
The Case for a Learned 
Sorting Algorithm
Authors: Ani Kristo, Kapil Vaidya, Ugur Cetintemel, Sanchit Misra, Tim Kraska

Presenter: Terryn Brunelle



Motivation

● Fundamental CS problem

● Database operations
○ Sort query results

○ Perform joins



Existing Work

● Comparison sort

● Distribution sort
○ Counting sort

○ Radix sort

● ML-enhanced algorithms



Learned Sort

● Train CDF model

● Use predicted prob for each key to predict final position for every key 

in sorted output

Linear time possible!
(if have perfect model)



Problems

● Perfect model = expensive to train

● Random-access memory problem



Algorithm 1



Cache-Efficient Learned Sort



Pseudo-Code: Step 1



Pseudo-Code: Steps 2-4



● Process elements in batches (cache locality)

● One bucket at a time (temporal locality)

● Bucket buffer space (reduce overflows)

Optimizations



CDF Model



CDF Model



Theoretical Results

● Step 1: O(N*L) 

● Step 2: O(N)

● Step 3: O(Nt) (non-dominant)

● Step 4: O(s log s) + O(N)

Space complexity: order of O(N)



Experimental Results



Experimental Results



Experimental Results



In-Place Sorting



Performance Decomposition



Strengths/Weaknesses

Strengths

● Performance on real-world data

● Improvement over default Java/Python 

sorting function

● Cache-efficient

● Model training time accounted for

Weaknesses

● Other CDF implementations?

● Duplicate keys



Directions for Future Work

● Sorting complex objects

● Parallel Sorting

● Using in DB systems



Discussion Questions

● Can you think of adversarial inputs that may be good to evaluate this 

specific approach on?

● What parallelization techniques may apply to this algorithm/sorting 

algorithms in general?

● What are other ways through which collisions might be handled?  What 

is attractive about the spill bucket method?



Additional Materials



String Sorting



Duplicates



CDF Model Training


