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You can put more memory on a machine, but they
are expensive
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Space-efficiency is crucial for shared-memory
parallel algorithms

* Allows you to run larger inputs on your machine
* Decreases monetary costs

* Reducing memory footprint can improve performance due to
lower memory traffic and better cache utilization




Parallel in-place algorithms have been gaining
attention recently, but they are still underexplored

* Duplicate removing [HLs9]

* Merge and mergesort [6L91, GL92]

* Samplesort [zcz99, AWFs17]

» Search problems (backtrack and branch-and-bound) ppsvis]
* Generating search tree layout [scH+13]

e Radix sort [okrs19]

e Partition [kw2o]

* Yet, there are no standard definition on what “parallel in-place” means

* Yet, there are no general approaches to designing parallel in-place
algorithms
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In-place in the sequential setting
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But it doesn’t quite work in the parallel setting...
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But it doesn’t quite work in the parallel setting...
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Limiting total auxiliary space
-> Limiting overall parallelism

Space-parallelism tradeoff in the
in-place PRAM model [Langston93],




Can we achieve both?

e Can we get high parallelism?
* Low span

* Can we achieve small auxiliary space?

e Each processor should use a small auxiliary space, similar to the sequential setting
(e.g., O(log n) words)

* Can we have clean computational models that capture both needs, but
are still simple to use?

* Need to decouple the analysis of auxiliary space and the analysis of span
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The binary fork-join (work-span) model

* An algorithm is measured by work (number
of operations) and span (length of longest
sequential dependence)

* A fork instruction creates two subtasks that
can be run in parallel

* After they finish, they join and continue
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The binary fork-join (work-span) model

* Benefits of this model:

* High-level, and algorithm designers need not to
deal with system-level details such as load-
balancing, task scheduling, synchronization, which
are error-prone and can significantly complicate an
algorithm

* Algorithm design and analysis are independent of
P (#processors)

e Can we design parallel in-place (PIP)
algorithm also based on this model?
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New models in this paper

e Strong PIP model

* Achieve small (polylogarithmic) span and auxiliary
space simultaneously

 Relaxed PIP model

* Achieve sub-linear span and auxiliary space
simultaneously

* Our models decouple the analysis between
span and auxiliary space

* Low span is useful in practice, not just for high
parallelism, but also for reducing cache misses and
global synchronization
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The strong PIP model

* We assume:

* The sequential execution uses O(logn)-
word auxiliary space in a stack-allocated
fashion for an input size of n

* Stack-allocated fashion: when we allocate
memory after a fork (or function call) it must
be reclaimed before the associated join (or
function return)

* A strong PIP algorithm uses O(P log n) total
auxiliary space on P processors using a
randomized work-stealing scheduler (e.g.,
Cilk)

* The “busy-leaves” property [BL99]
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reduce(A, n) {

An strong PIP algorithm example| ™" 22 1) return arer;

In parallel:

L = reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
return L+R;

}

T Work: 0(n)
— ——— Span: O(logn)
SN SN SN RN
1 2 3 .4 5 .6 7 8 . "
~F ~F - ~F —+ - Sequential auxiliary
S 4y T M 4+ 1 space: O(logn)
19 N 26 Total on P processors:
.t
36 O(Plogn)
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The strong PIP model

* We assume:

* The sequential execution uses O(logn)-
word auxiliary space in a stack-allocated
fashion for an input size of n

* The strong PIP model is very restrictive
* Does not allow for heap space

* We do not have many work-efficient PIP algorithms
in this model
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The relaxed PIP model

* We assume:

* The sequential execution uses O(logn)-word
auxiliary space in a stack-allocated fashion,
and O0(n€) shared (heap-allocated) auxiliary
space (0 < e < 1)

* Allows us to design many more work-efficient
PIP algorithms
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PIP algorithms

Model Problems Work-efficient * [6]: Berney et al., IPDPS 2019
* [11]: Blelloch, Ferizovic, Sun,
Permuting tree layout v [6] SPAA 2016
Reduce, rotating v
Strong PIP  Scan (prefix sum) v * N ) . )
Model Filter, partition, quicksort : main contribution

