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Background

m Some applications do many BFS traversals (from different starting nodes) on one graph
- E.g., compute centrality metrics across graph

m Prior work: parallel BFS, direction-optimizing BFS

— Speed up a single BFS traversal
Finding neighbors in graph

m Graph traversals have poor cache behavior _ 15
B wiitle atsd <4 B iS non-trivial expense
for each v € wvisit do
~ Read a single random bit in seen bitset

for each n € neighbors, do
if n & seen then +— when traversing each edge

seen < seen U {n}
visitNext < visitNext U {n}
do BF'S computation on n
visit <— visitNext
visitNext < O

m Small-world phenomenon: some graphs have low diameter




Multi-Source BFS

e Concurrently run many independent BFS traversals on the same grap
- 100s of BFSs on a single CPU core
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Multi-Source BFS LM
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e Concurrently run many independent BFS traversals on the same graph
- 100s of BFSs on a single CPU core
e - b_o___, b b
! 1 ! 1 1
TTT2R T - —— fm -2l
9.0 3 &~ 3 -E =1 3 -E
(2) 4 AR T T4 T
5~ © 5 5 5
6 6 6
visit seen next

2015-09-01 The More the Merrier: Efficient Multi-Source Graph Traversal 21




Multi-Source BFS I
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e Concurrently run many independent BFS traversals on the same graph
- 100s of BFSs on a single CPU core

e Store concurrent BFSs state as 3 bitsets per vertex
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visit seen next

¢ Represent BFS traversal as SIMD bit operations on these bitsets
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Multi-Source BFS (MS-BFS)

One round:
m Given frontiers, compute next
for:=1,...,N frontiers
if visit|v;] = Bg: skip m By traversing every edge in the
for each n € neighbors|v;] graph once.
D < wvisit|v;] & ~seen|n] m Cost of finding neighbors is
if D ;,g B & amortized over several traversals

visitNext|n| < visitNext|n| | D
seen|n] < seen|n] | D
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Multi-Source BFS - Example

Initial . Iteration 1
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R
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Multi-Source BFS - Example
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Multi-Source BFS - Example

Initial — Iteration 1
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Multi-Source BFS - Example
Initial A Iteration 1 e Iteration 2
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MS-BFS work analysis

while wvisit # & o
fOI’iZl,...,N .
if visit|v;] = By, skip m

for each n € neighbors|v;]
D < wvisit|v;| & ~seen|n] -
if D # By

O(n+m) work per round
O(diameter) rounds needed.

O((n+m) x diameter) total
work for w traversals.

Textbook BFS takes O(n+m)
for one traversal

visitNext|n| < visitNext|n] | D

seen|n] < seen|n| | D

do BFS computation on n
visit <— visitNext
reset wvisitNext



How wide to make the bitvectors?

m Bitvector width (w) = number of concurrent BFSs (per thread)
m Maximize SIMD parallelism by matching the width of largest registers?

m Wider, by using multiple registers?
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MS-BFS improves cache performance

while visit 75 %) m Each cache line in seen(]
. accessed once per adjacen
£ —1 N d dj t
Or Z — 3 0 v ey edge
if UZSZt[vi] = Bg, skip m Many concurrent BFSs
for each n € ’n,e’igthTS[’Ui] amortize cost of cache line
D « wvisit|v;| & ~seen|n] movement
if D + By T~~_= Most expensive line is still this

random access to seen|]
visitNext|n| <— visitNext|n| | D

seen|n| < seen|n] | D

do BF'S computation on n
visit <— visitNext
reset visitNext



MS-BFS with “aggregated neighbor processing”

while visit # @
fore=1,...,N
if visit|vi| = By, skip
for each n € neighbors|v;]
visitNext|n] <— visitNext|n] | visit|v;]

fore=1,...,N
if visitNext|v;| = By, skip
visitNext|v;| < visitNext|v;] & ~seen|v;]
seen|v;| < seen|v;| | visitNext|v;]
if visitNext|v;| # Bg
do BFS computation on v;
visit < visitNext
reset visitNext

m Defer accesses to seen[], and
then do the accesses in
scanning fashion, so each
entry in seen(] is accessed at
most once



MS-BFS: further improvements

m Direction-optimizing
m Explicit prefetching

m Heuristics to decide what groups of BFS tranversals to run together




Evaluation

e MS-BFS-based closeness centrality. 4x Intel Xeon E7-4870v2, 1TB
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Multi-core scalability?!
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Figure 5: Multi-core scalability results.

Results only for LDBC
1M-vertex graph,
which is ~314 MB



Conclusions

m MS-BFS runs multiple BFSs
— On the same graph
- Within a single thread
- Amortizes cache line movement cost

m For low-diameter graphs, a large fraction of vertices are visited each round, so you
can amortize cost of traversing graph over many concurrent traversals.

m >10x speedup over direction-optimizing BFS

m Changing random accesses to predictable array scans improves efficiency.




Future work

m Combining parallelism across traversals with parallelism within traversals.

m Alternative architectures:
— GPUs should be good at exploiting SIMD-style parallelism?

m Applications beyond closeness centrality.

m Other graphs. Is there a hybrid approach that works if graphs have moderate
diameter?

m Other types of traversals besides BFS. Does it make sense to do multi-source
SSSP/“weighted BFS” traversals on weighted graphs?

m Integrating into a graph analytics framework or a graph processing benchmark set?



