
A Simple Parallel Cartesian Tree
Algorithm and its Application to
Parallel Suffix Tree Construction

Julian Shun and Guy Blelloch

Motivation for Suffix Trees
• To efficiently search for patterns in large texts
– Example: Bioinformatic applications

• Suffix trees allow us to do this
– O(N) work for construction with O(M) work for search,

where N is the text size and M is the pattern size
• In contrast, Knuth-Morris-Pratt’s algorithm takes O(M) work

for construction and O(N) work for search
– Other supported operations: longest common

substring, maximal repeats, longest palindrome, etc.
– There are sequential implementations but no parallel

ones that are both theoretically and practically
efficient

• We developed a new (practical) linear-work
parallel algorithm and analyzed it experimentally

Outline: Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges,
insert into hash table)

• There are standard techniques
to perform all of these steps in
parallel, except for building the
multiway Cartesian Tree

Suffix Arrays and
Longest-common-prefixes (LCPs)

$
i$
ippi$
issippi$
ississippi$
mississippi$
pi$
ppi$
sippi$
sissippi$
ssippi$
ssissippi$

0
1
1
4
0
0
1
0
2
1
3

LCPsSuffix arraySuffixes

mississippi$
ississippi$
ssissippi$
sissippi$
issippi$
ssippi$
sippi$
ippi$
ppi$
pi$
i$
$

Original String

mississippi$

Sort suffixes

Suffix Trees

• String = mississippi$
• Store suffixes in a patricia tree (trie with one-child nodes

collapsed)

mississippi$

ssippi$ssippi$

$
pi

i$ pi$

s

i
si

ppi$
ppi$

ssi
$

ppi$ ssippi$

ppi$

Multiway Cartesian Tree
• Maintains heap property
• Inorder traversal gives back the sequence

1 2 0 4 1 1 3 1 2

1

2

0

1

4
3

1

1

2

• Components of same value
treated as one “cluster”

Sequence =

Cluster

1

Suffix Tree History

7

• Sequential O(n) work algorithms based on
incrementally adding suffixes [Weiner ‘73,
McCreight ‘76, Ukkonen ‘95]

• Parallel O(n) work algorithms very complicated,
no implementations [Sahinalp-Vishkin ‘94,
Hariharan ‘94, Farach-Muthukrishnan ‘96]

• Parallel algorithms used in practice are not
linear-work

• Practical linear-work parallel algorithm?
• Simple O(n) work parallel algorithm
• Fastest algorithm in practice

More Related Work
• Cartesian trees
– Sequential O(n) work stack-based algorithm
– Work-optimal parallel algorithm for Cartesian tree on

distinct values (Berkman, Schieber and Vishkin 1993)

• Suffix arrays to suffix trees
– Sequential O(n) work algorithms
– Two parallel algorithms for converting a suffix array

into a suffix tree (Iliopoulos and Rytter 2004)
• Both require O(n log n) work

• Our contributions
– A parallel algorithm for converting suffix arrays to

suffix trees, which requires only O(n) work and is
based on multiway Cartesian trees

Suffix Array/LCPs à Suffix Tree

• Interleave suffix lengths and LCP values
• Build a multiway Cartesian tree on that
• This returns the suffix tree!

1, 2, 5, 8, 11, 12, 3, 4, 6, 9, 7, 10
0, 1, 1, 4, 0, 0, 1, 0, 2, 1, 3,

Suffix lengths
LCP values

Interleaved

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2

1

3 4

1

8

45

6

3

96

2

mississippi$

ssippi$

$
1 pi

i$ pi$

s

i
si

ppi$
ppi$

ssi
$

ppi$ ssippi$

ppi$

1

0

= Contracted internal
node with LCP value

12

11

ssippi$

10

Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges,
insert into hash table)

Karkkainen and Sander’s algorithm
O(n) work and O(log2 n) span

Cartesian Tree (in parallel)
• Divide-and-conquer approach
• Merge spines of subtrees (represented as lists) together using

standard techniques

Right subtreeLeft subtree

SA + LCPs =
1, 0, 2, 0, 5, 1, 8, 1, 11, 4, 12, 0, 3, 0, 4, 1, 6, 0, 9, 2, 8, 1, 7, 3, 10

Merged tree

6

7 8

5

Left subtree Right subtree

Left spine

0

Right spine
(left tree)

Left spine
(right tree)

Left spine

Left spine

9

Cartesian Tree (in parallel)

Right spine

3
4

(left tree)

(right tree)

(right tree)

Merged tree

Cartesian Tree (in parallel)

• Input: Array A[1…N]

Build(A[1…n]){
if n < 2 return;
else in parallel do:

t1 = Build(A[1…n/2]);
t2 = Build(A[(n/2)+1…n]);

