Algorithmica (2002) 32: 437-458

DOL: 10.1007/500453-001-0088-5 Algorithmica

© 2002 Springer-Verlag New York Inc.

A Functional Approach to External Graph Algorithms!

J. Abello,? A. L. Buchsbaum,? and J. R. Westbrook>

Presenter: Tao Sun

Background

Motivation:

Idea:

Classical algorithms often do not scale when data exceed main memory limits. Graph algorithms for
RAMs are poorly suited for direct extension to external memory, because of the lack of locality in
graph data. Current approaches do not address the I/O implications of graph traversal very well.

Therefore, it is interesting to develop algorithms that can process data in external storage.

In this paper, the authors proposed a new divide-and-conquer functional approach for designing
external graph algorithms. They applied their methodology to devise external algorithms for computing
connected components, minimum spanning forests (MSFs), bottleneck minimum spanning forests
(BMSFs), maximal independent sets and maximal matchings in undirected graphs. Their 1/O bounds

compete with these previous approaches

/0O model of complexity

= number of items in the instance,

N
M = number of items that can fit in main memory,
B

number of items per disk block.

A typical compute server might have M = 10° and B = 103. In general, 1 < B<M/2, and M < N.

For a graph, we define V to be the number of vertices, E to be the number of edges, and N =V + E.

. Their external algorithms rely on scanning and sorting as primitives:
. sort(N) = O((N/B)logy,5(N/B)) --- the number of I/Os needed to sort N items

B scan(N) = [N/B] - the number of 1/0s needed to transfer N contiguous items between disk and internal memory.

Problem definitions

Connected components. A connected component is the edge set induced by a max-
imal set of vertices such that each pair of vertices is connected by a path in G.
The output is a delineated list of edges, {C1, Ca, ..., Ci}, where k is the number
of components. Each C; is the list of edges in component i, and the output is the
file of components catenated together, with a separator record between adjacent
components.

Minimum spanning forests. A minimum spanning forest (MSF)) is a spanning forest
that minimizes the sum of the weights of the edges. The output is a list of edges
in the forest, delineated by trees.

Bottleneck minimum spanning forests. A bottleneck minimum spanning forest
(BMSF) i1s a spanning forest that minimizes the weight of the maximum edge.
The output is a list of edges in the forest, delineated by trees.

Maximal matching. A maximal matching is a maximal set of edges such that no two
edges share a common vertex. The output is a list of edges in the matching.

Maximal independent set. A maximal independent set 1s a maximal set of vertices
such that no two vertices are adjacent. The output is a list of vertices in the
independent set.

A planar graph and its minimum spanning tree.
Each edge is labeled with its weight, which here is
roughly proportional to its length.

.

1/0 bounds results

Table 1. I/0 bounds for our functional external algorithms.

Deterministic Randomized
Problem I/O bound I/O Bound With probability
Connected components O(sort(E) + %sort(V) log, %) O (sort(E)) | — gSHE)
MSFs O(sort(E) + {;sort(V)log, 1;) Of(sort(E)) 1 — eR(E)
BMSFs O(sort(E) + $sort(V)log,) O(sort(E)) 1 — eRE)
Maximal matchings 0(%30:‘:(\«’) log, %) O (sort(E)) I — & for any fixed &

Maximal independent sets

O (sort(E))

I — & for any fixed &

Previous methods

PRAM simulation Buffering data structure

Simulate CRCW PRAM using 1 processor and an external disk pifferent buffer tree structures were designed to support

sequences of insert, delete and deltetemin operations
Given a CRCW PRAM algorithm on N processors, the simulation maintains on disk 9 ! P

(1) a copy of main memory in an array, A, sorted by memory address, and (2) a state

array, T, of N elements. Let Ali] (resp., T{i]) be the ith element of A (resp., T). Location Each node maintains a large that stores operations. An operation

T'li] contains the (O(1) size) current state of processor /. (insert, delete, etc.) is performed by adding it to the buffer of the

) i) . . root node. When a buffer becomes full, its operations are

1. Each step is begun with a list ,D _Of tuplgs (6,1(’)”) where dli) is the percolated to the appropriate children buffers. An operation is

mgmory address that prpcessor i will read in this step. effected when it “meets” its operand in the tree. The maintenance

2. Disthen sorted by the first compqnent (memorY gddre§s) of each procedures on the data structures are intuitively simple but can
record. We can then scan A and D in tandem, writing a list R of records involve many implementation details.

(r(i), i), where r(i) = A[d(i)]
3. List Ris then sorted by processor number, and the sorted R and T are
scanned in tandem Such data structures excel in computational geometry

4. Foreach processori, T[i]is updated to T’ [i] using the read value r(i), . .
and a list W of records (d(i),w(i) is written applications, they are hard to apply to external graph

5. At the same time, the list D of read locations for the next step is algorithms
generated. List W is sorted by first component and scanned in tandem
with A to produce A’, the simulated contents of main memory after
the PRAM step;

6. T'contains the updated processor states.

a PRAM algorithm using N processors and N space to solve a problem of size N in time ¢ can
be simulated in external memory by one processor using O(t - sort(N)) 1/Os.

no algorithm based on the simulation has been implemented.

