THE MORE THE MERRIER:
EFFICIENT MULTI-SOURCE GRAPH
TRAVERSAL

Manuel Then*, Moritz Kaufmann*, Fernando Chirigatit, Tuan-Anh Hoang-Vut ,
Kien Phamt, Huy T. Vot, Alfons Kemper*, Thomas Neumann*

*Technische Universitat Munchen, TNew York University
Published at VLDB 2015

Presented by Victor Ying
6.886 - February 23, 2021

Background

m Some applications do many BFS traversals (from different starting nodes) on one graph
- E.g., compute centrality metrics across graph

m Prior work: parallel BFS, direction-optimizing BFS

— Speed up a single BFS traversal
Finding neighbors in graph

m Graph traversals have poor cache behavior _ 15
B wiitle atsd <4 B iS non-trivial expense
for each v € wvisit do
~ Read a single random bit in seen bitset

for each n € neighbors, do
if n & seen then +— when traversing each edge

seen < seen U {n}
visitNext < visitNext U {n}
do BF'S computation on n
visit <— visitNext
visitNext < O

m Small-world phenomenon: some graphs have low diameter

Multi-Source BFS

e Concurrently run many independent BFS traversals on the same grap
- 100s of BFSs on a single CPU core

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal

TUTI

NYU
h

20

Multi-Source BFS LM

NYU
e Concurrently run many independent BFS traversals on the same graph
- 100s of BFSs on a single CPU core
e - b_o___, b b
! 1 ! 1 1
TTT2R T - —— fm -2l
9.0 3 &~ 3 -E =1 3 -E
(2) 4 AR T T4 T
5~ © 5 5 5
6 6 6
visit seen next

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 21

Multi-Source BFS I
NYU

e Concurrently run many independent BFS traversals on the same graph
- 100s of BFSs on a single CPU core

e Store concurrent BFSs state as 3 bitsets per vertex

=01 bo b3 s 5 by by b3 by by by b3 by
| 1 |
I_Z il ~ r - M r B
,o 3 &~ ! I =3 |
OO 5
6

visit seen next

¢ Represent BFS traversal as SIMD bit operations on these bitsets

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 22

Multi-Source BFS (MS-BFS)

One round:
m Given frontiers, compute next
for:=1,...,N frontiers
if visit|v;] = Bg: skip m By traversing every edge in the
for each n € neighbors|v;] graph once.
D < wvisit|v;] & ~seen|n] m Cost of finding neighbors is
if D ;,g B & amortized over several traversals

visitNext|n| < visitNext|n| | D
seen|n] < seen|n] | D

NYU
Multi-Source BFS - Example
Initial
)
e’e
OO
b1 b2 b1 b2
1 1
2 X[2 X
3 3
4 4
5 5
6 6
v18it seen
2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 24

Multi-Source BFS - Example

Initial . Iteration 1
) |
R
() ~ () |
by bo by b : b1 bo b1 b
1 1 : 1 1|X
21 I X| 2| [X 2 21 [X
3 3 : 3 3
4 4 | 4 4
5 5 : 5 5
6 6 : 6 6
l‘l Slt seen : (3 ? S?f SEETL

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal

NYU

25

Multi-Source BFS - Example

Initial — Iteration 1
) :
R
5 ~ :
b1 by by by | b1 b b1 b
1 1 : 1 1| X
21 IX|] 2| |X 2 20 [X
3 3 3 3
4 4 4 4
5 5 Cd 5
6 6 6 6
visit seen : visit seen

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal

NYU

26

Multi-Source BFS - Example

Initial — Iteration 1

J
oo
OYe
by bs b1 bs

N

1 1
2 X| 2 X
3 3
4 4
5 5
6 6
visit seen . visit seen

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal

NYU

27

TUTI

NYU
Multi-Source BFS - Example
Initial o Iteration 1 . Iteration 2
J | |
9’0 | |
) ~ () | |
b1 bg b1 bQ E E bl bQ b] 1)2
1 1] 1 1[X
2 X 2 X i ! 2 2 X
3 3 | : 3 3| X[X
4 4 I : 4 4 X| X
5 5 : .5 5
6 §) | | 5 §)
v18it seen ! V181t seen ! vi181t seen

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 28

NYU
Multi-Source BFS - Example
Initial — Iteration 1 — Iteration 2
J : :
e’o ; ;
5~ © : |
b1 bg bl bQ : : bl b‘Z bl b2
1 1 : : 1 11X
2 IX] 2 x| 2 2 [X] X
3 3 ; 3 3[X[X
4 4 : A 4| X| X
5 5 i - sX] s EIX
6 6 | . 6 6
’U’i, S’lt Seen : foi Slt seen : ?_.?'I:S‘l‘.t SEETL
2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 29

TUTI

NYU
Multi-Source BFS - Example
Initial A Iteration 1 e Iteration 2
) | |
e?o ; ;
) ~ G | |
by bo by bo I .
X] 1] 1 [Xx] 1[X]X
2 IX] 2 [X| 2 2 [X[X
3 3 | | 3 3| X X
4 4 : .4 4 X] X
5 5 : . 5 X 5 X
6 6 ; - 6 XIX| 6 XX
visit seen ! visit seen ! visit seen

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 30

MS-BFS work analysis

while wvisit # & o
fOI’iZl,...,N .
if visit|v;] = By, skip m

for each n € neighbors|v;]
D < wvisit|v;| & ~seen|n] -
if D # By

O(n+m) work per round
O(diameter) rounds needed.