Merge(t1, t2);
}

Merge(t1, t2){
R-spine = rightmost branch of t1;
L-spine = leftmost branch of t2;
use a parallel merge algorithm
on R-spine and L-spine;

}

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2 8 451 12111 10 00 1 4 1 7 396 2 1003

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2 8

4

51 1211

1

1

0

0

0 1

4

1

7

3

96 2 10

0

3

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2 8

4

51 1211

1

10

0

0 1

4

1

7

3

96

2

10

0

3

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2 8

4

51 1211

1

1

0
0

0
1

4

1

7

3

96

2

10

0

3

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2

1

3
4

1

8

4

5

7

3

9

6

2

1

12
11

10

1

1

0 0
0

0

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2

1

3
4

1

8

4

5

7

3

9

6

2

1

12
11

10

1

1

0 0
0

0

String = mississippi$

= Internal node with LCP value= Leaf node with suffix length

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)

2

1

3 4

1

8

45

6

3

96

2

mississippi$

ssippi$

$
1 pi

i$ pi$

s

i
si

ppi$
ppi$

ssi
$

ppi$ ssippi$

ppi$

1

0

= Contracted internal
node with LCP value

12

11

ssippi$

10

Protected
6

7 8

5

Left subtree Right subtree

Left spine

0

Right spine
(left tree)

Left spine
(right tree)

Left spine

Left spine

9

Cartesian Tree (in parallel)

Right spine

3
4

(left tree)

(right tree)

(right tree)

• Almost all merged nodes
will never be processed again
(they are “protected”)

Merged tree

Processed

Charge to merge

Cartesian Tree - Complexity bounds

• Observation: All nodes processed,
except for two, become protected
during a merge.

• Charge the processing of those two
nodes to the merge itself (there are
only O(n) merges). Other nodes pay for
themselves and then get protected.
– It is important that when one spine has

been completely processed, the merge
does not process the rest of the other
spine, otherwise we get O(n log n) work

• Therefore, the merges contribute a
total of O(n) work to the algorithm

Charge to merge

Spine portion
not processed

Spine portions in
here processed

Nodes in here are processed
and pay for themselves

Cartesian Tree - Complexity bounds

• Maintain binary search trees for
each spine so that the endpoint of
the merge can be found efficiently
(in O(log n) work and span)

• A parallel merge takes linear work
and O(log n) span

• Merges contribute O(n) work, and
searches and binary tree
maintenance in the spine cost
O(log n) work per merge
– W(n) = 2W(n/2) + O(log n) = O(n)

• Span: O(log n) levels of recursion,
and merges + binary search tree
operations take O(log n) span
– S(n) = S(n/2) + O(log n) = O(log2 n)

Charge to merge

Spine portion
not processed

Spine portions in
here processed

Nodes in here are processed
and pay for themselves

Multiway Cartesian Tree - Complexity bounds

• To obtain multiway Cartesian tree,
use parallel tree contraction to
contract adjacent nodes with the
same value

• This can be done in O(n) work and
O(log n) span, which is within our
bounds

• We have a O(n) work and O(log2 n)
span algorithm for constructing a
multiway Cartesian tree

Charge to merge

Spine portion
not processed

Spine portions in
here processed

Nodes in here are processed
and pay for themselves

Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges,
insert into hash table)

Karkkainen and Sander’s algorithm
O(n) work and O(log2 n) span

Our parallel merging algorithm
O(n) work and O(log2 n) span

Parallel hash table
O(n) work and O(log n) span

Experimental Setup

28

• Implementations in Cilk Plus
• 40-core Intel Nehalem machine
• Inputs: real-world and artificial texts

Suffix Tree Experiments

29

0

10

20

30

40

50

0 10 20 30 40
Number of cores

Speedup relative to Kurtz

etext99

rfc

w3c2

wikisamp

random

• Compared to best sequential algorithm [Kurtz ‘99]

• Speedup varies from 5.4x to 50x on 40 cores
• Self-relative speedup 23x to 26x on 40 cores

0

5

10

15

20

25

30

0 10 20 30 40
Number of cores

Self-relative speedup

Suffix Tree on Human Genome (≈3 GB)

30

0

100

200

300

400

500

600

700

800

Co
ns

tr
uc

tio
n

Ti
m

e
(s

ec
on

ds
)

Our algorithm (40 cores)

Comin and Farreras (MPI,
172 cores)

Mansour et al. (shared-
memory disk-based, 32
cores)
Mansour et al. (shared-
memory, 40 cores)

• Differences due to various factors
• Shared memory vs. distributed memory
• Algorithmic differences

Not linear-work

Conclusions

• Developed an O(n) work and O(log2 n) span
algorithm for parallel multiway Cartesian Tree
construction

• This allows us to transform a suffix array into a
suffix tree in parallel

• Experiments show that our implementations
outperform existing ones and achieve good
speedup

