Parallel In-Place Algorithms:
Theory and Practice

Yan Gu, Omar Obeya, and Julian Shun

(Based on slides by Yan Gu)

You can put more memory on a machine, but they
are expensive

60000 3072GB\.“ @30 x1e.32xlargg
Asoooo "‘ % 25 “’e‘
7'-; ‘0‘ 'E 20 6““

.2 40000 o o x1e.16xlarge+*
O o* “0
§3oooo ““. -§ 15 ‘\w'
'S 20000 768GB “.'& o 5 10x1e. 4x|arge.
& 10000 192GB 1536GB € 5 L \
./-' &3 x1e.8xlarge
0
0 1000 2000 3000 O 1000 2000 3000 4000
Memory Size (GB) Memory Size (GB)
Purchase price of RAX XT24-42S1 with Rental price of AWS EC2 x1e-series

72 CPU cores (Xeon Gold 5220) multicore instances 2

Space-efficiency is crucial for shared-memory
parallel algorithms

* Allows you to run larger inputs on your machine
* Decreases monetary costs

* Reducing memory footprint can improve performance due to
lower memory traffic and better cache utilization

Parallel in-place algorithms have been gaining
attention recently, but they are still underexplored

* Duplicate removing [HLs9]

* Merge and mergesort [6L91, GL92]

* Samplesort [zcz99, AWFs17]

» Search problems (backtrack and branch-and-bound) ppsvis]
* Generating search tree layout [scH+13]

e Radix sort [okrs19]

e Partition [kw2o]

* Yet, there are no standard definition on what “parallel in-place” means

* Yet, there are no general approaches to designing parallel in-place
algorithms

Outline of this talk

1 Models for parallel in-place (PIP) algorithms
_

2 New PIP algorithms and a general approach
/

In-place in the sequential setting

0(1)
I 0(logn)
O (polylog(n))

Output

But it doesn’t quite work in the parallel setting...

Input

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

But it doesn’t quite work in the parallel setting...

Input

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Auxiliary
space

Limiting total auxiliary space
-> Limiting overall parallelism

Space-parallelism tradeoff in the
in-place PRAM model [Langston93],

Can we achieve both?

e Can we get high parallelism?
* Low span

* Can we achieve small auxiliary space?

e Each processor should use a small auxiliary space, similar to the sequential setting
(e.g., O(log n) words)

* Can we have clean computational models that capture both needs, but
are still simple to use?

* Need to decouple the analysis of auxiliary space and the analysis of span

10

The binary fork-join (work-span) model

* An algorithm is measured by work (number
of operations) and span (length of longest
sequential dependence)

* A fork instruction creates two subtasks that
can be run in parallel

* After they finish, they join and continue

11

The binary fork-join (work-span) model

* Benefits of this model:

* High-level, and algorithm designers need not to
deal with system-level details such as load-
balancing, task scheduling, synchronization, which
are error-prone and can significantly complicate an
algorithm

* Algorithm design and analysis are independent of
P (#processors)

e Can we design parallel in-place (PIP)
algorithm also based on this model?

12

New models in this paper

e Strong PIP model

* Achieve small (polylogarithmic) span and auxiliary
space simultaneously

 Relaxed PIP model

* Achieve sub-linear span and auxiliary space
simultaneously

* Our models decouple the analysis between
span and auxiliary space

* Low span is useful in practice, not just for high
parallelism, but also for reducing cache misses and
global synchronization

13

The strong PIP model

* We assume:

* The sequential execution uses O(logn)-
word auxiliary space in a stack-allocated
fashion for an input size of n

* Stack-allocated fashion: when we allocate
memory after a fork (or function call) it must
be reclaimed before the associated join (or
function return)

* A strong PIP algorithm uses O(P log n) total
auxiliary space on P processors using a
randomized work-stealing scheduler (e.g.,
Cilk)

* The “busy-leaves” property [BL99]

14

reduce(A, n) {

An strong PIP algorithm example| ™" 22 1) return arer;

In parallel:

L = reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
return L+R;

}

T Work: 0(n)
— ——— Span: O(logn)
SN SN SN RN
1 2 3 .4 5 .6 7 8 . "
~F ~F - ~F —+ - Sequential auxiliary
S 4y T M 4+ 1 space: O(logn)
19 N 26 Total on P processors:
.t
36 O(Plogn)

15

The strong PIP model

* We assume:

* The sequential execution uses O(logn)-
word auxiliary space in a stack-allocated
fashion for an input size of n

* The strong PIP model is very restrictive
* Does not allow for heap space

* We do not have many work-efficient PIP algorithms
in this model

16

The relaxed PIP model

* We assume:

* The sequential execution uses O(logn)-word
auxiliary space in a stack-allocated fashion,
and O0(n€) shared (heap-allocated) auxiliary
space (0 < e < 1)

* Allows us to design many more work-efficient
PIP algorithms

17

Outline of this talk

1 Models for parallel in-place (PIP) algorithms
_

2 New PIP algorithms and a general approach
/

19

PIP algorithms

Model Problems Work-efficient * [6]: Berney et al., IPDPS 2019
* [11]: Blelloch, Ferizovic, Sun,
Permuting tree layout v [6] SPAA 2016
Reduce, rotating v
Strong PIP Scan (prefix sum) v * N) .)
Model Filter, partition, quicksort : main contribution

Merging, mergesort

Set operations v 11
Random permutation v *
List and tree contraction v *
Merging, mergesort v *
Relaxed . SHe ”g .
Filter, partition, quicksort v
PIP Model . .. N
(B1)Connectivity ‘
Minimum spanning forest o

20

General approach for relaxed PIP algorithms

 Decomposable Property
Auxiliary space used is
Solved bounded by auxiliary
space for sub-problem
Solved P P

Provide a tradeoff

= | Petweenspaceand

parallelism
Solved

21

Relaxed PIP algorithm design using the
Decomposable Property

e Suppose that there is an algorithm satisfying the decomposable
property with work W(n) = O(n polylog(n)) and
O(polylog(n)) span. Then, there is a relaxed PIP algorithm for
the same problem with W (n) work, O(nepolylog(n)) span, and
O (n'~¢€) auxiliary space for some 0 < € < 1.

22

Random Permutation as an example

Hl[1] is randomly drawn
KNUTH.SHUFFLE(A’ H) between 1 and 1
fori < ntoi1do
swap(Alil, A[H[1]]) This algorithm can be

parallelized (sGB+15],

terate 1 2 3 4 5 6 7 8 with 0(n) work and

H=|1|12|14 23|42 O(logn) span w.h.p.
[BFGS20]

A= |a|b|c|d|e| f|lg|h However, the amount

U&% of auxiliary space is
O(n), for data
structures to resolve

Thi ial algorithm is in-pl
IS Serial algoritnm IS In-place conflicts

23

Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[il, A[H[1]])

24

Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])
lterate 1 2 3 4 5 6 ! 8
H=1]1l]2z]4]2]3]4]2 Work on the
A= |al|lblcld|le|flg]|h second half first

25

Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])

lterate 1 2 3 4 5 6 7

H=|1|1|12|4|12|3|4

A= |ale|f|lglh]c|d

Work on the
second half first

26

Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])

Then work on

21

Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[il, A[H[1]])

28

Decomposable property Work on k elements per
batch, for a total of n/k

KNUTHSHUFFLE(A, H) rounds
fori<ntoido o 45 01 auxih
. : nly needs auxiliary
swap(Ali], ALH[1]1) space for resolving
lterate 1 2 3 4 5 §! ! 8 conflicts per round

This gives an O(n) work
relaxed PIP algorithm for
random permutation,

M with sublinear span and

space

29

Experiment setup

e 72-core Dell PowerEdge R930 (with two-way hyper-
threading) and 1TB of main memory

* Implemented using Cilk Plus

* Comparing to Problem Based Benchmark Suite (PBBS),
containing state-of-the-art multicore implementations

33

Overall running time

Our PIP algorithms are competitive with or faster than
the best non-in-place versions, mainly due to a smaller
memory footprint and fewer memory accesses.

500
400

300

200

=0 om0
0

Scan Filter RandPerm List Tree
Contraction Contraction

PBBS mPIP algorithms

J

e

Running time (r

34

Running Time (ms)

Varying input sizes and thread counts

Scan Filter List Contraction Tree Contraction
500 500 600 1250
400 2 400 2 2 1000
Q @ 400 o
300 £ 300 £ £ 750
= = [
200 £ 200 g g 500
c € 200 =
=} 35 =}
100 X 100 o @ 250
0 0 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 50 100 150 200 0 50 100 150 200
Input Size (million integers) Input Size (million entries) Input Size (million entries) Input Size (million entries)
®ln-place scan WPBBS scan e|n-place filter ®PBBS filter e|n-place list contraction ®#PBBS list contraction eIn-place tree contraction #PBBS list contraction

input size and thread counts, similar to the best non-in-

L place parallel algorithms.

C N
Our PIP algorithms have good scalability with respect to

4

35

Space Usage

* The PBBS algorithms are not in-place, and require
auxiliary space linear in the input size

* Memory overhead of our PIP algorithms:

Problem Input Memory Over-
size (MB) usage (MB) head
Scan 7629.4 7636.2 <0.1%
Filter 7629.4 7636.9 <0.1%
Random permutation 762.9 791.2 3.7%
List contraction 762.9 773.5 1.4%

Tree contraction 1144.4 1154.9 0.9%

36

Summary
[I} Models for parallel in-place (PIP) algorithms

Strong and relaxed PIP models, based on the binary fork-join model

Decouples the analysis between parallelism and auxiliary space, and
leads to practical algorithms

[z} New PIP algorithms and a general approach

Decomposable property: convert a non-PIP algorithm to relaxed PIP

New PIP algorithms for scan, filter, sort, merge, random permutation,
list and tree contraction, (bi)connectivity, minimum spanning forest

Competitive with or faster than state-of-the-art in practice

37

