
Theoretically-Efficient and
Practical Parallel In-Place

Radix Sorting
Authors: Omar Obeya, Endrias Kahssay, Edward Fan,
Julian Shun

1

Why Radix
Sort?

Takes O(n) work for fixed length
integers.

Comparison-based sorts take
!(n log(n)) work.

4

(Most Significant Digit First) Radix Sort

Radix Sort

● Sort elements according
to one digit at a time.

● Most significant digit to
least significant digit.

● Recurse on elements with
equal digits.

329
711
309
745
155
145
883
381
380
145

145
155
145

329
309
381
380

711
745

883

145
145

155

145
145

6

Terminology: Country

0 0 2 0 3 2 1 1 1 3 1

Output:
7

0 0 0 1 1 1 1 2 2 3 3

Country: sub-array that
will include elements
belonging to the same
bucket after sorting.

Input: 0

1

2

3

Radix Sort: Subproblem

Output:
8

Sort elements according
to digits such that each
element is in the correct
country.

Input: 0 0 2 0 3 2 1 1 1 3 1

0 0 0 1 1 1 1 2 2 3 3

0

1

2

3

Serial In-
place Radix
Sort

1. Find start location of
each country
(Histogram Building).

2. Move items to the
correct country in-
place.

9

Histogram Building

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

3 4 2 2

0 3 7 9

Input:

Output:

Sizes:

Prefix
sum:

11

Parallel
Histogram
Building 0 0 2 0 3 2 1 1 1 3 1

1

2

3

0 2

3

1

1

1

1

1

1

P1 P2 P3

3

4

2

212

Serial In-place Radix Sort

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

} 13

0 0 2 0 3 2 1 1 1 3 1

Serial In-place Radix Sort

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

14

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

15

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

0 0 1 0 3 2 1 2 1 3 1

0 0 2 0 3 2 1 1 1 3 1

Swap!

16

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 1 0 3 2 1 2 1 3 1

17

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 0 1 3 2 1 2 1 3 1
18

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 0 1 1 2 1 2 1 3 3
19

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

Swap!

0 0 0 1 1 2 1 2 1 3 3

0 0 0 1 1 2 1 2 1 3 3

20

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Serial In-place Radix Sort

Swap!

0 0 0 1 1 2 1 2 1 3 3

0 0 0 1 1 1 1 2 2 3 3
21

Initialize pointer to beginning of each
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in
correct country) {

Swap item to location pointed to
in target country

Increment target country pointer

}

Increment current country pointer

}

Why parallel in-place is hard?!

0 0 2 0 3 2 1 1 1 3 1Input:

22

Why parallel in-place is hard?!

0 0 2 0 3 2 1 1 1 3 1

0 0 0 1 1 1 1 2 2 3 3

Input:

Output:

Race!

23

Related
Work

PARADIS [Cho et. al 2015]
● Parallel in-place radix sort.
● Worst case span is O(n).

IPS4o [Axtmann et. al 2017]
● Parallel in-place comparison based

sort.
● Work is O(nlog(n)).

25

Goal

A relaxed PIP algorithm for radix sort

For some parameter K:

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space: O(K)

(assuming fixed length integers)

26

Our Algorithm: Regions Sort

27

Regions Sort
Overview

1. Local Sorting
○ Partially sort the input.

2. Regions Graph Building
○ Represent dependencies

in partially sorted array
with small amount of
memory.

3. Global Sorting
○ Use regions graph to

completely sort the input.

28

Local
Sorting

29

Key Idea:

Divide array into K Blocks and
sort each block independently.

Block: sub-array of
size n/K.

0 0 2 0 1 2 3 1 1 1 3

Local
Sorting 0 0 2 0 3 2 1 1 1 3 1

P1 P2 P3

30

0 1 2 30 0 2 1 1 1 3

Sort using serial in-place radix sort

Regions
Graph
Building

31

Key Idea: Represent
dependences in partially
sorted array with small
amount of memory.

Regions Graph Building

0 0 2 0 1 2 3 1 1 1 3

Homogeneous
sub-array: A
subarray with the
same digit

32

0

1

2

3

Regions Graph Building

Region: A
homogeneous sub-
array within same
current country.

33

0 0 2 0 1 2 3 1 1 1 3

0

1

2

3

Regions Graph Building

34

0 1

23

1

1
1

2
1

1

0 0 2 0 1 2 3 1 1 1 3

Create edge of
weight W from
country x to country y
if a region of W
elements wants to go
from country x to
country y

Regions Graph Building

35

0 1

23

1

1
1

2
1

1

0 0 2 0 1 2 3 1 1 1 3

No self-edges

Global
Sorting

Key Idea: Use regions graph
to move regions to their target
countries iteratively and
updating the graph.

Two Approaches:

1. Cycle Finding
2. 2-Path Finding

36

Global
Sorting

A 2-path consists of two edges:

● Incoming edge to node x
corresponding to a region that can
be moved into country x.

