Low depth cache-oblivious algorithms

Guy E. Blelloch, Phillip B. Gibbons, Harsha Vardhan Simhadri

Presenter: Jingnan Shi

Outline

Motivation
Low-depth Cache Oblivious Sorting

- Deterministic
- Random
- Applications

Low-depth Cache Oblivious Sparse Matrix Vector Multiplication

Mapping to Different Multi-level Memory Hierarchies

- Parallel Multi-level Distributed Hierarchy (PMDH)
- Bounds

- Parallel Multi-level Shared Hierarchy (PMSH)
- Bounds

Motivation

Intemal Extemal
Memory +“—> Memory
(M) (unbounded)

- Interested in studying locality of algorithms written with dynamic nested

parallelism
- Combining work & depth analysis with cache complexity from sequential

cache-oblivious model

Why low depth?
For a work-stealing scheduler (binary forking, single level of cache) [Acar et al., 2000]:

Q,(n; M, B) < Q(n; M, B)+ O(pM D/ B) with probability 1 — §

|

Parallel cache Natural sequential
complexity cache complexity m

This suggests an approach for developing
cache-efficient parallel algorithms: depth
- Develop a nested-parallel algorithm with (1)

low sequential cache complexity, and (2) low
depth
- Bound the results on a parallel machine =

Summary of Low-depth Cache-Oblivious Algorithms

| Problem | Depth | Cache Complexity | Section |
Matrix Transpose (n X m matrix) O(log (n 4+ m)) O([nm/B]) [38]
Prefix Sums O(logn) O([n/B]) 2.1
Merge O(logn) O([n/B]) 2.1
Sort (deterministic)* O(log® n) O([n/B][logy; n]) 22
Sort (randomized; bounds are w.h.p.)* O(log'” n) O([n/B][logy, n]) 2.3
Sparse-Matrix Vector Multiply (mm nonzeros, n¢ separators)” O(log® n) O([m/B +n/M-~¢]) 4

Figure 1: Low-depth cache-oblivious algorithms. New algorithms are marked (). All algorithms are work optimal and their cache
complexities match the best sequential algorithms. The bounds assume M = Q(B 2).

Sorting: Preliminaries

Algorithm 1 MERGE((A, sa,l4), (B, sB,lB),(C,sc))

Merges A[sa :sa+1a) and B[sp : s + IB)
into array Csc : sc +1a + IB)

1:

DUk W

if l[g = O then
Copy A[sa :sa+1a)toClsc : sc +1a)

elseif /4 = O then
Copy B[sg : s +lB) to C[sc : sc + IB)

else
Vk e [l: Lnl/SJ], find pivots (ar, bx) such that aj + by
k:[n2/3'| and A[sa+ar] < B[sp+bir+1]| and B[sp+by]
Alsa + ar + 1].
Vk € [1 : [n'®]], MERGE((A,sa + ak,ars1
ar), (B,sB + bk, bktr1 — bk), (C, sc + ak + br))

: end if

Cache complexity:

kin'/?(log(n/B) + Q(n*3; M, B)) n>cM

Q(n; M, B) < {
kon/B+1 otherwise

Use tall cache assumption, and assume n >
cM, we have:

Q(n; M, B) = O([n/B])
Depth:
D(n) <logn + D(n2/3)
D(n) = O(logn)

Sorting: Sample Sort (Frazer and McKellar, 1970)

Pseudocode:

1.

If average bucket size is smaller than a
threshold, switch to quicksort

Sample p—1 elements from the input (the
pivots).

Sort the pivots; each pair of adjacent
pivots then defines a bucket.

Loop over the data, placing each element
in the appropriate bucket (using binary
search).

Sort each of the buckets.

Return the concatenation of all the
buckets

1 2 3
20 8 14|19 123][9 321
Processors | 7 26 12| [18 25 17| |24 522
6 210| [13 15 4| [16 11 27
Select pivots [14 10 6] [23 15 17] [3 22 24]
andsort 35 10] 4 15 17] 22 23 24]
Buckets [-w 10 17 o |
Partition b, b, bs| |by b, bs|[b; by, bs
71226 |41323[|31124
6 15 18| | 5~ 22
2 25 27

