Parallel Graph Decompositions
Using Random Shifts

Gary L. Miller, Richard Peng, and Shen Chen Xu
CMU

Published at SPAA’13

Presented by Victor Ying
6.886 — Februrary 25, 2021



The problem

* Given unweighted, undirected, connected graph and a parameter O <
B < 1, partition the vertices such that:

* No more than some small fraction B of edges are cut
» Each partition induces a connected subgraph with diameter O(B* log n)

* One typically choses B to be fairly small, e.g., ~1/(log n)°¢

* Applications:

* Build a low-stretch spanning tree (by computing spanning tree within each
partition and then joining them up)

e Solve symmetric diagonally dominant (SDD) systems of linear equations with
g-accuracy



Examples

A

(a) B8 =0.002 (b) B =0.005

(d) B =0.02

Figure 1: Decompositions generated by our algorithm on a 1000 x 1000 grid under varying values of 3. Different colors
represent different clusters




Sequential algorithm

* Repeat until no vertices are left:

* Pick an arbitrary vertex v

* Use BFS to grow a ball centered at v,
until (# edges on boundary) < 8 - (# edges inside)

* All vertices inside the ball are assigned to a new partition
and are deleted from the graph



Improvements in complexity bounds

Sequential algorithm O(m) O(m)

Prior parallel algorithm [SPAA’11] O(m log? n) expected O(B ! log? n) expected
This work [SPAA’13] O(m) expected O(B ! log? n) expected




The new parallel algorithm

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION

Input: Undirected, unweighted graph G = (V, F), parameter
0 < B < 1 and parameter d indicating failure probability.
Output: (8,0(logn/B3)) decomposition of G with probabil-
ity at least 1 —n %,

1: IN PARALLFEL each vertex u picks 9, independently

from an exponential distribution with mean 1/4.
: IN PARALLEL compute dmax = max{d, |u € V}

3: Perform PARALLEL BFS, with vertex u starting when
the vertex at the head of the queue has distance more
than dmax — Ou.

. IN PARALLEL Assign each vertex u to point of origin
of the shortest path that reached it in the BF'S.




Correctness criteria

* Each partition induces a subgraph with diameter O(B-1 log n)
* No more than some small fraction B of edges can be cut

* Note: Each criterion can be cheaply verified, so if the probabilistic
algorithm fails, it can be re-run. So, if a single run succeeds with high
probability, that is sufficient.



The new parallel algorithm (restated)

Algorithm 2 Partition Algorithm Using Exponentially
Shifted Shortest Paths
PARTITION

Input: Undirected, unweighted graph G = (V, F), parameter
£ and parameter d indicating failure probability.
Output: (8,0(logn/B)) decomposition of G with probabil-

ity at least 1 — n~%.

'S
f

. For each vertex u, pick §, independently from FExp(S3)

. Compute S, by assigning each vertex v to the vertex
that minimizes dist_s(u,v), breaking ties lexicographi-
cally

3: return {5}

where

dist _s(u, v) = dist(u,v) — &,




Partition diameter O(B™ log n)

* Diameter of any partition is at most 2 - 6, where u is the center
vertex.

* Paper lemma 4.2 says, with high probability,
6,<(d+1)Btlogn
for all vertices u.

* Proof sketch: simply compute the CDF of the exponential distribution
to see each vertex has vanishingly tiny probability of picking larger 6,
then apply the union bound (Boole’s inequality).

 Basically, tail of an exponential distribution cuts off pretty fast.



Each edge has probability of cut < 3

e Proof sketch:

Consider an arbitrary edge uv.

Imagine that edge is replaced with two edges uw and wv of weight 0.5, where
w is a new vertex at the midpoint.

If uis in partition with center u’ and v is in partition with center v/,
then dist(u’, w) and dist(v’, w) must differ by less than 1.

Probability of this happening can be bounded: consider picking n
independent samples from an exponential distribution, and adding a
predetermined offset to each sample. What is the chance that the largest two
resulting values picked fall close together?

Turns out this probability is < B (Lemma 4.4 & Corollary 4.5)

If each individual edge has probability < B of being cut,
then with high probability the total fraction of edges cutis < 8



Work and span

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION

Input: Undirected, unweighted graph G = (V, /), parameter
0 < B < 1 and parameter d indicating failure probability.

Output: (8,0(logn/B)) decomposition of G with probabil- Work
ity at least 1 —n—%.

1: IN PARALLEL each vertex u picks 0, independently

from an exponential distribution with mean 1/8.

2: IN PARALLEL compute dmax = max{d, |u € V'}

3: Perform PARALLEL BFS, with vertex u starting when
the vertex at the head of the queue has distance more
than dmax — Ou.

. IN PARALLFEL Assign each vertex u to point of origin
of the shortest path that reached it in the BFS.

Span

O(1)

O(log n)

O(A log n)

Since A = O(B* log n), this is
O(B* log? n)




Practical implementation?

Algorithm 1 Parallel Partition Algorithm

PARALLEL PARTITION
Input: Undirected, unweighted graph G = (V, /), parameter
0 < B < 1 and parameter d indicating failure probability.
Output: (8,0(logn/B)) decomposition of G with probabil-
ity at least 1 —n—%.

1: IN PARALLEL each vertex u picks 0, independently

from an exponential distribution with mean 1/8.

2: IN PARALLEL compute dmax = max{d, |u € V'}

3: Perform PARALLEL BFS, with vertex u starting when
the vertex at the head of the queue has distance more
than dmax — Ou.

. IN PARALLFEL Assign each vertex u to point of origin
of the shortest path that reached it in the BF'S.

A

Generating real values from
an exponential distribution
is doable but isn’t cheap



Further thoughts

e Empirical evaluation of actual implementation?

 What about weighted graphs?
* Any analysis would need a bound in the variation among edge weights

* What about other decomposition quality criteria?

* This paper wanted partitions with low “strong diameter” (i.e., diameter of
induced subgraph), but other applications only need low “weak diameter”
(i.e., longest shortest path between vertices in a partition, where the path is
allowed to take shortcut through other partitions)