● Outgoing edge from node x
corresponding to a region that is
in country x and needs to be
moved out of country x.

37

0 1

23

21

1

1
1

1

Global Sorting: 2-Path Finding

2-path Finding

0 1

23

21

1

1
1

1

38

0 0 2 0 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
0 1

23

21

1

1
1

1

39

0 0 2 0 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
0 1

23

21

1

1
1

1

40

0 0 2 0 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.

41

0 1

23

21

1

1
1

1

0 0 2 0 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.

0 1

23

21

1

1
1

1

42

0 0 2 0 1 2 3 1 1 1 3

0 0 0 2 1 2 3 1 1 1 3

Global Sort: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

211

1

1
1

1

43

0 0 0 2 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

211

1

1

44

0 0 0 2 1 2 3 1 1 1 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1

45

0 0 0 2 1 2 3 1 1 1 3

2

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1

1 1

0 0 0 2 1 2 3 1 1 1 3

46

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1

1 1

47

0 0 0 2 1 2 3 1 1 1 3

0 0 0 1 1 1 1 2 2 3 3

Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

48

0 0 0 1 1 1 1 2 2 3 3

Analysis

49

Analysis

1. Local Sorting

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space = O(KB)

● K is number of blocks
● B is number of buckets per block

50

Analysis

2. Build Regions Graph

a. Work = O(KB)
b. Span = O(log(KB))
c. Space = O(KB)

● Since #edges ≤ #regions ≤ KB
● K is number of blocks
● B is number of buckets per block

51

Analysis

3. Global Sorting

a. Work = O(n)
b. Span = O(B (log(KB) + B))
c. Space = O(KB)

● O(n) swaps
● #nodes removed = O(B)
● #edges at each node removed is O(KB)

52

Analysis

Total for one level of recursion

Work = O(n)
Span = O(n/K + B (log(KB) + B))
Space = O(KB)

53

Recursion

54

Recursion

● Each country is recursed on independently.

● Each country divided into number of blocks proportional to
its size.

● Integers with range r need at most logB(r) recursion levels to
be fully sorted.

● For problem sizes smaller than B, we use comparison sort.

55

Algorithm: Recursion

Total on all levels

a. Work = O(n log(r))
b. Span = O((log(K) + n/K) log(r))
c. Space = O(P log(r) + K)

● Assuming B = Θ(1)

56

Algorithm: Recursion

Total on all levels

a. Work = O(n)
b. Span = O((log(K) + n/K))
c. Space = O(P + K)

● Assuming B = Θ(1)

● Assuming r = Θ(1) (fixed length integers)

57

Alternative Approach: Cycle Finding

58

● Find Cycle in Regions Graph
● Execute Cycle to move elements
● Remove edge with min weight, and

decrease weight of all other edges by
this weight

● Repeat until all edges are deleted

Evaluation

59

Evaluation: Control Algorithms

State of the art parallel sorting algorithms:

● __gnu_parallel::sort (MCSTL, included in gcc) [Singler et. al 2007]
○ Not fully in-place; uses parallel mergesort

● RADULS (parallel out-of-place radix sort) [Kokot et al. 2017]
● PBBS parallel out-of-place radix sort [Shun et. al 2012]

● PBBS parallel out-of-place sample sort [Shun et. al 2012]

● Ska Sort (serial in-place radix sort)
● IPS4o (parallel in-place sample sort) [Axtmann et al. 2017]

● PARADIS (parallel in-place radix sort) not publicly available

Input distribution:

● Uniform

● Skewed
● Equal, and almost sorted

60

Evaluation: Our Algorithms

Our Algorithms

Cycle finding
K = P
B = 256

2-path finding
K = 5000
B = 256

61

Evaluation: Test Environment

● AWS c5.9xlarge
● Intel Xeon Platinum 8000 series
● 72 vCPU (36 cores with hyperthreading)
● 144 GB RAM
● All code compiled with g++-7 with Cilk Plus

62

Comparison with other algorithms

63

Regions Sort performance on various inputs with 1 billion
integers:

● Between 1.1-3.6x faster than IPS4o, the fastest parallel
sample sort, except on one input (1.02x slower).

● Between 1.2-4.4x faster than the fastest out-of-place
Radix Sort (PBBS).

● 1.3x slower to 9.4x faster than RADULS.

● About 2x faster than PARADIS based on their reported
numbers on same number of cores

Speedup over serial 2-path: 1 billion random integers

64

Distribution independence: 1 billion integers from Zipf

65

Regions Sort: fastest across all input sizes (Random)

66

Input Range - Uniform Sequence (1 billion integers)

67

Conclusion
Our contributions:
● Regions Sort: the first parallel in-

place radix sort with strong
theoretical guarantees.

● Empirical evidence showing high
scalability and distribution
independence.

● Almost always faster than state-
of-the-art parallel sorting
algorithms in our experiments.

69

