Parallel Graph Decompositions Using Random Shifts

Gary L. Miller, Richard Peng, and Shen Chen Xu CMU

Published at SPAA'13

Presented by Victor Ying

6.886 – Februrary 25, 2021

The problem

- Given unweighted, undirected, connected graph and a parameter $0 < \beta < 1$, partition the vertices such that:
 - No more than some small fraction β of edges are cut
 - Each partition induces a connected subgraph with diameter O(β-1 log n)
- One typically choses β to be fairly small, e.g., $\sim 1/(\log n)^c$
- Applications:
 - Build a low-stretch spanning tree (by computing spanning tree within each partition and then joining them up)
 - Solve symmetric diagonally dominant (SDD) systems of linear equations with ϵ -accuracy

Examples

Figure 1: Decompositions generated by our algorithm on a 1000×1000 grid under varying values of β . Different colors represent different clusters

Sequential algorithm

- Repeat until no vertices are left:
 - Pick an arbitrary vertex v
 - Use BFS to grow a ball centered at v, until (# edges on boundary) < β · (# edges inside)
 - All vertices inside the ball are assigned to a new partition and are deleted from the graph

Improvements in complexity bounds

runs in O(m) time Prior parallel algorithm [SPAA'11] runs in O(m \log^2 n) expected work and O(β ⁻¹ \log^2 n) expected depth. This	Work	Span
Sequential algorithm	O(m)	O(m)
Prior parallel algorithm [SPAA'11]	O(m log ² n) expected	O(β -1 log² n) expected
This work [SPAA'13]	O(m) expected	O(β -1 log ² n) expected

The new parallel algorithm

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION

Input: Undirected, unweighted graph G = (V, E), parameter $0 < \beta < 1$ and parameter d indicating failure probability. Output: $(\beta, O(\log n/\beta))$ decomposition of G with probability at least $1 - n^{-d}$.

- 1: IN PARALLEL each vertex u picks δ_u independently from an exponential distribution with mean $1/\beta$.
- 2: IN PARALLEL compute $\delta_{\max} = \max\{\delta_u \mid u \in V\}$
- 3: Perform $PARALLEL\ BFS$, with vertex u starting when the vertex at the head of the queue has distance more than $\delta_{\text{max}} \delta_u$.
- 4: $IN \ PARALLEL$ Assign each vertex u to point of origin of the shortest path that reached it in the BFS.

Correctness criteria

- Each partition induces a subgraph with diameter O(β-1 log n)
- No more than some small fraction β of edges can be cut
- Note: Each criterion can be cheaply verified, so if the probabilistic algorithm fails, it can be re-run. So, if a single run succeeds with high probability, that is sufficient.

The new parallel algorithm (restated)

Algorithm 2 Partition Algorithm Using Exponentially Shifted Shortest Paths

PARTITION

Input: Undirected, unweighted graph G = (V, E), parameter $\overline{\beta}$ and parameter d indicating failure probability.

Output: $(\beta, O(\log n/\beta))$ decomposition of G with probability at least $1 - n^{-d}$.

- 1: For each vertex u, pick δ_u independently from $Exp(\beta)$
- 2: Compute S_u by assigning each vertex v to the vertex that minimizes $\operatorname{dist}_{-\delta}(u,v)$, breaking ties lexicographically
- 3: return $\{S_u\}$

where

$$\operatorname{dist}_{-\delta}(u,v) = \operatorname{dist}(u,v) - \delta_u$$

Partition diameter O(β⁻¹ log n)

- Diameter of any partition is at most $2 \cdot \delta_u$, where u is the center vertex.
- Paper lemma 4.2 says, with high probability,

$$\delta_{\rm u}$$
 < (d + 1) β^{-1} log n

for all vertices u.

- Proof sketch: simply compute the CDF of the exponential distribution to see each vertex has vanishingly tiny probability of picking larger δ_u , then apply the union bound (Boole's inequality).
- Basically, tail of an exponential distribution cuts off pretty fast.

Each edge has probability of cut $< \beta$

Proof sketch:

- Consider an arbitrary edge uv.
- Imagine that edge is replaced with two edges *uw* and *wv* of weight 0.5, where *w* is a new vertex at the midpoint.
- If u is in partition with center u' and v is in partition with center v', then dist(u', w) and dist(v', w) must differ by less than 1.
- Probability of this happening can be bounded: consider picking n independent samples from an exponential distribution, and adding a predetermined offset to each sample. What is the chance that the largest two resulting values picked fall close together?
- Turns out this probability is $< \beta$ (Lemma 4.4 & Corollary 4.5)
- If each individual edge has probability $< \beta$ of being cut, then with high probability the total fraction of edges cut is $< \beta$

Work and span

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION

Input: Undirected, unweighted graph G = (V, E), parameter $0 < \beta < 1$ and parameter d indicating failure probability. Output: $(\beta, O(\log n/\beta))$ decomposition of G with probability at least $1 - n^{-d}$.

- 1: IN PARALLEL each vertex u picks δ_u independently from an exponential distribution with mean $1/\beta$.
- 2: IN PARALLEL compute $\delta_{\max} = \max\{\delta_u \mid u \in V\}$
- 3: Perform $PARALLEL\ BFS$, with vertex u starting when the vertex at the head of the queue has distance more than $\delta_{\text{max}} \delta_u$.
- 4: $IN \ PARALLEL$ Assign each vertex u to point of origin of the shortest path that reached it in the BFS.

Work	Span
O(n)	O(1)
O(n)	O(log n)
O(m)	$O(\Delta \log n)$ Since $\Delta = O(\beta^{-1} \log n)$, this is $O(\beta^{-1} \log^2 n)$

Practical implementation?

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION

Input: Undirected, unweighted graph G = (V, E), parameter $0 < \beta < 1$ and parameter d indicating failure probability. Output: $(\beta, O(\log n/\beta))$ decomposition of G with probability at least $1 - n^{-d}$.

- 1: IN PARALLEL each vertex u picks δ_u independently from an exponential distribution with mean $1/\beta$.
- 2: IN PARALLEL compute $\delta_{\max} = \max\{\delta_u \mid u \in V\}$
- 3: Perform $PARALLEL\ BFS$, with vertex u starting when the vertex at the head of the queue has distance more than $\delta_{\text{max}} \delta_u$.
- 4: $IN \ PARALLEL$ Assign each vertex u to point of origin of the shortest path that reached it in the BFS.

Generating real values from an exponential distribution is doable but isn't cheap

Further thoughts

- Empirical evaluation of actual implementation?
- What about weighted graphs?
 - Any analysis would need a bound in the variation among edge weights
- What about other decomposition quality criteria?
 - This paper wanted partitions with low "strong diameter" (i.e., diameter of induced subgraph), but other applications only need low "weak diameter" (i.e., longest shortest path between vertices in a partition, where the path is allowed to take shortcut through other partitions)