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Background

Classical algorithms often do not scale when data exceed main memory limits. Graph algorithms for

RAMs are poorly suited for direct extension to external memory, because of the lack of locality in

graph data. Current approaches do not address the I/O implications of graph traversal very well.

Therefore, it is interesting to develop algorithms that can process data in external storage.

Motivation: 

Idea: 

In this paper, the authors proposed a new divide-and-conquer functional approach for designing

external graph algorithms. They applied their methodology to devise external algorithms for computing

connected components, minimum spanning forests (MSFs), bottleneck minimum spanning forests

(BMSFs), maximal independent sets and maximal matchings in undirected graphs. Their I/O bounds

compete with these previous approaches



I/O model of complexity 

A typical compute server might have M ≈ 109 and B ≈ 103. In general, 1 < B < M/2, and M < N. 

For a graph, we define V to be the number of vertices, E to be the number of edges, and N = V + E. 

Their external algorithms rely on scanning and sorting as primitives:

sort(N) = O((N/B)logM/B(N/B)) --- the number of I/Os needed to sort N items 

scan(N) = ⌈N/B⌉ -- the number of I/Os needed to transfer N contiguous items between disk and internal memory. 



Problem definitions



I/O bounds results



Previous methods
PRAM simulation

1. Each step is begun with a list D of tuples (d(i),i) where d(i) is the
memory address that processor i will read in this step.

2. D is then sorted by the first component (memory address) of each 
record. We can then scan A and D in tandem, writing a list R of records 
(r(i), i), where r(i) = A[d(i)] 

3. List R is then sorted by processor number, and the sorted R and T are 
scanned in tandem 

4. For each processor i , T [i ] is updated to T ʹ [i ] using the read value r(i), 
and a list W of records (d(i),w(i)) is written 

5. At the same time, the list D of read locations for the next step is 
generated. List W is sorted by first component and scanned in tandem 
with A to produce Aʹ, the simulated contents of main memory after 
the PRAM step; 

6. T ʹ contains the updated processor states. 

no algorithm based on the simulation has been implemented. 

Simulate CRCW PRAM using 1 processor and an external disk

a PRAM algorithm using N processors and N space to solve a problem of size N in time t can 
be simulated in external memory by one processor using O(t · sort(N)) I/Os. 

Buffering data structure
Different buffer tree structures were designed to support 
sequences of insert, delete and deltetemin operations

Each node maintains a large that stores operations. An operation
(insert, delete, etc.) is performed by adding it to the buffer of the
root node. When a buffer becomes full, its operations are
percolated to the appropriate children buffers. An operation is
effected when it “meets” its operand in the tree. The maintenance
procedures on the data structures are intuitively simple but can
involve many implementation details.

Such data structures excel in computational geometry 
applications, they are hard to apply to external graph 
algorithms 



Functional graph transformation
The authors proposed a divide-and-conquer mechanism to transform the graph. For a connected component :

Let G = (V, E) be a graph. Let CC(G) ⊆ V × V be a forest of rooted stars (trees of height one) representing the 
connected components of G. That is, if rG (v) is the root of the star containing v in CC(G), then rG(v) = rG(u) if and 
only if v and u are in the same connected component in G. 

Contraction
Given a graph G, contracting a pair of vertices, {x, y}, adds a new vertex, z, called a supervertex, to G, deletes vertices  
x and y, and replaces all edges of the form {u, x} and {u, y} with the corresponding edges {u,z}, discarding any loop 
edges {z,z}. 
Consider a set, Eʹ, of vertex pairs, and let G/Eʹ denote the result of contracting all vertex pairs  in E . For any x ∈ V, let 
s(x) denote the supervertex in Gʹ = G/Eʹ into which x is ultimately contracted; let s(x) = x if x is not in any pair in E

Relabeling

Given a rooted forest F as an unordered sequence of oriented tree edges {(p(v),v),...}, and an edge set I, relabeling
produces a new edge set RL(F,I) = {{r(u),r(v)} : {u,v} ∈ I}, where r(x) = p(x) if (p(x),x) ∈ F, and r(x) = x otherwise. That is, 
for each edge {u,v} ∈ I, each of u and v is replaced by its respective parent, if it exists, in F. 



We generalize the above into a purely functional approach to design external graph algorithms. Formally, let fP(G) 
denote the solution to a graph problem P on an input graph G = (V, E). For a subgraph G1 = S(G) ⊆ E of G, let T1 be a 
transformation that combines G and the solution fP(G1) to create a new subgraph, G2. Let T2 be a transformation that 
maps the solutions fP(G1) and fP(G2), to a solution to G. We summarize the approach as follows: 

Using contraction and relabeling, we derive the following simple algorithm to compute CC(G), represented as an edge list: 



Our approach is functional if S, T1, and T2 can be implemented without side effects on their arguments. Below we 
show how selection, relabeling, contraction, and (vertex and edge) deletion can be implemented functionally. 









Deterministic Algorithms 



Randomized Algorithms 
Borůvka's algorithm is a greedy algorithm for finding a minimum spanning tree in a graph, or a minimum spanning 
forest in the case of a graph that is not connected.
1. Begins by finding the minimum-weight edge incident to each vertex of the graph, and adding all of those edges to the forest.
2. Then, it repeats a similar process of finding the minimum-weight edge from each tree constructed so far to a different tree, and adding all of

those edges to the forest.

Each repetition of this process reduces the number of trees, within each connected component of the graph, to at most half of this former value,
so after logarithmically many repetitions the process finishes. When it does, the set of edges it has added forms the minimum spanning forest.

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree


Randomized Algorithms 



Semi-External Problems
We now consider semi-external graph problems, when V ≤ M but E > M. These cases often have practical
applications, e.g., in graphs induced by monitoring long-term traffic patterns among relatively few nodes in
a network. The ability to maintain in memory information about the vertices often simplifies the problems.

Kruskal's algorithm finds a minimum spanning forest of an undirected edge-weighted graph. If the graph 
is connected, it finds a minimum spanning tree. 

• create a forest F (a set of trees), where each vertex in 
the graph is a separate tree

• create a set S containing all the edges in the graph
• while S is non-empty and F is not yet spanning

• remove an edge with minimum weight from S
• if the removed edge connects two different trees 

then add it to the forest F, combining two trees 
into a single tree

At the termination of the algorithm, the forest forms a minimum 
spanning forest of the graph. If the graph is connected, the forest 
has a single component and forms a minimum spanning tree.

https://en.wikipedia.org/wiki/Minimum_spanning_forest
https://en.wikipedia.org/wiki/Minimum_spanning_forest
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree


Semi-External Problems



• Equivalent with the I/O performance of the best previous algorithms 

• Simple to describe and implement

• Conducive to standard checkpointing and programming language optimization tools.

Contributions

The authors proposed a functional approach to produce external graph algorithms