10

Redistribute ‘ X>‘<§< \

o U1 N
O o W

oD

11 12 13
14 15 16
17

18 19 20
21 22 23
24 25 26

27

Sorting: COSORT

Algorithm COSORT(A, n)
if n < 10 then
return Sort A sequentially
end if
h — [v/n]
Vie [1:h],Let A; — A[h(i — 1) + 1 : hi]
Vi € [1: h], S; < COSORT(As, h)
repeat
Pick an appropriate sorted pivot set P of size h
Vi € [1: h], M; « SPLIT(S;, P)
{Each array M, contains for each bucket j a start location in .S; for bucket
7 and a length of how many entries are in that bucket, possibly 0. }
L +— h x h matrix formed by rows M; with just the lengths
LT «— TRANSPOSE(L)
Vi € [1: h], O; — PREFIX-SUM(LY)
O" «— TRANSPOSE(O) {O; is the ith row of O}
Vi,j € [1: h), Ti,j — (M ;(1), OF;, M;,5(2))
{Each triple corresponds to an offset in row ¢ for bucket j, an offset in
bucket j for row ¢ and the length to copy. }
until No bucket is too big
Let B1, Ba, ..., By be arrays (buckets) of sizes dictated by T’
B-TRANSPOSE(S, B, T, 1,1, h)
Vi, B; < COSORT(B;, length(B;))
return Bi||Bs]|...|| B},

If input array is small, use sequential sort

Split into sqgrt(n) subarrays and
recursively sort each subarray

Sample pivots (determinstic or randomized)

Split the sorted subarrays (determine in each
subarray the buckets’ starting offsets and length)

Sort the buckets and return the concatenated
buckets

Sorting: COSORT

Vi € [1: h], M; < SPLIT(S;,P) .
{Each array M; contains for each bucket j a start location in S; for bucket L matrix:
i and a length of how many entries are in that bucket, possibly 0.}

L « h x h matrix formed by rows M, with just the lengths - hx h’ where 1st dimension indicate

LT «— TRANSPOSE(L) : : :
e T O —PREFIXSUM(TY) ith subarray and 2nd dimension

OT — TRANSPOSE(O) (O is the ith row of O} indicate the jth bucket

Vi,j € [1: h), T;,; « (M; ;(1),0; ;, M; j(2)) _ . . :

{Each triple corre;ponds tojan offsei in rojw ¢ for bucket 7, an offset in _(I’J) value: the Iength of the Jth bucket
bucket j for row 7 and the length to copy. } inside the ith SUbarray

L matrix transpose:

- Each row represents the lengths of
the ith bucket within all subarrays

- (i,j) value: the length of the ith bucket
inside the jth subarray

Sorting: COSORT

Vi € [1 : h], M; — SPLIT(Si,P)

{Each array M; contains for each bucket j a start location in .S; for bucket ith row of matrix O:
7 and a length of how many entries are in that bucket, possibly 0.}
L +— h x h matrix formed by rows M; with just the lengths

LT « TRANSPOSE(L) - Prefix-sum of the ith row of L

Vi € [1: h], O; — PREFIX-SUM(LT) ¢

OT — TRANSPOSE(O) {O; is the ith row of O) ranspose

Vi, 3 € |1 Shf, T55 +— (Mag(l), O ¢, My 542)) AN :
{Each triple corre;ponds tojan offsei in rogw ¢ for bucket j, an offset in B LAT(I ’J) the length Of the Ith

bucket j for row ¢ and the length to copy.}

bucket inside the jth subarray
- Gives the starting offsets of ith
bucket within each subarray

Sorting: COSORT

Vi € [1: h], M; < SPLIT(S;,P)

{Each array M; contains for each bucket j a start location in S; for bucket
7 and a length of how many entries are in that bucket, possibly 0.}

L +— h x h matrix formed by rows M; with just the lengths

LT «— TRANSPOSE(L)

Vi € [1: h], O; «— PREFIX-SUM(LT)

OT — TRANSPOSE(Q) {O; is the ith row of O}

Vi,j € [1: h], T (Mi;(1), 005, Mi;(2))
{Each triple corresponds to an offset in row 7 for bucket j, an offset in
bucket j for row ¢ and the length to copy.}

T {i,j} triplet:

