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Motivation for Suffix Trees
• To efficiently search for patterns in large texts
– Example: Bioinformatic applications

• Suffix trees allow us to do this
– O(N) work for construction with O(M) work for search, 

where N is the text size and M is the pattern size
• In contrast, Knuth-Morris-Pratt’s algorithm takes O(M) work 

for construction and O(N) work for search
– Other supported operations: longest common 

substring, maximal repeats, longest palindrome, etc.
– There are sequential implementations but no parallel 

ones that are both theoretically and practically 
efficient 

• We developed a new (practical) linear-work 
parallel algorithm and analyzed it experimentally



Outline: Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges, 
insert into hash table)

• There are standard techniques 
to perform all of these steps in 
parallel, except for building the 
multiway Cartesian Tree



Suffix Arrays and 
Longest-common-prefixes (LCPs)
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Suffix Trees

• String = mississippi$
• Store suffixes in a patricia tree (trie with one-child nodes 

collapsed)
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Multiway Cartesian Tree
• Maintains heap property
• Inorder traversal gives back the sequence

1     2 0      4      1      1      3      1      2

1

2

0

1

4
3

1

1

2

• Components of same value 
treated as one “cluster”

Sequence  = 

Cluster

1



Suffix Tree History
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• Sequential O(n) work algorithms based on 
incrementally adding suffixes [Weiner ‘73, 
McCreight ‘76, Ukkonen ‘95]

• Parallel O(n) work algorithms very complicated, 
no implementations [Sahinalp-Vishkin ‘94, 
Hariharan ‘94, Farach-Muthukrishnan ‘96]

• Parallel algorithms used in practice are not 
linear-work

• Practical linear-work parallel algorithm?
• Simple O(n) work parallel algorithm
• Fastest algorithm in practice



More Related Work
• Cartesian trees
– Sequential O(n) work stack-based algorithm
– Work-optimal parallel algorithm for Cartesian tree on 

distinct values (Berkman, Schieber and Vishkin 1993)

• Suffix arrays to suffix trees
– Sequential O(n) work algorithms
– Two parallel algorithms for converting a suffix array 

into a suffix tree (Iliopoulos and Rytter 2004)
• Both require O(n log n) work

• Our contributions
– A parallel algorithm for converting suffix arrays to 

suffix trees, which requires only O(n) work and is 
based on multiway Cartesian trees



Suffix Array/LCPs à Suffix Tree

• Interleave suffix lengths and LCP values
• Build a multiway Cartesian tree on that
• This returns the suffix tree!

1,     2,     5,     8,     11,      12,      3,      4,      6,      9,      7,     10
0,     1,     1,      4,       0,        0,      1,      0,      2,      1,      3, 

Suffix lengths
LCP values

Interleaved



String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges, 
insert into hash table)

Karkkainen and Sander’s algorithm
O(n) work and O(log2 n) span



Cartesian Tree (in parallel)
• Divide-and-conquer approach
• Merge spines of subtrees (represented as lists) together using 

standard techniques

Right subtreeLeft subtree

SA + LCPs  =
1, 0, 2, 0, 5, 1, 8, 1, 11, 4, 12, 0, 3, 0, 4, 1, 6, 0, 9, 2, 8, 1, 7, 3, 10

Merged tree



6

7 8

5

Left subtree Right subtree

Left spine

0

Right spine
(left tree)

Left spine
(right tree)

Left spine

Left spine

9

Cartesian Tree (in parallel)

Right spine
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Cartesian Tree (in parallel)

• Input: Array A[1…N]

Build(A[1…n]){
if n < 2 return;
else in parallel do:

t1 = Build(A[1…n/2]);
t2 = Build(A[(n/2)+1…n]);

Merge(t1, t2);
}

Merge(t1, t2){
R-spine = rightmost branch of t1;
L-spine = leftmost branch of t2;
use a parallel merge algorithm 
on R-spine and L-spine;

}



String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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String = mississippi$

=  Internal node with LCP value=  Leaf node with suffix length

SA + LCPs  = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
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Protected
6

7 8

5

Left subtree Right subtree

Left spine

0

Right spine
(left tree)

Left spine
(right tree)

Left spine

Left spine

9

Cartesian Tree (in parallel)

Right spine

3
4

(left tree)

(right tree)

(right tree)

• Almost all merged nodes 
will never be processed again
(they are “protected”) 

Merged tree

Processed

Charge to merge



Cartesian Tree - Complexity bounds

• Observation: All nodes processed, 
except for two, become protected 
during a merge.

• Charge the processing of those two 
nodes to the merge itself (there are 
only O(n) merges). Other nodes pay for 
themselves and then get protected.
– It is important that when one spine has 

been completely processed, the merge 
does not process the rest of the other 
spine, otherwise we get O(n log n) work

• Therefore, the merges contribute a 
total of O(n) work to the algorithm

Charge to merge

Spine portion 
not processed

Spine portions in 
here processed

Nodes in here are processed
and pay for themselves



Cartesian Tree - Complexity bounds

• Maintain binary search trees for 
each spine so that the endpoint of 
the merge can be found efficiently 
(in O(log n) work and span)

• A parallel merge takes linear work 
and O(log n) span

• Merges contribute O(n) work, and 
searches and binary tree 
maintenance in the spine cost 
O(log n) work per merge
– W(n) = 2W(n/2) + O(log n) = O(n)

• Span: O(log n) levels of recursion, 
and merges + binary search tree 
operations take O(log n) span 
– S(n) = S(n/2) + O(log n) = O(log2 n)

Charge to merge

Spine portion 
not processed

Spine portions in 
here processed

Nodes in here are processed
and pay for themselves



Multiway Cartesian Tree - Complexity bounds

• To obtain multiway Cartesian tree, 
use parallel tree contraction to 
contract adjacent nodes with the 
same value

• This can be done in O(n) work and 
O(log n) span, which is within our 
bounds

• We have a O(n) work and O(log2 n) 
span algorithm for constructing a 
multiway Cartesian tree

Charge to merge

Spine portion 
not processed

Spine portions in 
here processed

Nodes in here are processed
and pay for themselves



Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

Suffix tree

Multiway Cartesian tree

(interleave SA and LCPs)

(label edges, 
insert into hash table)

Karkkainen and Sander’s algorithm
O(n) work and O(log2 n) span

Our parallel merging algorithm
O(n) work and O(log2 n) span

Parallel hash table 
O(n) work and O(log n) span



Experimental Setup
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• Implementations in Cilk Plus
• 40-core Intel Nehalem machine
• Inputs: real-world and artificial texts



Suffix Tree Experiments
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• Speedup varies from 5.4x to 50x on 40 cores
• Self-relative speedup 23x to 26x on 40 cores
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Suffix Tree on Human Genome (≈3 GB)
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• Differences due to various factors
• Shared memory vs. distributed memory
• Algorithmic differences

Not linear-work



Conclusions

• Developed an O(n) work and O(log2 n) span 
algorithm for parallel multiway Cartesian Tree 
construction

• This allows us to transform a suffix array into a 
suffix tree in parallel

• Experiments show that our implementations 
outperform existing ones and achieve good 
speedup