Merging, mergesort

Set operations v 11
Random permutation v *
List and tree contraction v *
Merging, mergesort v *
Relaxed . SHe ”g .
Filter, partition, quicksort v
PIP Model . .. N
(B1)Connectivity ‘
Minimum spanning forest o
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General approach for relaxed PIP algorithms

 Decomposable Property
Auxiliary space used is
Solved bounded by auxiliary
space for sub-problem
Solved P P

Provide a tradeoff

= | Petweenspaceand

parallelism
Solved
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Relaxed PIP algorithm design using the
Decomposable Property

e Suppose that there is an algorithm satisfying the decomposable
property with work W(n) = O(n polylog(n)) and
O(polylog(n)) span. Then, there is a relaxed PIP algorithm for
the same problem with W (n) work, O(nepolylog(n)) span, and
O (n'~¢€) auxiliary space for some 0 < € < 1.
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Random Permutation as an example

Hl[1] is randomly drawn
KNUTH.SHUFFLE(A’ H ) between 1 and 1
fori < ntoi1do
swap(Alil, A[H[1]]) This algorithm can be

parallelized (sGB+15],

terate 1 2 3 4 5 6 7 8 with 0(n) work and

H=|1|12|14 23|42 O(logn) span w.h.p.
[BFGS20]

A= |a|b|c|d|e| f|lg|h However, the amount

U&% of auxiliary space is
O(n), for data
structures to resolve

Thi ial algorithm is in-pl
IS Serial algoritnm IS In-place conflicts
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Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[il, A[H[1]])
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Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])
lterate 1 2 3 4 5 6 ! 8
H=1]1l]2z]4]2]3]4]2 Work on the
A= |al|lblcld|le|flg]|h second half first
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Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])

lterate 1 2 3 4 5 6 7

H=|1|1|12|4|12|3|4

A= |ale|f|lglh]c|d

Work on the
second half first
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Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(Alil, ALH[1]])

Then work on
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Decomposable property

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[il, A[H[1]])
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Decomposable property Work on k elements per
batch, for a total of n/k

KNUTHSHUFFLE(A, H) rounds
fori<ntoido o 45 01 auxih
. : nly needs auxiliary
swap(Ali], ALH[1]1) space for resolving
lterate 1 2 3 4 5 §! ! 8 conflicts per round

This gives an O(n) work
relaxed PIP algorithm for
random permutation,

M with sublinear span and

space
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Experiment setup

e 72-core Dell PowerEdge R930 (with two-way hyper-
threading) and 1TB of main memory

* Implemented using Cilk Plus

* Comparing to Problem Based Benchmark Suite (PBBS),
containing state-of-the-art multicore implementations
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Overall running time

Our PIP algorithms are competitive with or faster than
the best non-in-place versions, mainly due to a smaller
memory footprint and fewer memory accesses.
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Running Time (ms)

Varying input sizes and thread counts
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input size and thread counts, similar to the best non-in-

L place parallel algorithms.

C N
Our PIP algorithms have good scalability with respect to

4
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Space Usage

* The PBBS algorithms are not in-place, and require
auxiliary space linear in the input size

* Memory overhead of our PIP algorithms:

Problem Input Memory Over-
size (MB) usage (MB) head
Scan 7629.4 7636.2 <0.1%
Filter 7629.4 7636.9 <0.1%
Random permutation 762.9 791.2 3.7%
List contraction 762.9 773.5 1.4%

Tree contraction 1144.4 1154.9 0.9%
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Summary
[I} Models for parallel in-place (PIP) algorithms

Strong and relaxed PIP models, based on the binary fork-join model

Decouples the analysis between parallelism and auxiliary space, and
leads to practical algorithms

[z} New PIP algorithms and a general approach

Decomposable property: convert a non-PIP algorithm to relaxed PIP

New PIP algorithms for scan, filter, sort, merge, random permutation,
list and tree contraction, (bi)connectivity, minimum spanning forest

Competitive with or faster than state-of-the-art in practice
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