Paper Presentation
Frigo, Leiserson, Prokop, Ramachandran

Cache Oblivious Algorithms

Presentation by Viktor Urvantsev

Why Are Cache Oblivious Algorithms Important?

e F[ast access memory is limited in space
e Not using that fast access memory results in large lookup times
e Not as performant as if one was able to keep everything in cache

Register 1000s of bits |

SRAM ~10 KB-10 MB [-10 ns Memory
DRAM ~10 GB 80 ns Hierarchy

Flash* ~100 GB 100 us /O
Hard disk* ~| TB 10 ms subsystem

* non-volatile (retains contents when powered off)

(M, B) Ideal Cache Model

e |mportant Foundation

O

O

O

O

M cache memory

B cache line length

M/B cache lines

Effectively infinite main memory

e Tall Cache Model

O

M = Q(B?)

Main
organized by Memory
optimal replacement
strategy

Cache
CPU

[——
work

M /B Cache lines Q

cache
Lines Imisses
of length B

Fig. 1. The ideal-cache model.

Cache Aware Algorithms

e These algorithms perform well because of tuning
e Programmer has to modify one or more variables in order to maximize
performance for a specific input in a specific environment

ALGORITHM: TiLED-MULT(A.B.C.n)

1 fori« lton/s

dofor j « 1lton/s
dofork «- 1ton/s
do ORD-MULTA ;. By,. Cj;. s)

Tiled-Mult Asymptotics Breakdown: Cache Line Number

ALGORITHM: TiLED-MULT(A.B.C.n)

1 fori« lton/s

do for j « 1ton/s
dofork « 1ton/s
do ORD-MULT(A ;. By;. C;;. 8)

e Number of cache lines occupied: (s + s?/B)
o Atleast s cache lines occupied by an s x s submatrix in row major order
o At sizes where row width >= B, s?/B cache lines occupied
o In asymptotic notation, maximums and additions are equivalent

Tiled-Mult Asymptotics Breakdown: Total Cache Complexity

e From tall cache assumption, we can say s = 6(M®?)

e From the previous slide, we know the submatrix calculation runs with at most
©(s?/B) = ©(M/B) cache misses to bring the three matrices into cache

e Total Cache Complexity: ©(1 + n?/B + (n/(M®°))*(M/B))

o First term: constant factor data alongside the algorithm necessary for operation
o Second term: if the whole input matrix can fit in cache

o Third term:
m M/B cache lines per iteration of the innermost loop, if the matrix is larger than cache
m Each loop has n/s = n/M®? iterations,
m Triply nested loops yield (n/M%°)? iterations overall
m Final complexity of (n/M%°)3(M/B)

e Also written as: ©(1 + n?/B + (n°/BM®?))

Cache Oblivious Algorithms

e (Can achieve the same bound as before
e Without the tuning to cache!
e Can be placed in various systems and achieve best performance without

tweaking

Cache Oblivious Algorithm: Rec-Mult

e Basicidea i
o Split matrix into quarters ce+dg
Multiply quarters as necessary C
Sum relevant pieces A, B and C are square metrices of size N x N

a, b, c and d are submatrices of A, of size N/2 x N/2

See picture
Calculate multiplication of quarters recursively
Base case is when the size of each matrix is 1 x 1
Then use integer multiplication and addition to populate C
AssumingA=mxn,B=nxp:

m Work Complexity: O(mnp)

m Cache Complexity: O(m + n + p + (mn + np + mp)/2 + mnp/BM®°)

e, f, g and h are submatrices of B, of size N/2 x N/2

O O O O O O O

Rec-Mult Cache Complexity Analysis: Case 1

Case 1. m.n, p > a+/ M. This case is the most intuitive. The matrices do not fit in
cache, since all dimensions are “big enough.” The cache complexity can be described
by the recurrence

O((mn +np +mp)/B) if m.n. p € lav/M/2,av M] ,

Q! e 2Q(m/2.n, p)+ O(1) otherwise if m>nandm > p,
m,n, p) < S
= 2Q(m,.n/2, p) + O(1) otherwise. if n > mandn = p,

2Q(m.n, p/2)+ O(1) otherwise .

