
Parallel In-Place Algorithms:
Theory and Practice

Yan Gu, Omar Obeya, and Julian Shun

(Based on slides by Yan Gu)
�

You can put more memory on a machine, but they
are expensive

192GB

768GB

1536GB

3072GB

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000

P
u

rc
h

a
s
e

 p
ri
c
e

 (
$

)

Memory Size (GB)

Purchase price of RAX XT24-42S1 with

72 CPU cores (Xeon Gold 5220)

x1e.4xlarge

x1e.8xlarge

x1e.16xlarge

x1e.32xlarge

0

5

10

15

20

25

30

0 1000 2000 3000 4000

R
e

n
ti
n

g
 p

ri
c
e

 p
e

r
h

o
u

r
($

)

Memory Size (GB)

Rental price of AWS EC2 x1e-series

multicore instances �

Space-efficiency is crucial for shared-memory
parallel algorithms

• Allows you to run larger inputs on your machine

• Decreases monetary costs

• Reducing memory footprint can improve performance due to
lower memory traffic and better cache utilization

�

Parallel in-place algorithms have been gaining
attention recently, but they are still underexplored

• Duplicate removing [HL89]

• Merge and mergesort [GL91, GL92]

• Samplesort [ZCZ99, AWFS17]

• Search problems (backtrack and branch-and-bound) [PPSV15]

• Generating search tree layout [BCH+18]

• Radix sort [OKFS19]

• Partition [KW20]

• Yet, there are no standard definition on what “parallel in-place” means
• Yet, there are no general approaches to designing parallel in-place

algorithms
�

Outline of this talk

Models for parallel in-place (PIP) algorithms�

� New PIP algorithms and a general approach

�

In-place in the sequential setting

�
���

����	�����
����

������

! 1
! log &

! polylog(&)

�

But it doesn’t quite work in the parallel setting…

�	
�

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

����������
�
���

�

����	�
����	����
�����

����	�
����	����
�����

But it doesn’t quite work in the parallel setting…

�
���

����	����
�����

����	����
�����

����	����
�����

����	����
�����

����	����
�����

����	����
�����

����	����
�����

����	����
�����

Limiting total auxiliary space
à Limiting overall parallelism

Space-parallelism tradeoff in the
in-place PRAM model [Langston93]�

Can we achieve both?
• Can we get high parallelism?
• Low span

• Can we achieve small auxiliary space?
• Each processor should use a small auxiliary space, similar to the sequential setting

(e.g., O(log n) words)

• Can we have clean computational models that capture both needs, but
are still simple to use?
• Need to decouple the analysis of auxiliary space and the analysis of span

��

• An algorithm is measured by work (number
of operations) and span (length of longest
sequential dependence)

• A fork instruction creates two subtasks that
can be run in parallel
• After they finish, they join and continue

The binary fork-join (work-span) model

��

• Benefits of this model:
• High-level, and algorithm designers need not to

deal with system-level details such as load-
balancing, task scheduling, synchronization, which
are error-prone and can significantly complicate an
algorithm
• Algorithm design and analysis are independent of

P (#processors)

• Can we design parallel in-place (PIP)
algorithm also based on this model?

The binary fork-join (work-span) model

��

• Strong PIP model
• Achieve small (polylogarithmic) span and auxiliary

space simultaneously

• Relaxed PIP model
• Achieve sub-linear span and auxiliary space

simultaneously

• Our models decouple the analysis between
span and auxiliary space
• Low span is useful in practice, not just for high

parallelism, but also for reducing cache misses and
global synchronization

New models in this paper

��

• We assume:

• The sequential execution uses ! log % -
word auxiliary space in a stack-allocated
fashion for an input size of %

• Stack-allocated fashion: when we allocate
memory after a fork (or function call) it must
be reclaimed before the associated join (or
function return)
• A strong PIP algorithm uses &(()*+ ,) total

auxiliary space on P processors using a
randomized work-stealing scheduler (e.g.,
Cilk)
• The “busy-leaves” property [BL99]

The strong PIP model

��

An strong PIP algorithm example reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A+n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15
+ + + +

10 26
+ +

36
+

Work: ! "
Span: !(log ")

Sequential auxiliary
space: ! log "
Total on P processors:

! (log "
��

• We assume:
• The sequential execution uses ! log % -

word auxiliary space in a stack-allocated
fashion for an input size of %

• The strong PIP model is very restrictive
• Does not allow for heap space

• We do not have many work-efficient PIP algorithms
in this model

The strong PIP model

��

• We assume:
• The sequential execution uses ! log % -word

auxiliary space in a stack-allocated fashion,
and ! %& shared (heap-allocated) auxiliary
space (0 <) < 1)

• Allows us to design many more work-efficient
PIP algorithms

The relaxed PIP model

��

Outline of this talk

Models for parallel in-place (PIP) algorithms�

� New PIP algorithms and a general approach

��

PIP algorithms

• [6]: Berney et al., IPDPS 2019
• [11]: Blelloch, Ferizovic, Sun,

SPAA 2016

*: main contribution

��

General approach for relaxed PIP algorithms
• Decomposable Property

��

������

������

�
��
�������	�
������

������

�
���������	�
������

������

������

Auxiliary space used is
bounded by auxiliary

space for sub-problem

Provide a tradeoff
between space and

parallelism

Relaxed PIP algorithm design using the
Decomposable Property

• Suppose that there is an algorithm satisfying the decomposable
property with work !(#) = & # polylog # and
& polylog # span. Then, there is a relaxed PIP algorithm for
the same problem with !(#) work, & #,polylog # span, and
& #-., auxiliary space for some 0 < 1 < 1.

��

H =

A =

� � � � �
������ � � 	

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

� � � � � � �

H[i] ������������������
��������1 ����i

Random Permutation as an example

This algorithm can be
parallelized [SGB+15],
with ! " work and
! log " span w.h.p.
[BFGS20]

However, the amount
of auxiliary space is
O(n), for data
structures to resolve
conflicts

��

This serial algorithm is in-place

H =

A =

� � � � �	���
�� � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

 � � � � � �

Decomposable property

��

H =

A =

� � � � �	���
�� � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

 � � � � � �

Decomposable property

Work on the
second half first

��

H =

A =

� � � � �	���
�� � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

 � � � � � �

Decomposable property

Work on the
second half first

��

H =

A =

� � � � �	���
�� � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

 � � � � � �

Decomposable property

Then work on
the first half

��

H =

A =

� � � � �	���
�� � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

 � � � � � �

Decomposable property

��

H =

A =

� � � � �
������ � � �

KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

� � � � � � �

Decomposable property Work on k elements per
batch, for a total of n/k
rounds

Only needs O k auxiliary
space for resolving
conflicts per round

This gives an O(n) work
relaxed PIP algorithm for
random permutation,
with sublinear span and
space

�	

Experiment setup

•72-core Dell PowerEdge R930 (with two-way hyper-
threading) and 1TB of main memory

• Implemented using Cilk Plus

•Comparing to Problem Based Benchmark Suite (PBBS),
containing state-of-the-art multicore implementations

��

Overall running time

• Scan and filter are for input size !"# 32-bit keys, and !"$ 32-bit keys for the
rest

��

�
#�

��
��

�"
��

��
��

!�

�
���
���
���
���
	��

��
���

���� ���"� ������ � ��!"
��" ��"���

� ��
��" ��"���

���� �������� �"��!

Our PIP algorithms are competitive with or faster than
the best non-in-place versions, mainly due to a smaller

memory footprint and fewer memory accesses.

Varying input sizes and thread counts

��

Our PIP algorithms have good scalability with respect to
input size and thread counts, similar to the best non-in-

place parallel algorithms.

Space Usage

• The PBBS algorithms are not in-place, and require
auxiliary space linear in the input size
•Memory overhead of our PIP algorithms:

��

Decomposable property: convert a non-PIP algorithm to relaxed PIP
New PIP algorithms for scan, filter, sort, merge, random permutation,
list and tree contraction, (bi)connectivity, minimum spanning forest
Competitive with or faster than state-of-the-art in practice

Strong and relaxed PIP models, based on the binary fork-join model

Decouples the analysis between parallelism and auxiliary space, and
leads to practical algorithms

Models for parallel in-place (PIP) algorithms�

New PIP algorithms and a general approach�

Summary

��

