The Case for a Learned Sorting Algorithm

Authors: Ani Kristo, Kapil Vaidya, Ugur Cetintemel, Sanchit Misra, Tim Kraska

Presenter: Terryn Brunelle

Motivation

- Fundamental CS problem
- Database operations
	- Sort query results
	- Perform joins

Existing Work

- Comparison sort
- Distribution sort
	- Counting sort
	- Radix sort
- ML-enhanced algorithms

Learned Sort

- Train CDF model
- Use predicted prob for each key to predict final position for every key in sorted output

٠

Linear time possible! (if have perfect model)

Problems

- \bullet Perfect model = expensive to train
- Random-access memory problem

Algorithm 1

Algorithm 1 A first Learned Sort

Input A - the array to be sorted **Input** F_A - the CDF model for the distribution of A **Input** o - the over-allocation rate. Default=1 **Output** A' - the sorted version of array A

1: procedure LEARNED-SORT (A, F_A, o)

 $2:$ $N \leftarrow A$. length

3:
$$
A' \leftarrow
$$
 empty array of size $(N \cdot o)$

- for x in A do $4:$
- $5:$ $pos \leftarrow |F_A(x) \cdot N \cdot o|$
- if EMPTY(A'[pos]) then $A'[pos] \leftarrow x$ $6:$
- $7:$ else COLLISION-HANDLER (x)
- $8:$ if $o > 1$ then COMPACT(A')
- if NON-MONOTONIC then INSERTION-SORT (A') $9:$
- $10:$ return A'

Cache-Efficient Learned Sort

Pseudo-Code: Step 1

```
Input A - the array to be sorted
     Input F_A - the CDF model for the distribution of AInput f - fan-out of the algorithm
     Input t - threshold for bucket size
     Output A' - the sorted version of array A1: procedure LEARNED-SORT(A, F_A, f, t)N \leftarrow |A|2:\triangleright Size of the input array
 3:n \leftarrow f\triangleright n represents the number of buckets
 4:b \leftarrow \lfloor N/f \rfloor\triangleright b represents the bucket capacity
 5:
        B \leftarrow \left[ \mid \times N \right]\triangleright Empty array of size N
 6:
       I \leftarrow [0] \times n► Records bucket sizes
 7:
         S \leftarrow \Box\triangleright Spill bucket
 8:
         read_arr \leftarrow pointer to A
         write_arr \leftarrow pointer to B
 9:10:// Stage 1: Model-based bucketization
11:while b \geq t do
                                           \triangleright Until bucket capacity reaches the threshold t12:I \leftarrow [0] \times nReset array I
13:for x \in read arr do
14:pos \leftarrow [INFER(F_A, x) \cdot n]15:if I[pos] \ge b then
                                                                                 \triangleright Bucket is full
16:S.append(x)Add to spill bucket
17:else
                                                            \triangleright Write into the predicted bucket
18:write_arr[pos \cdot b + I[pos]] \leftarrow x19:INCREMENT I[POS]
20:b \leftarrow \lfloor b/f \rfloorDpdate bucket capacity
21:n \leftarrow |N/b|Dpdate the number of buckets
22:PTRSWP(read arr, write arr)
                                                             ► Pointer swap to reuse memory
```
Pseudo-Code: Steps 2-4

Optimizations

- Process elements in batches (cache locality)
- One bucket at a time (temporal locality)
- Bucket buffer space (reduce overflows)

CDF Model

Figure 5: A typical RMI architecture containing three layers

CDF Model

Algorithm 3 The inference procedure for the CDF model

Input F_A - the trained model $(F_A[l][r])$ refers to the r^{th} model in the l^{th} layer) **Input** x - the key **Output** r - the predicted rank (between 0-1)

- 1: procedure $InFER(F_A, x)$
- $2:$ $L \leftarrow$ the number of layers of the CDF model F_A
- $M^l \leftarrow$ the number of models in the l^{th} layer of the RMI F_A $3:$
- $4:$ $r \leftarrow 0$
- $5:$ for $l \leftarrow 0$ up to L do

 $r = x \cdot F_A[l][r]$ slope + $F_A[l][r]$ intercept $6:$

 $7:$ $return r$

Theoretical Results

- \bullet Step 1: $O(N^*L)$
- \bullet Step 2: $O(N)$
- Step 3: O(Nt) (non-dominant)
- Step 4: $O(s \log s) + O(N)$

Space complexity: order of O(N)

Experimental Results

Figure 8: The sorting throughput for normally distributed double-precision keys (higher is better).

Experimental Results

Experimental Results

In-Place Sorting

Figure 12: The sorting rate of Learned Sort and its in-place version for all of our synthetic datasets.

Performance Decomposition

Strengths/Weaknesses

Strengths

- Performance on real-world data
- Improvement over default Java/Python sorting function
- Cache-efficient
- Model training time accounted for

Weaknesses

- Other CDF implementations?
- Duplicate keys

Directions for Future Work

- Sorting complex objects
- Parallel Sorting
- Using in DB systems

Discussion Questions

- Can you think of adversarial inputs that may be good to evaluate this specific approach on?
- What parallelization techniques may apply to this algorithm/sorting algorithms in general?
- What are other ways through which collisions might be handled? What is attractive about the spill bucket method?

Additional Materials

String Sorting

Figure 10: The sorting rate for various strings datasets.

Duplicates

Contract Contract Contract Contract

CDF Model Training

Algorithm 4 The training procedure for the CDF model

```
Input A - the input array
    Input L - the number of layers of the CDF model
    Input M^l - the number of linear models in the l^{th} layer of the CDF model
    Output F_A - the trained CDF model with RMI architecture
 1: procedure \text{Train}(A, L, M)2:S \leftarrow SAMPLE(A)
 3:SORT(S)4:T \leftarrow \Pi \Pi\triangleright Training sets implemented as a 3D array
        for i \leftarrow 0 up to |S| do
 5:T[0][0].add((S[i], i/|S|))
 6:for l \leftarrow 0 up to L do
 7:for m \leftarrow 0 up to M^l do
 8:
 9:F_A[l][m] \leftarrow linear model trained on the set \{t \mid t \in T[l][m]\}10:if l + 1 < L then
                    for t \in T[l][m] do
11:F_A[l][m].slope\leftarrow F_A[l][m].slope \cdot M^{l+1}12:F_A[l][m].intercept\leftarrow F_A[l][m].intercept \cdot M^{l+1}13:i \leftarrow F_A[l][m].slope \cdot t + F_A[l][m].intercept
14:15:T[l + 1][i].add(t)
16:return F_A
```