Rec-Mult Cache Complexity Analysis: Case 2

Case I. (m < avMand n,p > avM)or (n < av/Mand m.p > avM)or(p <
avVM and m.n > avM). Here, we shall present the case where m < avM and
n, p > ay/M. The proofs for the other cases are only small variations of this proof. The
REC-MULT algorithm always divides n or p by 2 according to Egs. (3) and (4). At some
point in the recursion, both are small enough that the whole problem fits into cache.
The number of cache misses can be described by the recurrence

Ol+n+np/B+m) ifn, p e lavM/2. avM].
Q(m,n, p) < {2Q(m.n/2. p)+ O(1) otherwise ifn > p,
2Q(m.n, p/2) + O(1) otherwise ;

whose solution is Q(m. n. p) = O(np/B + mnp /By M).

Rec-Mult Cache Complexity Analysis: Case 3

Case III. (n.p <avMand m > avM)or(m.p<avMandn > avM)or (m.n <
avM and p > av/ M). In each of these cases, one of the matrices fits into cache, and

the others do not. Here, we shall present the case where n, p < a/M and m > av'M.
The other cases can be proved similarly. The REC-MULT algorithm always divides
m by 2 according to Eq. (2). At some point in the recursion, m falls into the range

avM/2 < m < avM, and the whole problem fits in cache. The number cache misses
can be described by the recurrence

Q o (1 +m) if m € [avM/2,av M),
m,n) <
~ | 2Q(m/2.n, p) + O(1) otherwise ;

whose solution is Q(m. n. p) = O(m + mnp /B M).

Rec-Mult Cache Complexity Analysis: Case 4

Case IV. m.n. p < av/M. From the choice of e, all three matrices fit into cache.

The matrices are stored on O(1 + mn/B + np/B + mp/B) cache lines. Therefore, we have
Q(m,n, p) = O(1+(mn+np+mp)/B). O

into quarters.
Input:

Strassen’s Algorithm

col = matri
, €ol2 = row/
return matrix[:ro 2 w2, col2:], matrix[row2:, :col2], matrix[ro

e Runtime: 6(n'9 ")
e Cache Complexity Recurrence:

recurs

(1 +n+n%/B) ifn® <aM.

Q(n) < =

7Q(n/2) + O(n®/B) otherwise ;

X

the matri into quadrants. will be done recu

e Cache Complexity: Sy et reiomnee
o ©(n + n?B + n'°3 7/BM(log 7/211) : Tz 8a PSSPy

7 products, recursi
h)
h)

quadrants of the final matri

the 4 quadrants into a single matri y stacking horizontally and vertically.

vstack((np.hstac 3 21, c22))))

Matrix Transposition

e Problem
o Turn a m x n matrix A into AT (or B), an n x m matrix, both stored in row major order

e Basic algorithm

o Doubly nested loops
o O(mn) cache misses, where the matrix is m x n

e Recursive algorithm
o Split matrices in half at each level, dividing (A horizontally/B vertically) or (B horizontally/A
vertically)
o Goes down until base case (n=1, m=1)
o Writes Aij to Bji
O(mn/B) cache misses
m Will prove in following slides

Recursive Matrix Transposition: Case 1

Case 1. max{m.n} < aB. Both the matrices fit in O(1) + 2mn/B lines. From the
choice of «, the number of lines required is at most M/B. Therefore, Q(m,n) = O(1 +

mn/B).

Recursive Matrix Transposition: Case 2

Case IlI. m < aB < nor n < aBB < m. Suppose first that m < «BB < n. The REc-
TRANSPOSE algorithm divides the greater dimension n by 2 and performs divide and
conquer. At some point in the recursion, n falls into the range a3/2 < n < aB, and the
whole problem fits in cache. Because the layout is row-major, at this point the input
array has n rows and m columns, and it is laid out in contiguous locations, requiring at
most O(1 +nm/B) cache misses to be read. The output array consists of nm elements in
m rows, where in the worst case every row lies on a different cache line. Consequently,
we incur at most O(m + nm/B) for writing the output array. Since n > a«B/2, the total
cache complexity for this base case is O(1+m). These observations yield the recurrence

O(1 +m) ifnelaB/2 ab] .,
2Q(m.n/2) + O(1) otherwise ;

Qim.n) < {

whose solution is Q(m, n) = O(1 + mn/B).
The case n < aB < m is analogous.