Functional graph transformation

The authors proposed a divide-and-conquer mechanism to transform the graph. For a connected component :

Let G = (V, E) be a graph. Let CC(G) € V x V be a forest of rooted stars (trees of height one) representing the
connected components of G. That is, if rg (v) is the root of the star containing v in CC(G), then rg(v) = rg(u) if and
only if vand u are in the same connected component in G.

Contraction

Given a graph G, contracting a pair of vertices, {x, y}, adds a new vertex, z, called a supervertex, to G, deletes vertices
x and y, and replaces all edges of the form {u, x} and {u, y} with the corresponding edges {u,z}, discarding any loop
edges {z,z}.

Consider a set, E', of vertex pairs, and let G/E’ denote the result of contracting all vertex pairs in E. Forany x € V, let
s(x) denote the supervertex in G' = G/E’ into which x is ultimately contracted; let s(x) = x if x is not in any pairin E

Relabeling

Given a rooted forest F as an unordered sequence of oriented tree edges {(p(v),v),...}, and an edge set I, relabeling
produces a new edge set RL(F,/) = {{r(u),r(v)} : {u,v} € I}, where r(x) = p(x) if (p(x),x) € F, and r(x) = x otherwise. That is,
for each edge {u,v} € I, each of u and v is replaced by its respective parent, if it exists, in F.

Using contraction and relabeling, we derive the following simple algorithm to compute CC(G), represented as an edge list:

Algorithm CC

Let E, be any half of the edges of G; let G; = (V, E,).
Compute CC(G) recursively.

Let G' = G/CC(G,).

Compute CC(G"') recursively.

CC(G) = CC(G"YURL(CC(G"), CC(Gy)).

Nk -

LEMMA 3.2. Algorithm CC correctly computes CC(G), a forest of rooted stars corre-
sponding to the connected components of G.

We generalize the above into a purely functional approach to design external graph algorithms. Formally, let f:(G)
denote the solution to a graph problem P on an input graph G = (V, E). For a subgraph G.= §(G) € E of G, let T'be a
transformation that combines G and the solution f+(G) to create a new subgraph, G-. Let T>be a transformation that
maps the solutions f+(G1) and f+(G-), to a solution to G. We summarize the approach as follows:

1. G, <« S(G):
2. Gy <« T(G, fp(G1)):
3. fr(G) = Ta(G, G, G2, fr(G1), fr(G2)).

Our approach is functional if S, 71, and 7>can be implemented without side effects on their arguments. Below we
show how selection, relabeling, contraction, and (vertex and edge) deletion can be implemented functionally.

3.1. Selection. Let I be a list of items with totally ordered keys. Select(lk) returns
the kth biggest element from /7, including multiplicity;i.e., |{x € I : x < Select(/,k)}| <
kand|{x € I : x < Select(l, k)}| > k. Weadaptthe classical algorithm for Select(l,k)
[3]. Aggarwal and Vitter [2] use the same approach to select partitioning elements for
distribution sort:

1. Partition / into cM-element subsets, for some 0 < ¢ < 1.

Determine the median of each subset in main memory. Let S be the set of medians
of the subsets.

m <« Select(S, [S/2]).

Let 11, I, I3 be the sets of elements less than, equal to, and greater than m, respectively.
If || > k, then return Select({}, k).

Else if |I;| + | 12| > k, then return m.

Else return Select(l3, k — |I1| — |I2]).

N

NownhWw

3.2. Relabeling. Given forest F' and edge set I, we construct the relabeling, I’ =
RL(F, I) defined above, as follows:

1. Sort F' by source vertex, v.

2. Sort I by second component.

3. Process F and [in tandem.
(a) Let {s, h} € I be the current edge to be relabeled.
(b) Scan F starting from the current edge until finding (p(v), v) such that v > A.
(c) If v = h, then add {s, p(v)} to I”; otherwise, add {s, 4} to 1”.

4. Repeat steps 2 and 3, relabeling first components of edges in /” to construct /.

3.3. Contraction. Define a subcomponent to be a collection of edges among vertices
in the same connected component of G; subcomponents need not be maximal. Given
a graph G and a list C = {Cy, (3, ...} of delineated subcomponents, the contraction
of G by C 1s defined as the graph G/C = G\c|, where Gy = G, and for i > 0,
G; = G;_1/C;. That 1s, the vertices of each subcomponent in C are contracted into a
supervertex.

Let I be the edge list of G, and assume that each C; is presented as an edge list. (If
each is input as a vertex list, the following procedure can be simplified.) We form an
appropriate relabeling to / to effect the contraction, as follows:

1. For each C; = {{u;, v1},...}:

(@) R; < 0.

(b) Pick u; to be the canonical vertex.

