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Why Radix 
Sort?

Takes O(n) work for fixed length 
integers.

Comparison-based sorts take 
!(n log(n)) work.
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(Most Significant Digit First) Radix Sort

Radix Sort

● Sort elements according 
to one digit at a time.

● Most significant digit to  
least significant digit.

● Recurse on elements with 
equal digits. 
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Terminology: Country

0 0 2 0 3 2 1 1 1 3 1

Output:
7

0 0 0 1 1 1 1 2 2 3 3

Country: sub-array that 
will include elements 
belonging to the same 
bucket after sorting.
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Radix Sort: Subproblem

Output:
8

Sort elements according 
to digits such that each 
element is in the correct 
country.

Input: 0 0 2 0 3 2 1 1 1 3 1

0 0 0 1 1 1 1 2 2 3 3
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Serial In-
place Radix 
Sort

1. Find start location of 
each country 
(Histogram Building). 

2. Move items to the 
correct country in-
place. 
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Histogram Building

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

3 4 2 2

0 3 7 9

Input:

Output:

Sizes:

Prefix 
sum:

11



Parallel 
Histogram 
Building 0 0 2 0 3 2 1 1 1 3 1
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Serial In-place Radix Sort

Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

} 13
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Serial In-place Radix Sort

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1

0 0 2 0 3 2 1 1 1 3 1
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

0 0 1 0 3 2 1 2 1 3 1

0 0 2 0 3 2 1 1 1 3 1

Swap!
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 1 0 3 2 1 2 1 3 1
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 0 1 3 2 1 2 1 3 1
18

Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

Swap!

0 0 0 1 3 2 1 2 1 3 1

0 0 0 1 1 2 1 2 1 3 3
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

Swap!

0 0 0 1 1 2 1 2 1 3 3

0 0 0 1 1 2 1 2 1 3 3
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Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Serial In-place Radix Sort

Swap!

0 0 0 1 1 2 1 2 1 3 3

0 0 0 1 1 1 1 2 2 3 3
21

Initialize pointer to beginning of each 
country

For each country:

While (pointer not at end of country) {

While(item pointed to is not in 
correct country) {

Swap item to location pointed to 
in target country

Increment target country pointer

}

Increment current country pointer

}



Why parallel in-place is hard?!

0 0 2 0 3 2 1 1 1 3 1Input:
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Why parallel in-place is hard?!

0 0 2 0 3 2 1 1 1 3 1

0 0 0 1 1 1 1 2 2 3 3

Input:

Output:

Race!
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Related 
Work 

PARADIS [Cho et. al 2015]
● Parallel in-place radix sort.
● Worst case span is O(n). 

IPS4o [Axtmann et. al 2017]
● Parallel in-place comparison based 

sort.
● Work is O(nlog(n)).
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Goal

A relaxed PIP algorithm for radix sort

For some parameter K:

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space: O(K)

(assuming fixed length integers)
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Our Algorithm: Regions Sort

27



Regions Sort 
Overview

1. Local Sorting
○ Partially sort the input.

2. Regions Graph Building
○ Represent dependencies 

in partially sorted array 
with small amount of 
memory.

3. Global Sorting
○ Use regions graph to 

completely sort the input.
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Local 
Sorting

29

Key Idea:

Divide array into K Blocks and 
sort each block independently.

Block: sub-array of 
size n/K.

0 0 2 0 1 2 3 1 1 1 3



Local 
Sorting 0 0 2 0 3 2 1 1 1 3 1

P1 P2 P3

30

0 1 2 30 0 2 1 1 1 3

Sort using serial in-place radix sort



Regions 
Graph 
Building

31

Key Idea: Represent 
dependences in partially 
sorted array with small 
amount of memory.



Regions Graph Building

0 0 2 0 1 2 3 1 1 1 3

Homogeneous
sub-array: A 
subarray with the 
same digit
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Regions Graph Building

Region: A 
homogeneous sub-
array within same 
current country.
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0 0 2 0 1 2 3 1 1 1 3
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Regions Graph Building
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0 1

23

1

1
1

2
1

1

0 0 2 0 1 2 3 1 1 1 3

Create edge of 
weight W from 
country x to country y 
if a region of W 
elements wants to go 
from country x to 
country y



Regions Graph Building

35

0 1

23

1

1
1

2
1

1

0 0 2 0 1 2 3 1 1 1 3

No self-edges



Global 
Sorting

Key Idea: Use regions graph 
to move regions to their target 
countries iteratively and 
updating the graph.

Two Approaches:

1. Cycle Finding
2. 2-Path Finding
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Global 
Sorting

A 2-path consists of two edges:

● Incoming edge to node x 
corresponding to a region that can 
be moved into country x.