Recursive Matrix Transposition: Case 3

Case IIl. m,n > aB. As in Case II, at some point in the recursion both n and m fall
into the range [«3/2, «B]. The whole problem fits into cache and can be solved with at
most O(m+n+mn/B) cache misses. The cache complexity thus satisfies the recurrence

Om+n+mn/B) ifm.ne€ [aB/2.aB],
Qim,n) << 2Q(m/2.n)+0(1) if m=n, (8)
2Q(m, n/2) + O(1) otherwise;

whose solution is Q(m.n) = O(1+mn/B).

Recursive Matrix Transposition: Optimal Cache Complexity

THEOREM 3.2. The REC-TRANSPOSE algorithm exhibits optimal cache complexity.

PROOF. For an m x n matrix, the algorithm must write to mn distinct elements,
which occupy at least [mn/B] = Q(1 + mn/B) cache lines. O

Fast Fourier Transform

e Discrete Fourier Transform

n-1

Yl =) X[jlo;¥.
=U

where , = e**v-1/n

e (Can also be calculated using:

n;—1 n;—1
Ylis +igml = 3 ((}: X jin +;1)) vl

J2=0 n=0

Where n,, n, are any two factors of n such that n,.n,=n

Cache Oblivious Algorithm: Fast Fourier Transform

2

We choose n1 to be 2['€%2] and ns to be 21'%7/2) | The recursive step then operates as
follows.

(1) Pretend that input is a row-major ny x ns matrix A. Transpose A in place, that is,
use the cache-oblivious REC-TRANSPOSE algorithm to transpose A onto an auxil-
iary array B, and copy B back onto A. Notice that if n; = 2ns, we can consider the
matrix to be made up of records containing two elements.

(2) At this stage, the inner sum corresponds to a DFT of the ns rows of the transposed

matrix. Compute these ny DFT's of size n; recursively. Observe that, because of
the previous transposition, we are transforming a contiguous array of elements.

(3) Multiply A by the twiddle factors, which can be computed on the fly with no extra
cache misses.

(4) Transpose A in place, so that the inputs to the next stage are arranged in contigu-
ous locations.

(5) Compute ny DFT’s of the rows of the matrix recursively.

(6) Transpose A in place so as to produce the correct output order.

Recursive Fast Fourier Transform: Cache Complexity

It can be proved by induction that the work complexity of this FFT algorithm is
O(nlgn). We now analyze its cache complexity. The algorithm always operates on
contiguous data, by construction. Thus, by the tall-cache assumption (1), the trans-
position operations and the twiddle-factor multiplication require at most O(1 + n/B)
cache misses. Thus, the cache complexity satisfies the recurrence

(11)

Qn) < { O(1 +n/B). ifn<aM.,
n) <

n1Q(ns) + naQ(ny) + O(1 + n/B) otherwise ;

where o > 0 is a constant sufficiently small that a subproblem of size .M fits in cache.
This recurrence has solution

Q(n)=0 (1+(n/B)(1+log,,n)) .,
which is optimal for a Cooley-Tukey algorithm, matching the lower bound by Hong

and Kung [1981] when n is an exact power of 2. As with matrix multiplication, no
tight lower bounds for cache complexity are known for the general DFT problem.

Funnelsort

Funnelsort is similar to mergesort. In order to sort a (contiguous) array of n ele-
ments, funnelsort performs the following two steps.
(1) Split the input into n'? contiguous arrays of size n*®, and sort these arrays
recursively.
(2) Merge the n'® sorted sequences using a n
section.

1

S.merger, which is described in this

e Merge step uses a k-merger
e Q(n)=6(1+ (n/B)(log,,n))

K-Merger

e Built out of k%> k°>-mergers on the left and one k%°-merger on the right
e Each buffer can hold 2k*? elements

A k-merger operates recursively in the following way. In order to output £” elements,
the k-merger invokes R k%2 times. Before each invocation, however, the k-merger fills
all buffers that are less than half full, that is, all buffers that contain less than £3/2
elements. In order to fill buffer i, the algorithm invokes the corresponding left merger

L, once. Since L; outputs k%2 elements, the buffer contains at least £%2 elements after
L, finishes.

k-merger

Fig. 3. Illustration of a k-merger. A k-merger is built recursively out of VE “left” \"‘F-mcngcrs Ly,Lo,...,
L [T @ series of buffers, and one “right” Vk-merger R.
JE

FunnelSort Cache Complexity, Beginning Of Proof

It can be proven by induction that the work complexity of funnelsort is O(nlgn).
We will now analyze the cache complexity. The goal of the analysis is to show that
funnelsort on n elements requires at most @(n) cache misses, where

Q(n)=0(1+(n/B)1+log,n) .