M {i,j}<1>: Offset of jth bucket in
subarray i

OAT {i,j}: Offset of ith subarray in
bucket |

M_{i,j}<2>: Length to copy

Sorting: COSORT

Algorithm COSORT(A, n)
if n < 10 then
return Sort A sequentially
end if
h — [vn]
Vie [1:h],Let A; — A[h(i — 1) + 1 : hi]
Vi € [1: h], S; < COSORT(As, h)
repeat
Pick an appropriate sorted pivot set P of size h
Vi € [1: h], M; « SPLIT(S;, P)
{Each array M, contains for each bucket j a start location in .S; for bucket
7 and a length of how many entries are in that bucket, possibly 0. }
L +— h x h matrix formed by rows M; with just the lengths
LT «— TRANSPOSE(L)
Vi € [1: h], O; — PREFIX-SUM(LY)
OT «— TRANSPOSE(O) {O; is the ith row of O}
Vi,j € [1:h], Ty,j < (Mi;(1), 0}, Mi 5(2))
{Each triple corresponds to an offset in row ¢ for bucket j, an offset in
bucket j for row ¢ and the length to copy. }

nntil No bucket is too bio

Let B1, B2, ..., By be arrays (buckets) of sizes dictated by 7T’
B-TRANSPOSE(S, B, T, 1,1, h)

Vi, B; < COSORT(B;, length(B;))

return Bi||Bs]|...|| B},

After we have the mappings, we need to transfer
the actual keys to the right buckets.

Sorting: B-Transpose

Algorithm B-TRANSPOSE(S, B, T, is, iy, n)
if (n = 1) then
Copy Si, [T iy (1) : Tia iy (1) + T3, 4, (3))
to Bib [Tis,ib <2> : T’is,ib <2> T Tis,ib <3>)
else
B-TRANSPOSE(S, B, T, is, iy, n/2)
B-TRANSPOSE(S, B, T, is, iy + n/2,n/2)
B-TRANSPOSE(S, B, T, is + n/2, iy, n/2)
B-TRANSPOSE(S, B, T, is +n/2, i +n/2, n/2)
end if

Inputs:
- S:subarray (each row is a
subarray)
B: buckets (each row is a bucket)
T. mapping matrix
i_s: starting subarray index
I_b: starting bucket index
n: size of the matrix

Four-way divide and conquer
Copy partitions of S matrix to B
matrix based on the mappings
provided by the T matrix

Sorting: B-Transpose

T {i,j} triplet:
- M_{i,j}<1>: Offset of jth bucket in S HHH
subarray i .
- OAMT _{i,j}: Offset ofith.subarray in
bucket j s B
- M {ij}<2>: Length to co 2 | s
ALy g Py 2 I e
==

Bucket transpose diagram: The 4x4 entries shown for T" dictate the
mapping from the 16 depicted segments of .S to the 16 depicted seg-
ments of B. Arrows highlight the mapping for two of the segments.

Sorting: B-Transpose

Algorithm B-TRANSPOSE(S, B, T, is, iy, n)
if (n = 1) then
Copy Si, [T, i, (1) : Tty i (1) + T, 13, (3))
to Bib [Tis,ib <2> : Tis,ib <2> + Tis:ib <3>)
else
B-TRANSPOSE(S, B, T, is, iy, n/2)
B-TRANSPOSE(S, B, T, is, iy + n/2, n/2)
B-TRANSPOSE(S, B, T, is +n/2, iy, n/2)
B-TRANSPOSE(S, B, T, is +n/2, i +n/2, n/2)
end if

Bounds:

LEMMA 2.1. Algorithm B-TRANSPOSE transfers a matrix of
\/n x /n keys into bucket matrix B of \/n buckets according to
offset matrix T in O(n) work, O(log n) depth, and O([n/B]) se-
quential cache complexity.

Proof sketch:

- Split the recursion tree nodes
into three types

- For each type of nodes,
analyse the cache misses
separately

Sorting: Deterministic Sampling

- choose every (logn)-th element
from each of the subarrays as a plexity, O(nlogn) work, and O(log® n) depth.

sample. .
- Sort the sample set with W (n) = O(n) + vnW (v/n) + ZW(m)
mergesort outlined above
- Smaller than the given dataset by D(n) = O(log” n) + max;", {D(n:)}
a factor of log(n) Jm
- Cache efficient - No more than Q(n; M,B) = O (%Dﬂ/ﬁQ(\/ﬁ; M,B)+Z Q(ni; M, B),
O(n/B) cache misses =1
- Pick sqrt(b) evenly spaced

samples as pivots

THEOREM 2.2. Onan input of size n, the deterministic COSORT
has Q(n; M,B) = O([n/B][log,; n]) sequential cache com-