● Outgoing edge from node x 
corresponding to a region that is 
in country x and needs to be 
moved out of country x.
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Global Sorting: 2-Path Finding

2-path Finding

0 1

23

21

1

1
1

1
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
0 1

23

21

1

1
1
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
0 1

23

21

1

1
1

1
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.

0 1

23

21

1

1
1

1
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0 0 2 0 1 2 3 1 1 1 3
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Global Sort: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

211

1

1
1

1
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

211
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1
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0 0 0 2 1 2 3 1 1 1 3
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1

1 1

0 0 0 2 1 2 3 1 1 1 3
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

11

1

1

1 1
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Global Sorting: 2-Path Finding

2-path Finding

1. Choose a vertex.
2. Match incoming edges

with outgoing edges.
3. Execute swaps.
4. Edit edges.

0 1

23

48

0 0 0 1 1 1 1 2 2 3 3



Analysis
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Analysis

1. Local Sorting

a. Work: O(n)
b. Span: O(log(K) + n/K)
c. Space = O(KB)

● K is number of blocks
● B is number of buckets per block
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Analysis

2. Build Regions Graph

a. Work = O(KB)
b. Span = O(log(KB))
c. Space = O(KB)

● Since #edges ≤ #regions ≤ KB
● K is number of blocks
● B is number of buckets per block
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Analysis

3. Global Sorting

a. Work = O(n)
b. Span = O(B (log(KB) + B))
c. Space = O(KB)

● O(n) swaps
● #nodes removed = O(B)
● #edges at each node removed is O(KB)
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Analysis

Total for one level of recursion

Work = O(n)
Span = O(n/K + B (log(KB) + B))
Space = O(KB)
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Recursion
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Recursion

● Each country is recursed on independently.

● Each country divided into number of blocks proportional to 
its size.

● Integers with range r need at most logB(r) recursion levels to 
be fully sorted.

● For problem sizes smaller than B, we use comparison sort.
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Algorithm: Recursion

Total on all levels

a. Work = O(n log(r))
b. Span = O((log(K) + n/K) log(r))
c. Space = O(P log(r) + K)

● Assuming B = Θ(1)
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Algorithm: Recursion

Total on all levels

a. Work = O(n)
b. Span = O((log(K) + n/K))
c. Space = O(P + K)

● Assuming B = Θ(1)

● Assuming r = Θ(1) (fixed length integers)

57



Alternative Approach: Cycle Finding
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● Find Cycle in Regions Graph 
● Execute Cycle to move elements
● Remove edge with min weight, and 

decrease weight of all other edges by 
this weight

● Repeat until all edges are deleted 



Evaluation
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Evaluation: Control Algorithms

State of the art parallel sorting algorithms:

● __gnu_parallel::sort (MCSTL, included in gcc) [Singler et. al 2007]
○ Not fully in-place; uses parallel mergesort

● RADULS (parallel out-of-place radix sort) [Kokot et al. 2017]
● PBBS parallel out-of-place radix sort [Shun et. al 2012]

● PBBS parallel out-of-place sample sort [Shun et. al 2012]

● Ska Sort (serial in-place radix sort)
● IPS4o (parallel in-place sample sort) [Axtmann et al. 2017]

● PARADIS (parallel in-place radix sort) not publicly available 

Input distribution:

● Uniform

● Skewed
● Equal, and almost sorted 
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Evaluation: Our Algorithms

Our Algorithms

Cycle finding 
K = P
B = 256

2-path finding 
K = 5000
B = 256
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Evaluation: Test Environment

● AWS c5.9xlarge
● Intel Xeon Platinum 8000 series
● 72 vCPU (36 cores with hyperthreading)
● 144 GB RAM
● All code compiled with g++-7 with Cilk Plus
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Comparison with other algorithms
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Regions Sort performance on various inputs with 1 billion 
integers:

● Between 1.1-3.6x faster than IPS4o, the fastest parallel 
sample sort, except on one input (1.02x slower).

● Between 1.2-4.4x faster than the fastest out-of-place 
Radix Sort (PBBS).

● 1.3x slower to 9.4x faster than RADULS.

● About 2x faster than PARADIS based on their reported 
numbers on same number of cores



Speedup over serial 2-path: 1 billion random integers
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Distribution independence: 1 billion integers from Zipf
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Regions Sort: fastest across all input sizes (Random) 
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Input Range - Uniform Sequence (1 billion integers)
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Conclusion
Our contributions:
● Regions Sort: the first parallel in-

place radix sort with strong 
theoretical guarantees.

● Empirical evidence showing high 
scalability and distribution 
independence.

● Almost always faster than state-
of-the-art parallel sorting 
algorithms in our experiments. 
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