FunnelSort Cache Complexity, Lemma 1

In order to prove this result, we need three auxiliary lemmas. The first lemma bounds
the space required by a k-merger.
LEMMA 4.1. A k-merger can be laid out in O(k?) contiguous memory locations.

PROOF. A k-merger requires O(k%) memory locations for the buffers, plus the space
required by the /k-mergers. The space S(k) thus satisfies the recurrence

Stk) < (vVE + DSWVE) + O(k?)
whose solution is S(k) = O(k2). O

In order to achieve the bound on Q(n), the buffers in a k-merger must be maintained
as circular queues of size k. This requirement guarantees that we can manage the
queue cache-efficiently, in the sense stated by the next lemma.

FunnelSort Cache Complexity, Lemma 2

LEMMA 4.2. Performing r insert and remove operations on a circular queue causes
in O(1 +r/B) cache misses as long as two cache lines are available for the buffer.

PROOF. Associate the two cache lines with the head and tail of the circular queue.
If a new cache block is read during an insert (delete) operation, the next 3 — 1 insert
(delete) operations do not cause a cache miss. O

FunnelSort Cache Complexity, Lemma 3, Part 1

LEMMA 4.3. If M = Q(B?), then a k-merger operates with at most
Qmerge(R) = O(1 +k + /B + (k* log .\, k)/B)
cache misses.

PROOF. There are two cases: either k < av/M or k > «v/ M, where « is a sufficiently
small constant.

Case 1.k < av/M. By Lemma 4.1, the data structure associated with the k-merger
requires at most O(k?) = O(M) contiguous memory locations, and therefore it fits into
cache. The k-merger has k input queues from which it loads O(k®) elements. Let
r; be the number of elements extracted from the ith input queue. Since &k < av M
and the tall-cache assumption (1) implies that B = O(y/M), there are at least M/B =
Q(k) cache lines available for the input buffers. Lemma 4.2 applies, whence the total
number of cache misses for accessing the input queues is

k
> 0(1+r;/B) =0k +k*/B).

i=1

3
O(l+k+k—), if k <avM,
Q'(k) = B

(21{; - ZW)Q'(JI:) + ©O(k?), otherwise.

e (’;—:logm (%)), provided M = Q(B?)

FunnelSort Cache Complexity, Lemma 3, Part 2

is O(1 + £*/B). Finally, the algorithm incurs O(1 + £%/B) cache misses for touching its
internal data structures. The total cache complexity is therefore @ merge(k) = O(1 + & + Q' (k) =
k3 /B). '

if k < avM,

Similarly, Lemma 4.1 implies that the cache complexity of writing the output queue K3
0 (1 + k + —I;) ,

3
(2k5 - 2\.@)Q'(\/E) + O(k?), otherwise.
Case 1.k > av/M. We prove by induction on k that whenever k > a+v/ M, we have

; - e : . .3 s
ch«rge(k) = Ck‘; log.\,(};’/'b — A(k), (12) =0 (,‘l_flogM (%))' provided M= Q(BZ)

where A(k) = k(1+(2clog,, k)/B) = o(k?). This particular value of A(k) will be justified
at the end of the analysis.

The base case of the induction consists of values of k such that e MY* < k < av/ M.
(It is not sufficient only to consider k = ©(v/ M), since k can become as small as @(M /%)
in the recursive calls.) The analysis of the first case applies, yielding @ merge(k) = O(1 +
k + k*/B). Because k2 > av/M = Q(B) and k = Q(1), the last term dominates, which
implies @Qmerge(k) = O(k*/B). Consequently, a big enough value of ¢ can be found that
satisfies Inequality (12).

FunnelSort Cache Complexity, Lemma 3, Part 3

For the inductive case, suppose that & =~ «+/A. The k-merger invokes the V-
mergers recursively. Since aMV* < k < k, the inductive hypothesis can be used to
bound the number @ pergel VE) of cache misses incurred by the submergers. The “right”
merger R is invoked exactly £%? times. The total number [/ of invocations of “left”
mergers is bounded by I < k%2 + 2\/k. To see why, consider that every invocation of a
left merger puts £%? elements into some buffer. Since k* elements are output and the
buffer space is 2k2, the bound ! < k%2 + 2/k follows.

Before invoking R, the algorithm must check every buffer to see whether it is empty.
One such check requires at most v% cache misses, since there are vk buffers. This
check is repeated exactly £*/? times, leading to at most k% cache misses for all checks.
These considerations lead to the recurrence

Querge(k) < (2}«,3‘2 + 2\/5) Qmerge(VE) + k2 .

Application of the inductive hypothesis and the choice A(k) = k(1+(2clog,, k)/B) yields
Inequality (12) as follows:

Querge(k) = (211‘3"‘2 + 2&) Querge(VE) + k2

3/2
< 2 (k¥ + VE) (Ck ;‘L’,g-"‘k - A(V’E)> +k?
S

< (ck®log k)/B+k* (1+(clog,, k)/B) — (Qk:“‘z + 2\/1;) A(VE)
< (ck®log k)/B — A(k) .

(1+4+%)
Ol1+k+—],
Q'(k) = B

if k <avM,

(2k§ + 2\/%)Q'(\/E) + O(k?), otherwise.

=0 (5108w (5))

provided M = Q(B?)

FunnelSort Cache Complexity, Wrapped Up

THEOREM 4.4. To sort n elements, funnelsort incurs O(1 + (n/B)1 + log ,, n)) cache
misses.

PROOF. Ifn < e M for a small enough constant «, then the algorithm fits into cache.
To see why, observe that only one k-merger is active at any time. The biggest k-merger
is the top-level n'/?-merger, which requires O(n??) < O(n) space. The algorithm thus
can operate in O(1 + n/B) cache misses.

If N > aM, we have the recurrence

Q(n) = n'2Q(n*?) + Qmerge(n'’?) .

By Lemma 4.3, we have Qmerge(n'?) = O(1+n'? + n/B + (nlog,, n)/B).

By the tall-cache assumption (1), we have n/B = Q(n'/?). Moreover, we also have
n'/? = Q(1) and lgn = Q(lg M). Consequently, @ merge(n'/?) = O((nlog,, n)/B) holds, and
the recurrence simplifies to

Q(n) = n'2Q(n*?) + O((nlog,, n)/B) .
The result follows by induction on n. O

This upper bound matches the lower bound stated by the next theorem, proving that
funnelsort is cache-optimal.

Q(n) = O(1+%)'

n%Q(né) + Q’(n%),

0(1 + n)

B ’

1.2 n
n3Q(n3) +O(§logM

= 0(1 + %logM n)

(5

ifn<M,

otherwise.

ifn<M,

)) , otherwise.

General Cache Complexity Of Any Sorting Algorithm

THEOREM 4.5. The cache complexity of any sorting algorithm is Q(n) = Q(1 +
(n/BX1+ log , n)).

PROOF. Aggarwal and Vitter [1988] show that there is an Q((n/B)log,,s(n/M))

bound on the number of cache misses made by any sorting algorithm on their “out-
of-core” memory model, a bound that extends to the ideal-cache model. The theorem
can be proved by applying the tall-cache assumption M = Q(B?) and the trivial lower
bounds of Q(n) = Q(1) and Q(n) = Q(n/B). O

Distribution Sort

Given an array A (stored in contiguous locations) of length n, the cache-oblivious
distribution sort operates as follows.
(1) Partition A into /n contiguous subarrays of size \/n. Recursively sort each
subarray.
(2) Distribute the sorted subarrays into g buckets B,

tively, such that
(a) max{x | x € B;} <=min{x | x € Bj;1}
(b) ni<2/nfori=1,2
(See below for details.)
(3) Recursively sort each bucket.
(4) Copy the sorted buckets to array A.