O((n+m) x diameter) total
work for w traversals.

Textbook BFS takes O(n+m)
for one traversal

visitNext|n| < visitNext|n] | D

seen|n] < seen|n| | D

do BFS computation on n
visit <— visitNext
reset wvisitNext

How wide to make the bitvectors?

m Bitvector width (w) = number of concurrent BFSs (per thread)
m Maximize SIMD parallelism by matching the width of largest registers?

m Wider, by using multiple registers?

NYU
Evaluation - The More the Merrier
12 -
9 - . o
BFS Algorithm
o -8 MS-BFS 256
W 6- e, MS-BFS 256
G "f’ Cacheline
-&— T-BFS
3 -
Match the cache line size!
0 -
| 1 | 1 |
0 500 1000 1500 2000

Number of BFSs

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 32

MS-BFS improves cache performance

while visit 75 %) m Each cache line in seen(]
. accessed once per adjacen
£ —1 N d dj t
Or Z — 3 0 v ey edge
if UZSZt[vi] = Bg, skip m Many concurrent BFSs
for each n € ’n,e’igthTS[’Ui] amortize cost of cache line
D « wvisit|v;| & ~seen|n] movement
if D + By T~~_= Most expensive line is still this

random access to seen|]
visitNext|n| <— visitNext|n| | D

seen|n| < seen|n] | D

do BF'S computation on n
visit <— visitNext
reset visitNext

MS-BFS with “aggregated neighbor processing”

while visit # @
fore=1,...,N
if visit|vi| = By, skip
for each n € neighbors|v;]
visitNext|n] <— visitNext|n] | visit|v;]

fore=1,...,N
if visitNext|v;| = By, skip
visitNext|v;| < visitNext|v;] & ~seen|v;]
seen|v;| < seen|v;| | visitNext|v;]
if visitNext|v;| # Bg
do BFS computation on v;
visit < visitNext
reset visitNext

m Defer accesses to seen[], and
then do the accesses in
scanning fashion, so each
entry in seen(] is accessed at
most once

MS-BFS: further improvements

m Direction-optimizing
m Explicit prefetching

m Heuristics to decide what groups of BFS tranversals to run together

Evaluation

e MS-BFS-based closeness centrality. 4x Intel Xeon E7-4870v2, 1TB

500 =
400 -
1]
L
= 300 -
E
=
(] -
E 200
=
-
@ 100
0=
I I I 1 I
0.0 2.5 5.0 745 10.0
Vertices (in millions)
Speedup over
Graph MS-BFS T-BFS
LDBC 1M 0:02h 73.8x
LDBC 10M 2:56h 88.5x
Wikipedia 0:26h 75.4x
Twitter (1M) 2:52h 54.6x
2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal

NYU

BFS Algorithm
=e= DO-BFS

wh MS-BFS 128

MS-BFS 128
Cacheline

== T-BFS

-

34

Multi-core scalability?!

600 -
o 400 -
o
L
|_
Q)
200 -
O -
| | | | | | |
0 10 20 30 40 50 60
Cores

BFS Algorithm
DO-BFS

MS-BFS 128
- MS-BFS 128 CL
-5~ MS-BFS 64
—+— MS-BFS 64 CL

—&— T-BFS

Figure 5: Multi-core scalability results.

Results only for LDBC
1M-vertex graph,
which is ~314 MB

Conclusions

m MS-BFS runs multiple BFSs
— On the same graph
- Within a single thread
- Amortizes cache line movement cost

m For low-diameter graphs, a large fraction of vertices are visited each round, so you
can amortize cost of traversing graph over many concurrent traversals.

m >10x speedup over direction-optimizing BFS

m Changing random accesses to predictable array scans improves efficiency.

Future work

m Combining parallelism across traversals with parallelism within traversals.

m Alternative architectures:
— GPUs should be good at exploiting SIMD-style parallelism?

m Applications beyond closeness centrality.

m Other graphs. Is there a hybrid approach that works if graphs have moderate
diameter?

m Other types of traversals besides BFS. Does it make sense to do multi-source
SSSP/“weighted BFS” traversals on weighted graphs?

m Integrating into a graph analytics framework or a graph processing benchmark set?

