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You can put more memory on a machine, but they 
are expensive
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Space-efficiency is crucial for shared-memory   
parallel algorithms

• Allows you to run larger inputs on your machine

• Decreases monetary costs

• Reducing memory footprint can improve performance due to 
lower memory traffic and better cache utilization
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Parallel in-place algorithms have been gaining 
attention recently, but they are still underexplored

• Duplicate removing [HL89]

• Merge and mergesort [GL91, GL92]

• Samplesort [ZCZ99, AWFS17]

• Search problems (backtrack and branch-and-bound) [PPSV15]

• Generating search tree layout [BCH+18] 

• Radix sort [OKFS19]

• Partition [KW20]

• Yet, there are no standard definition on what “parallel in-place” means
• Yet, there are no general approaches to designing parallel in-place 

algorithms
�



Outline of this talk

Models for parallel in-place (PIP) algorithms�

� New PIP algorithms and a general approach
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In-place in the sequential setting
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But it doesn’t quite work in the parallel setting…
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But it doesn’t quite work in the parallel setting…
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Limiting total auxiliary space    
à Limiting overall parallelism

Space-parallelism tradeoff in the     
in-place PRAM model [Langston93]�



Can we achieve both?
• Can we get high parallelism?
• Low span

• Can we achieve small auxiliary space?
• Each processor should use a small auxiliary space, similar to the sequential setting 

(e.g., O(log n) words)

• Can we have clean computational models that capture both needs, but 
are still simple to use?
• Need to decouple the analysis of auxiliary space and the analysis of span
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• An algorithm is measured by work (number 
of operations) and span (length of longest 
sequential dependence)

• A fork instruction creates two subtasks that 
can be run in parallel
• After they finish, they join and continue

The binary fork-join (work-span) model
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• Benefits of this model:
• High-level, and algorithm designers need not to 

deal with system-level details such as load-
balancing, task scheduling, synchronization, which 
are error-prone and can significantly complicate an 
algorithm
• Algorithm design and analysis are independent of 

P (#processors)

• Can we design parallel in-place (PIP) 
algorithm also based on this model?

The binary fork-join (work-span) model
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• Strong PIP model
• Achieve small (polylogarithmic) span and auxiliary 

space simultaneously

• Relaxed PIP model
• Achieve sub-linear span and auxiliary space 

simultaneously

• Our models decouple the analysis between 
span and auxiliary space
• Low span is useful in practice, not just for high 

parallelism, but also for reducing cache misses and 
global synchronization

New models in this paper
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• We assume:

• The sequential execution uses ! log % -
word auxiliary space in a stack-allocated 
fashion for an input size of %

• Stack-allocated fashion: when we allocate 
memory after a fork (or function call) it must 
be reclaimed before the associated join (or 
function return)
• A strong PIP algorithm uses &(( )*+ ,) total 

auxiliary space on P processors using a 
randomized work-stealing scheduler (e.g., 
Cilk)
• The “busy-leaves” property [BL99]

The strong PIP model
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An strong PIP algorithm example reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A+n/2, n-n/2);

return L+R;
}

1 32 654 87

3 7 11 15
+ + + +

10 26
+ +

36
+

Work: ! "
Span: !(log ")

Sequential auxiliary 
space: ! log "
Total on P processors:

! ( log "
��



• We assume:
• The sequential execution uses ! log % -

word auxiliary space in a stack-allocated 
fashion for an input size of %

• The strong PIP model is very restrictive
• Does not allow for heap space

• We do not have many work-efficient PIP algorithms 
in this model

The strong PIP model
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• We assume:
• The sequential execution uses ! log % -word 

auxiliary space in a stack-allocated fashion,   
and ! %& shared (heap-allocated) auxiliary 
space (0 < ) < 1)

• Allows us to design many more work-efficient 
PIP algorithms

The relaxed PIP model
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Outline of this talk

Models for parallel in-place (PIP) algorithms�

� New PIP algorithms and a general approach
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PIP algorithms

• [6]: Berney et al., IPDPS 2019
• [11]: Blelloch, Ferizovic, Sun,     

SPAA 2016

*: main contribution
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General approach for relaxed PIP algorithms
• Decomposable Property
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Auxiliary space used is 
bounded by auxiliary 

space for sub-problem

Provide a tradeoff 
between space and 

parallelism



Relaxed PIP algorithm design using the 
Decomposable Property

• Suppose that there is an algorithm satisfying the decomposable 
property with work !(#) = & # polylog # and 
& polylog # span. Then, there is a relaxed PIP algorithm for 
the same problem with !(#) work, & #,polylog # span, and 
& #-., auxiliary space for some 0 < 1 < 1.
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H =

A =
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])

� � � � � � � �

� �  � � � � �

H[i] ������������������
��������1 ����i

Random Permutation as an example

This algorithm can be 
parallelized [SGB+15], 
with ! " work and 
! log " span w.h.p. 
[BFGS20]

However, the amount 
of auxiliary space is 
O(n), for data 
structures to resolve 
conflicts
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This serial algorithm is in-place
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])
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Decomposable property
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H =

A =
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])
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Decomposable property

Work on the 
second half first
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do
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Decomposable property

Work on the 
second half first
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H =

A =
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])
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Decomposable property

Then work on 
the first half
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H =

A =
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])
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Decomposable property
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A =
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KNUTHSHUFFLE(A, H)
for i ß n to 1 do

swap(A[i], A[H[i]])
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Decomposable property Work on k elements per 
batch, for a total of n/k 
rounds

Only needs O k auxiliary 
space for resolving 
conflicts per round

This gives an O(n) work 
relaxed PIP algorithm for 
random permutation, 
with sublinear span and 
space

�	



Experiment setup

•72-core Dell PowerEdge R930 (with two-way hyper-
threading) and 1TB of main memory

• Implemented using Cilk Plus

•Comparing to Problem Based Benchmark Suite (PBBS), 
containing state-of-the-art multicore implementations
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Overall running time

• Scan and filter are for input size !"# 32-bit keys, and !"$ 32-bit keys for the 
rest
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Our PIP algorithms are competitive with or faster than 
the best non-in-place versions, mainly due to a smaller 

memory footprint and fewer memory accesses.



Varying input sizes and thread counts

��

Our PIP algorithms have good scalability with respect to 
input size and thread counts, similar to the best non-in-

place parallel algorithms.



Space Usage

• The PBBS algorithms are not in-place, and require 
auxiliary space linear in the input size
•Memory overhead of our PIP algorithms:
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Decomposable property: convert a non-PIP algorithm to relaxed PIP
New PIP algorithms for scan, filter, sort, merge, random permutation, 
list and tree contraction, (bi)connectivity, minimum spanning forest
Competitive with or faster than state-of-the-art in practice

Strong and relaxed PIP models, based on the binary fork-join model

Decouples the analysis between parallelism and auxiliary space, and 
leads to practical algorithms

Models for parallel in-place (PIP) algorithms�

New PIP algorithms and a general approach�

Summary
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