(c) Foreach {x, y} € C;, add (41, x) and (41, y) to relabeling R;.
2. Apply relabeling | J; R; to I, yielding the contracted edge list /'

3.4. Deletion. Given edge lists / and D, it is straightforward to construct /I’ = I\ D:
simply sort / and D lexicographically, and process them in tandem to construct I’ from
the edges in 7 but not D.

Similarly, given a vertex list U, we can construct I” = {{u,v} € [:u € UAv &€ U}.
Sort U, and then sort / by first component; then process U and / in tandem, constructing
list I’ of edges in I whose first components are not in U. Then sort I’ by second
component, and process it in tandem with U, constructing list /” of edges in I’ whose
second components are not in U. We abuse notation and write /” = I\U when U is a
set of vertices.

Deterministic Algorithms

1. G, <« S(G);
2. Gy <« T(G, fp(G1)):
3. fr(G) =TaG, G1, Gz, fr(G1), fr(G2)).

Algorithm MSF Algorithm MM

1. Let E| be any lowest-cost half of the edges of G; i.e., every edge in £\ E;
has weight at least that of the edge of greatest weight in £,. Let G| =
(V, Ev).

Compute MSF(G) recursively.

Let G’ = G/MSF(G).

Compute CC(G’) recursively.

MSF(G) = EX(MSF(G’)) UMSF(G)).

1. Let E; be any non-empty, proper subset of edges of G; let G| = (V, E)).
2. Compute MM(G) recursively.

3. Let E' = E\V(MM(GH));let G' = (V, E').

4. Compute MM(G’) recursively.

5. MM(G) = MM(G") U MM(G).

N

THEOREM 4.4. A maximal matching of a graph can be computed in O((E/ V)sort(V')

THEOREM 4.3. An MSF of a graph can be computedin O (sort(E)+(E / V)sort(V) log, log S (V/M)) I /Os in the FIO model.
(V/M)) 1/Os in the FIO model.

Randomized Algorithms

Bortlivka's algorithm is a greedy algorithm for finding a minimum spanning tree in a graph, or a minimum spanning
forest in the case of a graph that is not connected.
1. Begins by finding the minimum-weight edge incident to each vertex of the graph, and adding all of those edges to the forest.

2. Then, it repeats a similar process of finding the minimum-weight edge from each tree constructed so far to a different tree, and adding all of
those edges to the forest.

Each repetition of this process reduces the number of trees, within each connected component of the graph, to at most half of this former value,
so after logarithmically many repetitions the process finishes. When it does, the set of edges it has added forms the minimum spanning forest.

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree

Randomized Algorithms

5.1. Connected Components, MSFs, and BMSFs. Consider a weighted graph G =
(V, E). A Boruvka step [7], [21] selects and contracts the edge of minimum weight
incident on each vertex. (Ties are broken lexicographically.) Boruvka steps are useful
for two reasons. First, each Boruvka step at least halves the number of vertices in the
graph. Second, it preserves the MSF of the contracted graph. More precisely, let G be a
graph, let F be a subgraph of G contracted in a Boruvka step, and let G’ be the resulting
graph. Then the MSF of G is the MSF of G’ plus the edges in F.

LEMMA 5.1. If B = O(N/1og®”) N) for some fixed integer i > 0, then a Boruvka step
can be performed in O (sort(E)) I/Os in the FIO model.

Semi-External Problems

We now consider semi-external graph problems, when V < M but E > M. These cases often have practical
applications, e.g., in graphs induced by monitoring long-term traffic patterns among relatively few nodes in
a network. The ability to maintain in memory information about the vertices often simplifies the problems.

Kruskal's algorithm finds a minimum spanning forest of an undirected edge-weighted graph. If the graph
is connected, it finds a minimum spanning tree.

» create a forest F (a set of trees), where each vertex in
the graph is a separate tree O Q
e create a set S containing all the edges in the graph o
e while Sis non-empty and F is not yet spanning
* remove an edge with minimum weight from S O o o
* if the removed edge connects two different trees O O
then add it to the forest F, combining two trees O
into a single tree 00 o

At the termination of the algorithm, the forest forms a minimum o)
spanning forest of the graph. If the graph is connected, the forest o)
has a single component and forms a minimum spanning tree.

https://en.wikipedia.org/wiki/Minimum_spanning_forest
https://en.wikipedia.org/wiki/Minimum_spanning_forest
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree

Semi-External Problems

For example, if V' < c¢M for some suitable constant 0 < ¢ < 1, we can compute
the forest of rooted stars corresponding to the connected components of a graph in one
scan, using disjoint set union [34] to maintain a forest internally. To compute MSFs,
we similarly maintain a forest internally, first sorting the edge list by weight. (This is
Kruskal’s algorithm [25].) We can even eliminate the sort and compute MSFs in scan(E)
I/Os if we use dynamic trees [33] to maintain the internal forest. For each edge, we
delete the maximum weight edge on any cycle created. The total internal computation
time then becomes O (E log V).

Contributions

The authors proposed a functional approach to produce external graph algorithms

* Equivalent with the 1/O performance of the best previous algorithms
* Simple to describe and implement

* Conducive to standard checkpointing and programming language optimization tools.