Buckets

Q buckets

Each bucket has <= 2n%° elements

Any element in bucket B, is less than every element in bucket B,
Every bucket has an associated pivot

To start, there is 1 bucket with a pivot of «

Distribute Component

The distribution step is accomplished by the recursive procedure DIS-
TRIBUTE(j. m) which distributes elements from the ith through (i + m — 1)th sub-
arrays into buckets starting from B;. Given the precondition that each subarray

i + m — 1 has its bhum > j, the execution of DISTRIBUTE(, J.m) enforces
the postcondition that subarraysi. i T i+ m — 1 have their bnum > j+m. Step 2
of the distribution sort invokes DISTRIBUTE(1, 1, /n). The following is a recursive
implementation of DISTRIBUTE:

ALGORITHM: DISTRIBUTE(Z j. m)

1 ifm=1

2 then COPYELEMS(z, j)

3 else DISTRIBUTE(, j. m/2)

4 DISTRIBUTE(G + m/2, j. m/2)

5 DISTRIBUTE(, j+ m/2. m/2)

6 DISTRIBUTE(G + m/2, j+m/2. m/2)

In the base case, the procedure COPYELEMS(Z, j) copies all elements from subarray i
that belong to bucket j. If bucket j has more than 2,/n elements after the insertion,
it can be split into two buckets of size at least /n. For the splitting operation, we use
the deterministic median-finding algorithm [Cormen et al. 1990, p. 189] followed by a
partition.

Distribute Step Asymptotics, Part 1

LEMMA 5.2. The distribution step involves O(n) work, incurs O(1 + n/B) cache
misses, and uses O(n) stack space to distribute n elements.

PROOF. In order to simplify the analysis of the work used by DISTRIBUTE, assume
that COPYELEMS uses O(1) work for procedural overhead. We will account for the
work due to copying elements and splitting of buckets separately. The work of DIS-
TRIBUTE is described by the recurrence

T(c) =4T(c/2)+ 0O(1).

It follows that T'(c) = O(c?), where ¢ = \/n initially. The work due to copying elements
is also O(n).

The total number of bucket splits is at most /7. To see why, observe that there are at
most /7 buckets at the end of the distribution step, since each bucket contains at least
V7 elements. Each split operation involves O(,/n) work and so the net contribution
to the work is O(n). Thus, the total work used by DISTRIBUTE is W(n) = O(T(/n)) +
O(n) + O(n) = O(n).

Distribute Step Asymptotics, Part 2

For the cache analysis, we distinguish two cases. Let « be a sufficiently small con-
stant such that the stack space used fits into cache.

Case 1. n < aM. The input and the auxiliary space of size O(n) fit into cache using
O(1 + n/B) cache lines. Consequently, the cache complexity is O(1 + n/B).

Case 1l. n > a M. Let R(c, m) denote the cache misses incurred by an invocation of
DISTRIBUTE(a, b, ¢) that copies m elements from subarrays to buckets. We first prove
that R(c. m) = O(B +c2/B + m/B), ignoring the cost splitting of buckets, which we shall
account for separately. We argue that R(e, m) satisfies the recurrence

OB+m/B) ife<uB.

R(e.m) = (13)

4
Z R(c/2. m;) otherwise ;

=1

4 a a z P S i
where), m; = m, whose solution is R(c.m) = O(B + ¢*/B + m/B). The recursive

Distribute Step Asymptotics, Part 3

where) ., m; = m, whose solution is R(c.m) = O(B + ¢*/B + m/B). The recursive
case ¢ > «aB3 follows immediately from the algorithm. The base case ¢ < «B8 can be
justified as follows. An invocation of DISTRIBUTE(a. b.c) operates with ¢ subarrays
and ¢ buckets. Since there are Q(B) cache lines, the cache can hold all the auxiliary
storage involved and the currently accessed element in each subarray and bucket. In
this case, there are O(B + m/B) cache misses. The initial access to each subarray
and bucket causes O(¢) = O(B) cache misses. Copying the m elements to and from
contiguous locations causes O(1 + m/B) cache misses.

We still need to account for the cache misses caused by the splitting of buckets.
Each split causes O(1 + /n/B) cache misses due to median finding (Lemma 5.1) and
partitioning of \/n contiguous elements. An additional O(1+.,/n/B) misses are incurred
by restoring the cache. As proved in the work analysis, there are at most /n split
operations. By adding R(\/n.n) to the split complexity, we conclude that the total
cache complexity of the distribution step is O(B+n/B+ /n(1+/n/B)) = O(n/B). O

Distribution Sort Asymptotics

THEOREM 5.3. Distribution sort uses Of(nlgn) work and incurs O(1 +
(n/B) (1 +log n)) cache misses to sort n elements.

