
Paper Presentation
Frigo, Leiserson, Prokop, Ramachandran
Cache Oblivious Algorithms

Presentation by Viktor Urvantsev

Why Are Cache Oblivious Algorithms Important?

● Fast access memory is limited in space
● Not using that fast access memory results in large lookup times
● Not as performant as if one was able to keep everything in cache

(M, B) Ideal Cache Model

● Important Foundation
○ M cache memory
○ B cache line length
○ M/B cache lines
○ Effectively infinite main memory

● Tall Cache Model
○ M = Ω(B2)

Cache Aware Algorithms

● These algorithms perform well because of tuning
● Programmer has to modify one or more variables in order to maximize

performance for a specific input in a specific environment

Tiled-Mult Asymptotics Breakdown: Cache Line Number

● Number of cache lines occupied: Ө(s + s2/B)
○ At least s cache lines occupied by an s x s submatrix in row major order
○ At sizes where row width >= B, s2/B cache lines occupied
○ In asymptotic notation, maximums and additions are equivalent

Tiled-Mult Asymptotics Breakdown: Total Cache Complexity

● From tall cache assumption, we can say s = Ө(M0.5)
● From the previous slide, we know the submatrix calculation runs with at most

Ө(s2/B) = Ө(M/B) cache misses to bring the three matrices into cache
● Total Cache Complexity: Ө(1 + n2/B + (n/(M0.5))3(M/B))

○ First term: constant factor data alongside the algorithm necessary for operation
○ Second term: if the whole input matrix can fit in cache
○ Third term:

■ M/B cache lines per iteration of the innermost loop, if the matrix is larger than cache
■ Each loop has n/s = n/M0.5 iterations,
■ Triply nested loops yield (n/M0.5)3 iterations overall
■ Final complexity of (n/M0.5)3(M/B)

● Also written as: Ө(1 + n2/B + (n3/BM0.5))

Cache Oblivious Algorithms

● Can achieve the same bound as before
● Without the tuning to cache!
● Can be placed in various systems and achieve best performance without

tweaking

Cache Oblivious Algorithm: Rec-Mult

● Basic idea
○ Split matrix into quarters
○ Multiply quarters as necessary
○ Sum relevant pieces
○ See picture
○ Calculate multiplication of quarters recursively
○ Base case is when the size of each matrix is 1 x 1
○ Then use integer multiplication and addition to populate C
○ Assuming A = m x n, B = n x p:

■ Work Complexity: O(mnp)
■ Cache Complexity: O(m + n + p + (mn + np + mp)/2 + mnp/BM0.5)

Rec-Mult Cache Complexity Analysis: Case 1

Rec-Mult Cache Complexity Analysis: Case 2

Rec-Mult Cache Complexity Analysis: Case 3

Rec-Mult Cache Complexity Analysis: Case 4

Strassen’s Algorithm

● Runtime: Ө(nlog 7)
● Cache Complexity Recurrence:

● Cache Complexity:
○ Ө(n + n2/B + nlog 7/BM(log 7/2)-1)

Matrix Transposition

● Problem
○ Turn a m x n matrix A into AT (or B), an n x m matrix, both stored in row major order

● Basic algorithm
○ Doubly nested loops
○ O(mn) cache misses, where the matrix is m x n

● Recursive algorithm
○ Split matrices in half at each level, dividing (A horizontally/B vertically) or (B horizontally/A

vertically)
○ Goes down until base case (n = 1, m = 1)
○ Writes Aij to Bji
○ O(mn/B) cache misses

■ Will prove in following slides

Recursive Matrix Transposition: Case 1

Recursive Matrix Transposition: Case 2

Recursive Matrix Transposition: Case 3

Recursive Matrix Transposition: Optimal Cache Complexity

Fast Fourier Transform

● Discrete Fourier Transform
○ See picture

● Can also be calculated using:

Where n1, n2 are any two factors of n such that n1n2 = n

Cache Oblivious Algorithm: Fast Fourier Transform

Recursive Fast Fourier Transform: Cache Complexity

Funnelsort

● Merge step uses a k-merger
● Q(n) = Ө(1 + (n/B)(logMn))

K-Merger

● Built out of k0.5 k0.5-mergers on the left and one k0.5-merger on the right
● Each buffer can hold 2k3/2 elements

FunnelSort Cache Complexity, Beginning Of Proof

FunnelSort Cache Complexity, Lemma 1

FunnelSort Cache Complexity, Lemma 2

FunnelSort Cache Complexity, Lemma 3, Part 1

FunnelSort Cache Complexity, Lemma 3, Part 2

FunnelSort Cache Complexity, Lemma 3, Part 3

FunnelSort Cache Complexity, Wrapped Up

General Cache Complexity Of Any Sorting Algorithm

Distribution Sort

Buckets

● Q buckets
● Each bucket has <= 2n0.5 elements
● Any element in bucket Bi is less than every element in bucket Bi+1
● Every bucket has an associated pivot
● To start, there is 1 bucket with a pivot of ∞

Distribute Component

Distribute Step Asymptotics, Part 1

Distribute Step Asymptotics, Part 2

Distribute Step Asymptotics, Part 3

Distribution Sort Asymptotics

● O(1 + n/B) = sorting cache complexity when the
array fits in memory

● n0.5Q(n0.5) is the cache of the partition step
● Sum from 1 to q of Q(ni) is the distribute and

recursive sort step

Ideal Cache Model Justifications

● Ideal Cache Model has
○ Optimal Replacement
○ Two Levels of Memory
○ Automatic Replacement
○ Full Associativity

● Too strong of assumptions?

What Happens Without Optimal Replacement?

● Overall, constant time difference between LRU and Optimal

What Happens Without Two Levels of Memory?

● Overall, optimal cache misses on multilevel as on a two-level

What Happens Without Automatic Replacement/Full Associativity?

● Overall, as long as Q(n; M, B) = O(Q(n; 2M, B)), an optimal cache oblivious
algorithm can be implemented optimally with explicit memory management.

Empirical Results

● Matrix multiplication tangible and consistent improvement over iterative
version

Strengths and Weaknesses

● Strengths
○ Loved the progression of concepts from easier to more difficult, allows the reader to get used

to the realm of study before getting into meatier proofs.
○ Thorough explanations
○ Paper is written in proper context

● Weaknesses
○ Not enough testing of all of the various algorithms spoken about, compared to cache aware

and unoptimized counterparts
○ Could use a bit more imagery when explaining concepts, like the physical matrix overlaps in

cache in some cases

Thanks For Listening!

Questions?

Bibliography

Asymptotic Cache Complexity Recurrences and Expressions images on slides 27-30, 38 - SUNY Stony Brook CSE638 Lectures 18
and 19 (https://www3.cs.stonybrook.edu/~rezaul/Spring-2013/CSE638/CSE638-lectures-18-19.pdf)

Strassen’s Algorithm Code image, Slide 13, Rec-Mult Diagram, Slide 8 - GeeksForGeeks
(https://www.geeksforgeeks.org/strassens-matrix-multiplication/)

Storage Cost Diagram image, Side 2 - computationstructures.org, (https://computationstructures.org/lectures/caches/caches.html)

All other outside images and text came from the namesake paper: Cache-Oblivious Algorithms by Frigo, Leiserson, Prokop,
Ramachandran

https://www.geeksforgeeks.org/strassens-matrix-multiplication/
https://computationstructures.org/lectures/caches/caches.html