Sorting: Randomized Sampling

Randomly ple Sqrt(n) elements THEOREM 2.3. On an input of size n, the randomized version
of COSORT has, with probability greater than 1—1/n, Q(n; M, B) =

for inOtS O([n/B][log s n|) sequential cache complexity, O(nlog n) work,
d O(log"® n) depth.
Brute force sort the sampled and O(log™" n) dept

elements, and use the sorted set

_ Proof sketch:
as pivots - Work:
If one of the buckets is too large, - g?rf)r'v':s;st'on of the loop requires
the process of selecting pivots - Terminates with probability 1-1/n
. - Cache:
and Com_let!ng bucket - Incur O(n/B) cache misses with high
boundaries is repeated probability

- Depth:
- Chernoff bounds on DAG

Sorting: Applications

| Problem | Depth] Cache Complexity |
List Ranking Drr(n) = O(Dsort(n)logn) O(Qsort(n))
Euler Tour on Trees O(DLr(n)) O(Qsort(n))
Tree Contraction O(Drr(n)logn) O(Qsort(n))
Least Common Ancestors (k queries) O(DLr(n)) O([k/n]Qsort (1))
Connected Components O(Drr(n)logn) O(Qsort(|E|) log(|V|/V M))
Minimum Spanning Forest O(Drr(n)logn) O(Qsort(|E|) log(|V|/v/M))

Figure 3: Low-depth cache-oblivious graph algorithms. All algorithms are deterministic. The bounds assume M = Q(Bz). Dsort
and Q,,: are the depth and cache complexity of cache-oblivious sorting.

” 4 VS

Segmentation fault

Segmentation fault
SSegmentation fault

W

®

SpMat-Vec Multiply: Intro

0

gr3030 |A|'

100
200 -
300 -
400 -
500 |-
600 [~
700 -

800 |-

900

L I I I L ! ! I
0 100 200 300 400 500 600 700 800 900

Finite-difference Laplacian
(https://www.it.uu.se/education/phd_studies
/phd_courses/pasc/lecture-1)

50 . g
100 -
150 -
200 -
250 -
300 |-
350 |-
400 |

450 -

1 L | 1 Il 1 Il [3R
0 50 100 150 200 250 300 350 400 450

Structural Mechanics
(https://www.it.uu.se/education/phd_studies
/phd_courses/pasc/lecture-1)

https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1
https://www.it.uu.se/education/phd_studies/phd_courses/pasc/lecture-1

SpMat-Vec Multiply: Intro

Ay Mgz Ayy Ay
Aso Asa Ass |

Figure 3.3: The Hessian matrix A 2 AT A for the toy SLAM problem.

ES 1 T2 T3

N/

Figure 3.4: The Hessian matrix A can be interpreted as the matrix associated with
SLAM the Markov random field representation for the problem.

(https://www.cs.cmu.edu/~kaess/pub/Della
ert17fnt.pdf)

https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf

SpMat-Vec Multiply: Sparse Matrix as a Graph

0 1 0 1
1 0 1 0
0 1 0 0

SpMat-Vec Multiply: Vertex Separator

‘A :, S :, B f(n)-vertex separator theorem:
O—O—0O—@ -O—O—0O0—0 | - S be a class of graph closed

| N : under the subgraph relation

D O—O—0 —Q— O O— O O—0O—0 - If there are constants a<1 and
R ! B>0 such that every graph

L O—O— O @-——O—O0—0—0 ! G(V,E) in S with n vertices can

:] ! be partitioned into three sets of

- O—O—O—@—O—0O—0O—0 ! vertices V_a,V_s,V_b such that

. O0—O0—0+——0—0—0—0 | Vsl < Bf(n), [Val, [Vi| < an

{(u,v) eE|l(ueV,AveWV)VueWVAveV,)} =10
Vertex separators in a planar graph

(https://en.wikipedia.org/wiki/Planar_separator_theorem#/media/File:Grid_separator.sva)

https://en.wikipedia.org/wiki/Planar_separator_theorem#/media/File:Grid_separator.svg

SpMat-Vec Multiply: Separator Tree

Algorithm BuildTree(V, E) - Assume we have a fast algorithm to find
if |E| = 1 then separators

