
Low depth cache-oblivious algorithms
Guy E. Blelloch, Phillip B. Gibbons, Harsha Vardhan Simhadri

Presenter: Jingnan Shi



Outline

- Motivation
- Low-depth Cache Oblivious Sorting 

- Deterministic
- Random
- Applications

- Low-depth Cache Oblivious Sparse Matrix Vector Multiplication
- Mapping to Different Multi-level Memory Hierarchies

- Parallel Multi-level Distributed Hierarchy (PMDH)
- Bounds

- Parallel Multi-level Shared Hierarchy (PMSH)
- Bounds



Motivation

- Interested in studying locality of algorithms written with dynamic nested 
parallelism

- Combining work & depth analysis with cache complexity from sequential 
cache-oblivious model



Why low depth?

depth

For a work-stealing scheduler (binary forking, single level of cache) [Acar et al., 2000]: 

Natural sequential 
cache complexity

Parallel cache 
complexity

This suggests an approach for developing 
cache-efficient parallel algorithms:

- Develop a nested-parallel algorithm with (1) 
low sequential cache complexity, and (2) low 
depth

- Bound the results on a parallel machine



Summary of Low-depth Cache-Oblivious Algorithms



Sorting: Preliminaries

Cache complexity:

Use tall cache assumption, and assume n > 
cM, we have:

Depth:



Sorting: Sample Sort (Frazer and McKellar, 1970) 

Pseudocode: 

1. If average bucket size is smaller than a 
threshold, switch to quicksort

2. Sample p−1 elements from the input (the 
pivots). 

3. Sort the pivots; each pair of adjacent 
pivots then defines a bucket.

4. Loop over the data, placing each element 
in the appropriate bucket (using binary 
search). 

5. Sort each of the buckets.
6. Return the concatenation of all the 

buckets

Processors

Select pivots 
and sort

Buckets

Partition 
into buckets

Redistribute



Sorting: COSORT 

If input array is small, use sequential sort

Split into sqrt(n) subarrays and 
recursively sort each subarray

Sample pivots (determinstic or randomized)

Split the sorted subarrays (determine in each 
subarray the buckets’ starting offsets and length)

Sort the buckets and return the concatenated 
buckets



Sorting: COSORT

L matrix: 

- h x h, where 1st dimension indicate 
ith subarray and 2nd dimension 
indicate the jth bucket

- (i,j) value: the length of the jth bucket 
inside the ith subarray

L matrix transpose:

- Each row represents the lengths of 
the ith bucket within all subarrays

- (i,j) value: the length of the ith bucket 
inside the jth subarray



Sorting: COSORT

ith row of matrix O: 

- Prefix-sum of the ith row of L 
transpose

- L^T(i,j): the length of the ith 
bucket inside the jth subarray

- Gives the starting offsets of ith 
bucket within each subarray



Sorting: COSORT

T_{i,j} triplet:

- M_{i,j}<1>: Offset of jth bucket in 
subarray i

- O^T_{i,j}: Offset of ith subarray in 
bucket j

- M_{i,j}<2>: Length to copy



Sorting: COSORT 

After we have the mappings, we need to transfer 
the actual keys to the right buckets.



Sorting: B-Transpose

- Inputs:
- S: subarray (each row is a 

subarray)
- B: buckets (each row is a bucket)
- T: mapping matrix
- i_s: starting subarray index
- i_b: starting bucket index
- n: size of the matrix

- Four-way divide and conquer
- Copy partitions of S matrix to B 

matrix based on the mappings 
provided by the T matrix



Sorting: B-Transpose
T_{i,j} triplet:

- M_{i,j}<1>: Offset of jth bucket in 
subarray i

- O^T_{i,j}: Offset of ith subarray in 
bucket j

- M_{i,j}<2>: Length to copy



Sorting: B-Transpose

Proof sketch:

- Split the recursion tree nodes 
into three types

- For each type of nodes, 
analyse the cache misses 
separately

Bounds:



Sorting: Deterministic Sampling

- choose every (logn)-th element 
from each of the subarrays as a 
sample. 

- Sort the sample set with 
mergesort outlined above

- Smaller than the given dataset by 
a factor of log(n)

- Cache efficient - No more than 
O(n/B) cache misses

- Pick sqrt(b) evenly spaced 
samples as pivots



Sorting: Randomized Sampling

- Randomly pick sqrt(n) elements 
for pivots

- Brute force sort the sampled 
elements, and use the sorted set 
as pivots

- If one of the buckets is too large, 
the process of selecting pivots 
and computing bucket 
boundaries is repeated

Proof sketch:
- Work:

- Each iteration of the loop requires 
O(n) work

- Terminates with probability 1-1/n
- Cache:

- Incur O(n/B) cache misses with high 
probability

- Depth:
- Chernoff bounds on DAG



Sorting: Applications



me



SpMat-Vec Multiply: Intro

Finite-difference Laplacian
(https://www.it.uu.se/education/phd_studies
/phd_courses/pasc/lecture-1) 

Structural Mechanics
(https://www.it.uu.se/education/phd_studies
/phd_courses/pasc/lecture-1) 

https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1


SpMat-Vec Multiply: Intro

SLAM
(https://www.cs.cmu.edu/~kaess/pub/Della
ert17fnt.pdf)  

https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf


SpMat-Vec Multiply: Sparse Matrix as a Graph

0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

     1 2      3          4

1

2

3

4

1

2
3

4

(1,
2)

(2,3)

(1,4)



