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Why Are Cache Oblivious Algorithms Important?

● Fast access memory is limited in space
● Not using that fast access memory results in large lookup times
● Not as performant as if one was able to keep everything in cache



(M, B) Ideal Cache Model

● Important Foundation
○ M cache memory
○ B cache line length
○ M/B cache lines
○ Effectively infinite main memory

● Tall Cache Model
○ M = Ω(B2)



Cache Aware Algorithms

● These algorithms perform well because of tuning
● Programmer has to modify one or more variables in order to maximize 

performance for a specific input in a specific environment 



Tiled-Mult Asymptotics Breakdown: Cache Line Number

● Number of cache lines occupied: Ө(s + s2/B)
○ At least s cache lines occupied by an s x s submatrix in row major order
○ At sizes where row width >= B, s2/B cache lines occupied
○ In asymptotic notation, maximums and additions are equivalent



Tiled-Mult Asymptotics Breakdown: Total Cache Complexity

● From tall cache assumption, we can say s = Ө(M0.5)
● From the previous slide, we know the submatrix calculation runs with at most 

Ө(s2/B) = Ө(M/B) cache misses to bring the three matrices into cache
● Total Cache Complexity: Ө(1 + n2/B + (n/(M0.5))3(M/B))

○ First term: constant factor data alongside the algorithm necessary for operation 
○ Second term: if the whole input matrix can fit in cache
○ Third term: 

■ M/B cache lines per iteration of the innermost loop, if the matrix is larger than cache
■ Each loop has n/s = n/M0.5 iterations, 
■ Triply nested loops yield (n/M0.5)3 iterations overall
■ Final complexity of (n/M0.5)3(M/B)

● Also written as: Ө(1 + n2/B + (n3/BM0.5))



Cache Oblivious Algorithms

● Can achieve the same bound as before
● Without the tuning to cache!
● Can be placed in various systems and achieve best performance without 

tweaking



Cache Oblivious Algorithm: Rec-Mult

● Basic idea
○ Split matrix into quarters
○ Multiply quarters as necessary
○ Sum relevant pieces
○ See picture
○ Calculate multiplication of quarters recursively
○ Base case is when the size of each matrix is 1 x 1
○ Then use integer multiplication and addition to populate C
○ Assuming A = m x n, B = n x p:

■ Work Complexity: O(mnp)
■ Cache Complexity: O(m + n + p + (mn + np + mp)/2 + mnp/BM0.5)



Rec-Mult Cache Complexity Analysis: Case 1



Rec-Mult Cache Complexity Analysis: Case 2



Rec-Mult Cache Complexity Analysis: Case 3



Rec-Mult Cache Complexity Analysis: Case 4



Strassen’s Algorithm

● Runtime: Ө(nlog 7)
● Cache Complexity Recurrence:

● Cache Complexity:
○ Ө(n + n2/B + nlog 7/BM(log 7/2)-1)



Matrix Transposition

● Problem
○ Turn a m x n matrix A into AT (or B), an n x m matrix, both stored in row major order

● Basic algorithm
○ Doubly nested loops
○ O(mn) cache misses, where the matrix is m x n

● Recursive algorithm
○ Split matrices in half at each level, dividing (A horizontally/B vertically) or (B horizontally/A 

vertically)
○ Goes down until base case (n = 1, m = 1)
○ Writes Aij to Bji
○ O(mn/B) cache misses

■ Will prove in following slides



Recursive Matrix Transposition: Case 1



Recursive Matrix Transposition: Case 2



Recursive Matrix Transposition: Case 3



Recursive Matrix Transposition: Optimal Cache Complexity



Fast Fourier Transform

● Discrete Fourier Transform
○ See picture

● Can also be calculated using:

Where n1, n2 are any two factors of n such that n1n2 = n



Cache Oblivious Algorithm: Fast Fourier Transform



Recursive Fast Fourier Transform: Cache Complexity



Funnelsort

● Merge step uses a k-merger
● Q(n) = Ө(1 + (n/B)(logMn))



K-Merger

● Built out of k0.5 k0.5-mergers on the left and one k0.5-merger on the right
● Each buffer can hold 2k3/2 elements



FunnelSort Cache Complexity, Beginning Of Proof



FunnelSort Cache Complexity, Lemma 1



FunnelSort Cache Complexity, Lemma 2



FunnelSort Cache Complexity, Lemma 3, Part 1



FunnelSort Cache Complexity, Lemma 3, Part 2



FunnelSort Cache Complexity, Lemma 3, Part 3



FunnelSort Cache Complexity, Wrapped Up



General Cache Complexity Of Any Sorting Algorithm



Distribution Sort



Buckets

● Q buckets
● Each bucket has <= 2n0.5 elements
● Any element in bucket Bi is less than every element in bucket Bi+1
● Every bucket has an associated pivot
● To start, there is 1 bucket with a pivot of ∞



Distribute Component



Distribute Step Asymptotics, Part 1



Distribute Step Asymptotics, Part 2



Distribute Step Asymptotics, Part 3



Distribution Sort Asymptotics

● O(1 + n/B) = sorting cache complexity when the 
array fits in memory

● n0.5Q(n0.5) is the cache of the partition step
● Sum from 1 to q of Q(ni) is the distribute and 

recursive sort step



Ideal Cache Model Justifications

● Ideal Cache Model has
○ Optimal Replacement
○ Two Levels of Memory
○ Automatic Replacement
○ Full Associativity

● Too strong of assumptions?



What Happens Without Optimal Replacement?

● Overall, constant time difference between LRU and Optimal



What Happens Without Two Levels of Memory?

● Overall, optimal cache misses on multilevel as on a two-level



What Happens Without Automatic Replacement/Full Associativity?

● Overall, as long as Q(n; M, B) = O(Q(n; 2M, B)), an optimal cache oblivious 
algorithm can be implemented optimally with explicit memory management.



Empirical Results

● Matrix multiplication tangible and consistent improvement over iterative 
version



Strengths and Weaknesses

● Strengths
○ Loved the progression of concepts from easier to more difficult, allows the reader to get used 

to the realm of study before getting into meatier proofs.
○ Thorough explanations
○ Paper is written in proper context

● Weaknesses
○ Not enough testing of all of the various algorithms spoken about, compared to cache aware 

and unoptimized counterparts
○ Could use a bit more imagery when explaining concepts, like the physical matrix overlaps in 

cache in some cases



Thanks For Listening!

Questions?
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