge sao.sa.fi i
Also not bad
Do a merge step from say merge sort

Need to compare Si Sj

f
E I

iron

The skew algorithm construct SAztor

steeimergesaoisan i
Also not bad
Do a merge step from say merge sort

Need to compare Si Sj

f
E Ei inO t

ie I j o Si sci Sit default

Sj SC Sgt
abor

1 2 O si CSEIJ.sfi D.si149

The skew algorithm construct SAztor

is merge saoisan
Also not bad
Do a merge step from say merge sort

Need to compare Si Sj

Merge SAE
4974 I 8,52

SAO 0,9 6,3
H

S A 10,7 4,1 O 9,8 6,3 5,2

The skew algorithm construct SA for

running time Hiii
1 n 2T FFI to

The skew algorithm construct SA for

running time I
1 n 21 454 107

It

TCM OG