SpMat-Vec Multiply: Vertex Separator

f(n)-vertex separator theorem:

- S be a class of graph closed 
under the subgraph relation

- If there are constants α<1 and 
β>0 such that every  graph 
G(V,E) in S with n vertices can 
be partitioned into three sets of 
vertices V_a,V_s,V_b such that

Vertex separators in a planar graph
(https://en.wikipedia.org/wiki/Planar_separator_theorem#/media/File:Grid_separator.svg) 

https://en.wikipedia.org/wiki/Planar_separator_theorem#/media/File:Grid_separator.svg


SpMat-Vec Multiply: Separator Tree

- Assume we have a fast algorithm to find 
separators

- Only puts a vertex in the separator set 
if it has one edge to each side

- Separator sets have at least one 
vertex unless the graph is a clique, in 
which case the separator contains all 
but one of the vertices, and that vertex 
is on the left side of the partition (V_a)

- For planar graphs this can be done in 
linear time

- All vertices in the separator set are passed 
to all children

- Each leaf corresponds to a single edge
- Each leaf includes the indices of its two 

endpoints and its weight.



SpMat-Vec Multiply: Separator Tree Example

1

2
3

4

(1,
2)

(2,3)

(1,4)

1

2
3(1,

2)

(2,3)

1

4

(1,4) 1

2

(1,
2)

2
3

(2,3)



SpMat-Vec Multiply: Multiplication

- Reorder the matrix based on a 
preorder traversal: all vertices in the 
top separator will appear first

- Leave the results of multiplications in 
the root of every vertex

- Whenever it gets to an internal node 
of a vertex tree it adds the two 
children.



SpMat-Vec Multiply: Multiplication Example

0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

     1 2      3          4

1

2

3

4

a

b

c

d

b+d

a+c

b

a



SpMat-Vec Multiply: Multiplication Example

b+d

a+c

b

a

1

(1, 4)

(1, 2) (2, 3)

2

1: d
4: a

1: b
2: a

2: c
3: b

a+c

b+d



SpMat-Vec Multiply: Multiplication

Proof sketch:
- Depth

- Parallel recursive calls & parallel for
- Tree: depth O(log(n))
- For all: depth O(log(n))
- Total: O(log^2(n))

- Cache complexities:
- Separate into two cases: heavy vertex 

copies and light vertex copies
- Bound the number of heavy vertex 

copies
- Bound the number of light vertex 

copies



Mapping To Parallel Multi-level Hierarchies

- Cache consistencies in PDMH
- Caches are non-interfering in that the cache misses of 

one processor can be analyzed independent of other 
processors

- Concurrent reads permitted
- Concurrent writes (BACKER protocol):

- If an instruction j is a descendant of instruction i, 
then values written to memory words by i are 
reflected in j’s  memory accesses.

- Concurrent writes to objects by instructions that 
do not have a path between them in the dag will 
not be communicated between processors

- Reconciled to shared memory and reflected in 
other cache copies only when a descendant of the 
instruction that performed these writes tries to 
access them

- Reconciliation:
- Updating all written words within the block. If 

multiple writes occur, an arbitrary write wins.



PDMH: Work Stealing Scheduler

- Maintains a task dequeue for each processor. 
- When a processor spawns a new job, the new job is queued at the tail of its 

dequeue.  
- When a processor runs out of work, it pulls out the job at the head of its task 

queue. If its own task queue is empty, the processors randomly picks another  
task queue to steal from.



PDMH: Work Stealing Scheduler
Proof sketch:

- Reduce the dag to a simpler form
- Replace instructions with sequences of sequential 

instructions
- Each of the replaced instruction take unit time

- Applying Lemma 12 [21] that bounds the number of 
work-steal attempts

- Use Theorem 13 [21] to bound the running time

[21]: Robert D. Blumofe and Charles E. Leiserson. 1999. 
Scheduling multithreaded computations by work stealing. 
J. ACM 46, 5 (Sept. 1999), 720–748.



PDMH: Work Stealing Scheduler
Proof sketch:



PMSH: Parallel Depth-first Scheduler
- In the PDF scheduler tasks are prioritized 

according to their ordering in the natural 
sequential execution

- A processor completing a task is assigned the 
lowest ranked task among all the available 
tasks that are ready to execute.

- The relative ranking of available tasks can be 
efficiently determined on-the-fly without having 
to perform a sequential execution.

- See:
-  Guy E. Blelloch, Phillip B. Gibbons, and Yossi 

Matias. 1999. Provably efficient scheduling for 
languages with fine-grained parallelism. J. ACM 46, 
2 (March 1999), 281–321. 
DOI:https://doi.org/10.1145/301970.301974



PMSH: Parallel Depth-first Scheduler

Proof sketch:
- Generalize results for a single level of shared 

cache
- Inclusion implies that hits/misses/evictions at 

levels <i do not alter the number of misses at 
level i

- Caches sized for inclusion imply that all words in 
a line evicted at level >i will have already been 
evicted at level i,



Drawbacks

- Cache complexities depend on low depths
- Assumes cache/DAG consistencies with the BACKER protocol, which is not 

implemented on real machines
- Assume an optimal cache replacement strategy

- Can use LRU in practice: cache misses at each level is within a factor of two of the number of 
misses for a cache half the size running the optimal replacement policy.



Discussion Questions

- Can the proposed sorting algorithm be applied to a distributed environment?
- Is this sparse matrix vector multiplication algorithm fast in practice?
- Will different sparse matrix representations improve/reduce cache 

complexities of the algorithm proposed?