PROOF. The work done by the algorithm is given by

q
W(n) = VaW(V/) + Z W(n)+ On) .

=1

where each n; < 2,/ and }_ n; = n. The solution to this recurrence is W(n) = O(nlgn).
The space complexity of the algorithm is given by

S(n) = S(2vn)+ O(n) ,

where the O(n) term comes from Step 2. The solution to this recurrence is S(n) = O(n).
The cache complexity of distribution sort is described by the recurrence

Q) < O(1+n/B) ifn<aM.
T VRV + YL, Q(ny) + O(1+ n/B) otherwise ;

where « is a sufficiently small constant such that the stack space used by a sorting
problem of size «.M, including the input array, fits completely in cache. The base case
n =< aM arises when both the input array A and the contiguous stack space of size
S(n) = O(n) fit in O(1 + n/B) cache lines of the cache. In this case, the algorithm incurs
O(1+n/B) cache misses to touch all involved memory locations once. In the case where
n > aM, the recursive calls in Steps 1 and 3 cause Q(/7)+Y ., Q(n;) cache misses and
O(1 + n/B) is the cache complexity of Steps 2 and 4, as shown by Lemma 5.2. The the-
orem follows by solving the recurrence. O

O(1 + n/B) = sorting cache complexity when the
array fits in memory

n%°Q(n%®) is the cache of the partition step
Sum from 1 to g of Q(n,) is the distribute and
recursive sort step

n
O<1+§), ifn<aM,

q
VnQ(\/n) + Z Q(n;))+0 (1 + %) , otherwise.

n
0(1 +ElogM n), when M = Q(B?)

|deal Cache Model Justifications

e Ideal Cache Model has
o Optimal Replacement
o Two Levels of Memory
o Automatic Replacement
o Full Associativity

e Too strong of assumptions?

What Happens Without Optimal Replacement?

e Overall, constant time difference between LRU and Optimal

LEMMA 6.1. Consider an algorithm that causes Q*(n; M. B) cache misses on a prob-
lem of size n using a (M, B) ideal cache. Then, the same algorithm incurs Q(n; M, B) <
2Q*(n; M /2, B) cache misses on a (M. B) cache that uses LRU replacement.

PROOF. Sleator and Tarjan [1985] have shown that the cache misses on a (M, B)
cache using LRU replacement are (M/B)/((M — M*)/B + 1)-competitive with optimal
replacement on a (JM?*, B) ideal cache if both caches start empty. It follows that the
number of misses on a (M, B) LRU-cache is at most twice the number of misses on a
(M /2, B) ideal-cache. O

COROLLARY 6.2. For any algorithm whose cache-complexity bound Q(n; M, B) in
the ideal-cache model satisfies the regularity condition

Q(n; M. B)= 0(Q(n;2M. B)) . (14)
the number of cache misses with LRU replacement is ©(Q(n; M, B)).

PROOF. Follows directly from (14) and Lemma 6.1. O

What Happens Without Two Levels of Memory?

e Overall, optimal cache misses on multilevel as on a two-level

LEMMA 6.3. A (M;, B;)-cache at a given level i of a multilevel LRU model always
contains the same cache blocks as a simple (M;, B;)-cache managed by LRU that serves
the same sequence of memory accesses. O

We prove this lemma by induction on the cache level. Cache 1 trivially satisfies the
above lemma. Now, we can assume that cache i satisfies Lemma 6.3.

Assume that the contents of cache i (say A) and hypothetical cache (say B) are
the same up to access h. If access h + 1 is a cache hit, contents of both caches remain
unchanged. If access 2+ 1 is a cache miss, B replaces the least-recently used cache line.
Recall that we make assumptions to ensure that cache i + 1 can include all contents
of cache i. According to the inductive assumption, since cache i holds the cache blocks
most recently accessed by the processor, B cannot replace a cache line that is marked
in A. Therefore, B replaces the least-recently used cache line that is not marked in A.
The unmarked cache lines in A are held in the order in which cache lines from B are

thrown out. Again, from the inductive assumption, B rejects cache lines in the LRU
order of accesses made by the processor. Thus, A also replaces the least-recently used
line that is not marked, which completes the induction. O

LEMMA 6.4. An optimal cache-oblivious algorithm whose cache Compleutv satisfies
the regularity condition (14) incurs an optzmal number of cache misses on each level®
of @ multilevel cache with LRU replacement.