:le}fllrn v - Only puts a vertex in the separator set
endail H 4 H
(Ve Vicp, i) — FindSeparstor(V:) . Separator sots have at east one
Es — {(u,v) € Elue Va Vv e V,}) . .
E,—E—E, vertex unless the graph is a clique, in
Vo sep <= Vg U Vasg which case the separator contains all
Vi,sep — Vo U Viep but one of the vertices, and that vertex

T « BuildTree(V, sep, Ea)
Ty <« BuildTree(Vs sep, Eb)
return SeparatorTree(7u, Viep, T5)

is on the left side of the partition (V_a)
- For planar graphs this can be done in
linear time
- All vertices in the separator set are passed
to all children
- Each leaf corresponds to a single edge
- Each leaf includes the indices of its two
endpoints and its weight.

SpMat-Vec Multiply: Separator Tree Example

2 3)

(23)

0 (74

SpMat-Vec Multiply: Multiplication

Algorithm SparseMxV (z,7T")
if isLeaf(7") then
T .u.value «— x[T.v.index] ® T . wyu
T .v.value < z[T .u.index] @ T . Wy
{Two statements for the two edge directions }
else
SparseMxV (T'.left) and SparseMxV (7".right)
for all v € T'.vertices do
v.value « (v.left—value @ v.right—value)
end for
end if

Reorder the matrix based on a
preorder traversal: all vertices in the
top separator will appear first

Leave the results of multiplications in
the root of every vertex

Whenever it gets to an internal node
of a vertex tree it adds the two
children.

SpMat-Vec Multiply: Multiplication Example

0 1 0 1 a b+d
1 0 1 0 b a+c
[
[
0 1 0 0 C b

SpMat-Vec Multiply: Multiplication Example

b+d

b+d

atc

atc

Algorithm SparseMxV (z,7")
if isLeaf(7") then
T.u.value < z[T.v.index] ® T .wyy,
T .w.value «— z[T.u.index] ® T . Wy
{Two statements for the two edge directions}
else
SparseMx V(T .left) and SparseMxV (T .right)
for all v € T.vertices do
v.value «— (v.left—value @ v.right—value)
end for
end if

(2, 3)

o |0

SpMat-Vec Multiply: Multiplication

. THEOREM 4.1. Let M be a class of matrices for which the ad-

Algorithm SparseMxV (z,T") jacency graphs satisfy an n°-vertex separator theorem. Algorithm

if isLeaf(7") then SparseMxV on an n. X n matrix A € M with m > n non-zeros
T .u.value — z[T.v.index] ® T Wy has O(m) work, O(log” n) depth and O([m/B + n/M"'~€]) se-
T.v.value «— z[T.u.index] @ T Wy quential cache complexity.

elsi Two statements for the two edge directions} Proof sketch:

- Depth
SparseMxV/(T'.left) and SparseMxV(Tright) ept

. - Parallel recursive calls & parallel for
for all v € T'.vertices do . - Tree: depth O(log(n))
v.value « (v.left—value @ v.right—value) - Forall: depth O(log(n))
end for - Total: O(log*2(n))
encif - Cache complexities:
- Separate into two cases: heavy vertex
copies and light vertex copies
- Bound the number of heavy vertex
copies
- Bound the number of light vertex
copies

Mapping To Parallel Multi-level Hierarchies

® © - @

z] [z

[z] [=] EAl
=] [2]

Lz][=
1 1
Shared Memory Shared Memory

Figure 5: Left: Parallel Multi-level Distributed Hierar-
chy (PMDH). Right: Parallel Multi-level Shared Hierarchy
(PMSH).

Cache consistencies in PDMH

Caches are non-interfering in that the cache misses of
one processor can be analyzed independent of other
processors

Concurrent reads permitted

Concurrent writes (BACKER protocol):

- If an instruction j is a descendant of instruction i,
then values written to memory words by i are
reflected in j's memory accesses.

- Concurrent writes to objects by instructions that
do not have a path between them in the dag will
not be communicated between processors

- Reconciled to shared memory and reflected in
other cache copies only when a descendant of the
instruction that performed these writes tries to
access them

Reconciliation:

- Updating all written words within the block. If

multiple writes occur, an arbitrary write wins.

