Direction-Optimizing Breadth-First Search

Scott Beamer, Krste Asanovic, David Patterson

Presented by Siddhartha Jayanti

Problem

- Speed-Up Parallel BFS Computation
- Mark Visited Vertices
- Compute BFS TREE

Augsburg

Breadth First Search Algorithm

function breadth-first-search(vertices, source)
frontier < {source}
next < {}
parents <— [-1,-1,...-1]
while frontier # {} do

top-down-step(vertices, frontier, next, parents)

frontier < next
next < {}

end while

return tree

Fig. 1. Conventional BFS Algorithm

function top-down-step(vertices, frontier, next, parents)
for v € frontier do
for n € neighbors[v] do
if parents[n] = -1 then
parents[n] < v

next <— next U {n}
end if
end for
end for

Fig. 2. Single Step of Top-Down Approach

Technique

- Reduce EDGE Traversals xponential dis
probability density function

- Worst-Case: O(n + m)

- Best-Case: O(n)
- Can't always do better

- e.g. Path

- How about common practical case?
- Motivation

- Social Network

- Exponential Law for degrees

Main Concept #1: Frontier

Main Concept #1: Frontier

—— Frontier at Round 2

Main Concept #2: Classification of Nodes

® /0
oo

Vv
P
F
C

valid parent
peer

failed child
claimed child

Main Concept #2: Classification of Nodes

® 0O
® O
G/O
o
o

\% valid parent
P peer
F
C

failed child
claimed child

Main Concept #3: Social Network Structure

Opportunity

Empirical Justification

In Opportunity Zone: - Claimed Child
- Few Claimed Children | .

Valid Parent

- Lots of Failed Children

9]

—

o
Q
&
2
[}

=

Step

Fig. 3. Breakdown of edges in the frontier for a sample search on kron27
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.

Empirical Justification

In Ramp Up:

- Lots of Claimed Children
In Opportunity Zone:

- Lots of Failed Children
In Tail Zone:

- Most parents are Valid

Claimed Child
Failed Child
Peer

Valid Parent

Step

Fig. 4. Breakdown of edges in the frontier for a sample search on kron27
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.

Breadth First Search: Bottom-Up Step

function breadth-first-search(vertices, source) function top-down-step(vertices, frontier, next, parents)

frontier < {source} for v € frontier do
next < {} for n € neighbors[v] do

parents < [-1-1,...-1] if parents[n] = -1 then
while frontier # {} do arents[n] < v
top-down-step(vertices, frontier, next, parents) P

frontier < next

next <— next U {n}

next < {} end if
end while end for
return tree end for

Fig. 1. Conventional BFS Algorithm Fig. 2. Single Step of Top-Down Approach

Breadth First Search: Bottom-Up Step

function bottom-up-step(vertices, frontier, next, parents)
for v € vertices do
if parents[v] = -1 then
for n € neighbors[v] do
if n € frontier then
parents[v] <— n
next <— next U {v}

break
end if
end for
end if
end for

Fig. 5. Single Step of Bottom-Up Approach

Comparison

Advantages of Top-Down:
- Frontier is small & lots of neighbors
Advantages of Bottom-Up:

- Frontier large compared to remaining vertices
- Can stop search early
- No write-contention

Heuristic

n = # vertices in frontier
m, = # edges to check from the frontier
m, = # edges to check from unexplored vertices

o, B - tuning parameters

Start

/ me > Crp & growing

(convert) Bottom-
ng < Cpp & shrinking Up

(convert)

Fig. 7. Control algorithm for hybrid algorithm. (convert) indicates the frontier
must be converted from a queue to a bitmap or vice versa between the
steps. Growing and shrinking refer to the frontier size, and although they
are typically redundant, their inclusion yields a speedup of about 10%.

Hybrid-heuristic is robust to tuning a

kron25 »—x hollywood

erdos25 ljournal

(]
O
C
©
S
—
O
Yy—
-
)
o
V4
©
(]
[a

rmat25 orkut
facebook wikipedia

flickr X twitter

10 15 20 25 30

(87

Fig. 8. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of a examined.

Hybrid-heuristic is robust to tuning B

kron25 hollywood

erdos25 ljournal

]
Q
c
©
S
—
o
T
9]
a
~
©
9]
a

rmat25 orkut
facebook wikipedia

flickr twitter

Fig. 9. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of 8 examined.

Performance of Method (dark purple vs. light blue)

Top-down
Top-down-check
Bottom-up
Hybrid-heuristic |
Hybrid-oracle

kron25 erdos25 rmat25 facebook flickr hollywood ljournal orkut wikipedia twitter

Fig. 10. Speedups on the 16-core machine relative to Top-down-check.

Hybrid is 2 to 8 times as fast as original top-down-check algorithm

Additional Threads Help Speed Up - Hyperthreading Doesn'’t

n
o
]
=
=
Y]
-
©
a4
K=
]
—
@©
(]
n

Conclusion

- Works well if

- Top Down -> Bottom Up -> Top Down

- High-diameter graphs don’t benefit from
bottom-up, but are easier to parallelize

x ° ©
8 8 S
Q = o
g = =
& o s

—1 m; Calculation 1 Bottom-up
1 conversion [Top-down

Fig. 12. Breakdown of time spent per search.

Questions

How important is parallelism for this idea?

Are there other graph problems that could benefit from this type of thought?
Could parallel Dijkstra use this idea?
Something else?

What are experiments that you'd like to see that were missing?

When might normal BFS be better than the hybrid algorithm?

Main Concept #1: Frontier

Main Concept #1: Frontier

