
THE MORE THE MERRIER:
EFFICIENT MULTI-SOURCE GRAPH 

TRAVERSAL
Manuel Then*, Moritz Kaufmann*, Fernando Chirigati†, Tuan-Anh Hoang-Vu† , 

Kien Pham†, Huy T. Vo†, Alfons Kemper*, Thomas Neumann*
*Technische Universität München, †New York University

Published at VLDB 2015

Presented by Victor Ying
6.886 – February 23, 2021



Background
■ Some applications do many BFS traversals (from different starting nodes) on one graph

– E.g., compute centrality metrics across graph

■ Prior work: parallel BFS, direction-optimizing BFS
– Speed up a single BFS traversal

■ Graph traversals have poor cache behavior
–

■ Small-world phenomenon: some graphs have low diameter

Read a single random bit in seen bitset
when traversing each edge

Finding neighbors in graph
is non-trivial expense









Multi-Source BFS (MS-BFS)

One round:
■ Given frontiers, compute next 

frontiers

■ By traversing every edge in the 
graph once.

■ Cost of finding neighbors is 
amortized over several traversals

















MS-BFS work analysis

■ O(n+m) work per round

■ O(diameter) rounds needed.

■ O((n+m) × diameter) total 
work for ω traversals.

■ Textbook BFS takes O(n+m) 
for one traversal



How wide to make the bitvectors?

■ Bitvector width (ω) = number of concurrent BFSs (per thread)

■ Maximize SIMD parallelism by matching the width of largest registers?

■ Wider, by using multiple registers?



Match the cache line size!



MS-BFS improves cache performance

■ Each cache line in seen[] 
accessed once per adjacent 
edge

■ Many concurrent BFSs 
amortize cost of cache line 
movement.

■ Most expensive line is still this 
random access to seen[]



MS-BFS with “aggregated neighbor processing”

■ Defer accesses to seen[], and 
then do the accesses in 
scanning fashion, so each 
entry in seen[] is accessed at 
most once



MS-BFS: further improvements

■ Direction-optimizing

■ Explicit prefetching

■ Heuristics to decide what groups of BFS tranversals to run together





Multi-core scalability?!

Results only for LDBC 
1M-vertex graph, 
which is ~314 MB



Conclusions

■ MS-BFS runs multiple BFSs
– On the same graph
– Within a single thread
– Amortizes cache line movement cost

■ For low-diameter graphs, a large fraction of vertices are visited each round, so you 
can amortize cost of traversing graph over many concurrent traversals.

■ >10x speedup over direction-optimizing BFS

■ Changing random accesses to predictable array scans improves efficiency.



Future work

■ Combining parallelism across traversals with parallelism within traversals.

■ Alternative architectures:
– GPUs should be good at exploiting SIMD-style parallelism?

■ Applications beyond closeness centrality.

■ Other graphs. Is there a hybrid approach that works if graphs have moderate 
diameter?

■ Other types of traversals besides BFS. Does it make sense to do multi-source 
SSSP/“weighted BFS” traversals on weighted graphs?

■ Integrating into a graph analytics framework or a graph processing benchmark set?