PDMH: Work Stealing Scheduler

- Maintains a task dequeue for each processor.
- When a processor spawns a new job, the new job is queued at the tail of its

dequeue.
- When a processor runs out of work, it pulls out the job at the head of its task

queue. If its own task queue is empty, the processors randomly picks another
task queue to steal from.

PDMH: Work Stealing Scheduler

THEOREM 5.1. (Upper Bounds) For any 6 > 0, when a cache-
oblivious nested-parallel computation A with binary forking, se-
quential cache complexity Q(M, B), work W, and depth D is
scheduled on a PMDH P of p processors using randomized work
stealing:

lat

o The number of steals is O(p(D's p + log 1/6)) with proba-
bility at least 1 — 6.

e Allthe caches at level v incur a total of less than Q(M;, B;)+
O(p(DY'% +1og 1/8)M; / B;) cache misses with probability
at least 1 — .

e The computation completes in time not more than Wffﬁ; /p+

D% < W/p+ O(p(DC1 + log 1/8)Crs1 M/ Br +

> i1 Ci(Q(Mi—1, Bi_1)—Q(M;, B;)))/p+DCry1 with
probability at least 1 — 6.

Proof sketch:

- Reduce the dag to a simpler form
- Replace instructions with sequences of sequential
instructions
- Each of the replaced instruction take unit time

- Applying Lemma 12 [21] that bounds the number of
work-steal attempts
- Use Theorem 13 [21] to bound the running time

[21]: Robert D. Blumofe and Charles E. Leiserson. 1999.
Scheduling multithreaded computations by work stealing.
J. ACM 46, 5 (Sept. 1999), 720-748.

PDMH: Work Stealing Scheduler

THEOREM 5.2. (Lower Bound) For a PMDH P with any given
number of processors p = Q(log D), cache sizes My < --- <
My, < M/3 for some a priori upper bound M, cache line sizes
By < .-+ < By, and cache latencies Ci < -+ < Cg+1, and
for any given depth D' > 3(logp + log M) + Cr+1 + co (for
some constant co), we can construct a nested-parallel computation
DAG with binary forking and depth D', whose (expected) parallel
cache complexity on P, for all levels 1, exceeds the sequential cache
complexity Q(M;, B;) by Q(pD'$'» M; / B;) when scheduled using
randomized or centralized work stealing.

Proof sketch:

. Wﬁ)

N, .
@Scan of size Z
at array A

(a) Randomized work stealing

PMSH: Parallel Depth-first Scheduler

- In the PDF scheduler tasks are prioritized
according to their ordering in the natural

sequential execution
OE = - A processor completing a task is assigned the
z: lowest ranked task among all the available
I zlz I tasks that are ready to execute.
I - The relative ranking of available tasks can be
[I efficiently determined on-the-fly without having
I zlk I to perform a sequential execution.
I - See:

Guy E. Blelloch, Phillip B. Gibbons, and Yossi
Shared Memory Matias. 1999. Provably efficient scheduling for
languages with fine-grained parallelism. J. ACM 46,
2 (March 1999), 281-321.
DOl:https://doi.org/10.1145/301970.301974

PMSH: Parallel Depth-first Scheduler

THEOREM 5.3. When a cache-oblivious nested-parallel com-
putation A with sequential cache complexity Q(M, B), work W,

Q Q G 0 and depth D is scheduled on a PMSH P of p processors using a
PDF scheduler, then the cache at each level i incurs fewer than
Z1 Q(p(M; — B; DY''s), B;) cache misses. Moreover, the computa-
| I 1 tion completes in time not more than ﬂlj”;o /p+ fo‘tp.
Z2
i
I]
I Proof sketch:
| ZI" I - Generalize results for a single level of shared
cache

Shared Memory

- Inclusion implies that hits/misses/evictions at
levels <i do not alter the number of misses at
level i

- Caches sized for inclusion imply that all words in
a line evicted at level >i will have already been
evicted at level i,

Drawbacks

- Cache complexities depend on low depths
- Assumes cache/DAG consistencies with the BACKER protocol, which is not

implemented on real machines

- Assume an optimal cache replacement strategy
- Can use LRU in practice: cache misses at each level is within a factor of two of the number of
misses for a cache half the size running the optimal replacement policy.

Discussion Questions

- Can the proposed sorting algorithm be applied to a distributed environment?

- Is this sparse matrix vector multiplication algorithm fast in practice?

- Will different sparse matrix representations improve/reduce cache
complexities of the algorithm proposed?