PROOF. Let cache i in the multilevel LRU model be a (M;. B;) cache. Lemma 6.3
says that the cache holds exactly the same elements as a (M;, B;) cache in a two-level
LRU model. From Corollary 6.2, the cache complexity of a cache-oblivious algorithm
working on a (M, B;) LRU cache lower-bounds that of any cache-aware algorithm for
a (M;, B;) ideal cache. A (M;, B;) level in a multilevel cache incurs at least as many
cache misses as a (M;, BB;) ideal cache when the same algorithm is executed. O

What Happens Without Automatic Replacement/Full Associativity?

e Overall, as long as Q(n; M, B) = O(Q(n; 2M, B)), an optimal cache oblivious
algorithm can be implemented optimally with explicit memory management.

Finally, we remove the two assumptions of automatic replacement and full associa-
tivity. Specifically, we shall show that a fully associative LRU cache can be maintained
in ordinary memory with no asymptotic loss in expected performance.

LEMMA 6.5. A (M, B) LRU-cache can be maintained using O(M) memory locations
such that everv access to a cache block in memorv takes O(1) exnected time.

PROOF. Given the address of the memory location to be accessed, we use a 2-
universal hash function [Motwani and Raghavan 1995, p. 216] to maintain a hash
table of cache blocks present in the memory. The M /B entries in the hash table point
to linked lists in a heap of memory that contains M /B records corresponding to the
cache lines. The 2-universal hash function guarantees that the expected size of a chain
is O(1). All records in the heap are organized as a doubly linked list in the LRU or-
der. Thus, the LRU policy can be implemented in O(1) expected time using O(M/B)
records of O(B) words each. O

THEOREM 6.6. An optimal cache-oblivious algorithm whose cache-complexity
bound satisfies the regularity condition (14) can be implemented optimally in expec-
tation in multilevel models with explicit memory management.

PrOOF. Combine Lemma 6.4 and Lemma 6.5. O

COROLLARY 6.7. The recursive cache-oblivious algorithms for matrix multiplica-
tion, matrix transpose, FFT, and sorting are optimal in multilevel models with explicit
memory management.

PROOF. Their complexity bounds satisfy the regularity condition (14). O

Empirical Results

e Matrix multiplication tangible and consistent improvement over iterative
version

iterative ¢
recursive +

< o
cunoont 0009000 905 0

73
2
<
Q
o
@
7]
o
—
Q
E
o
=
P—

0
0 100 200 300 400 500 600
N

Average time taken to multiply two N x N matrices, divided by N°.

Strengths and Weaknesses

e Strengths

o Loved the progression of concepts from easier to more difficult, allows the reader to get used
to the realm of study before getting into meatier proofs.
o Thorough explanations
o Paper is written in proper context
e \Veaknesses
o Not enough testing of all of the various algorithms spoken about, compared to cache aware

and unoptimized counterparts
o Could use a bit more imagery when explaining concepts, like the physical matrix overlaps in

cache in some cases

Thanks For Listening!

Questions?

Bibliography
Asymptotic Cache Complexity Recurrences and Expressions images on slides 27-30, 38 - SUNY Stony Brook CSE638 Lectures 18

and 19 (https://www3.cs.stonybrook.edu/~rezaul/Spring-2013/CSE638/CSE638-lectures-18-19.pdf)

Strassen’s Algorithm Code image, Slide 13, Rec-Mult Diagram, Slide 8 - GeeksForGeeks
(https://www.geeksforgeeks.ora/strassens-matrix-multiplication/)

Storage Cost Diagram image, Side 2 - computationstructures.org, (https://computationstructures.org/lectures/caches/caches.html)

All other outside images and text came from the namesake paper: Cache-Oblivious Algorithms by Frigo, Leiserson, Prokop,
Ramachandran

https://www.geeksforgeeks.org/strassens-matrix-multiplication/
https://computationstructures.org/lectures/caches/caches.html

